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Using the method of separation of variables, we study rigorously scalar waves due to a point source 
in the exterior of a Schwarzschild black hole. First, a Fourier analysis gives general formulas for the 
interior and exterior radial wave functions and their relations to solutions of special cases, the Green's 
function, and the frequency spectrum. Three special cases are examined. Second, Laplace transforms 
of the field are obtained and their properties are studied. Using the results of the Laplace 
transformation and some general properties of timelike curves, we prove the following theorem: The 
time-dependent scalar field of a point source goes to zero outside the horizon as the source falls into 
the black hole. 

1. INTRODUCTION 

It has been conjectured that a black hole has no ex
ternally measurable asymmetry. This is described col
loquially by Wheeler's statement l that "a black hole has 
no hair". To establish such a property we have to prove 
that (a) a black hole is born without hair and (b) no hair 
transplant is possible on a black hole. Stating these ob
jectives in a more precise language we must prove that 
(a) gravitational collapse of a slightly asymmetrical 
object will form a black hole with no externally mea
surable asymmetries (axial or spherical depending on 
whether we have rotation or not) and (b) no physical 
process can destroy this symmetry (without destroying 
the black hole). A process that could alter the sym
metry is the fall of a test particle into the black hole. 
The purpose of this paper is (a) to set the necessary 
mathematical background for an analytically exact 
study of the waves emitted by a scalar particle moving 
in the exterior of a Schwarzschild black hole and (b) to 
prove rigorously that as the particle goes into the black 
hole, the time-dependent scalar field goes to zero 
everywhere outside the horizon. 

Since this paper differs in attitude from all the pre
vious work published up to now by other authors, it is 
worthwhile to describe briefly its relation to what has 
been already done towards proving the "baldness" 
theorem for black holes. To study the creation of a 
black hole gravitational collapse with nonspherical 
perturbations has to start from a specific model for the 
star. 2,3 Thus sooner or later the complexity of a realis
tic model forces the use of numerical methods and a 
computer. A seminumerical treatment by Price4,5 has 
shown that scalar, electromagnetic or gravitational test 
fields produced by a source anchored on the collapsing 
star radiate away their higher (l ~ s) multipole moments. 
This result has been extended to a charged collapsing 
star by Bicak. 6 According to Price the eventual radia
tion of all higher multipoles is due to the curvature of 
space-time represented by an "effective potential" 
localized around r'" 4rs/3 (rs is the Schwarz schild 
radius). Effective-potential methods have been used 
also to study the gravitational radiation emitted by a 
particle falling into a black hole. 7-9 Even phenomena 
taking place totally in the exterior of the black hole have 
been studied with an effective potential and numerical 
integration of a differential equation. lO- l3 

In general the numerical techniques have become 
necessary, because after separation of variables all the 
above problems lead to a radial wave equation which 
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cannot be solved explicitly. 14 Expansion methods15- 20 

have been found appropriate and helpful for qualitative 
and quantitative studies but they cannot be considered 
as proof of a certain property. Also because of the in
ability to solve the radial wave equation, exact studies 
have been limited essentially to static situations. 21-24 
The scalar static field has been studied by the author in 
detail in a previous paper25 called hereafter paper 1. 

In the present paper we limit our treatment to scalar 
waves generated by a weak point source in the exterior 
of a Schwarz schild black hole. We neglect the contri
bution of the source and its waves to the curvature of 
the space-time and, consequently, we can superimpose 
solutions and derive fields due to more complicated 
sources. Since our objectives are to be reached as 
rigorously as possible we have to rule out the use of an 
effective potential and numerical techniques. After the 
separation of the angular dependence by expanding the 
field in spherical harmonics, we use Fourier or 
Laplace transforms to eliminate the time variable. 
Fourier transforms are needed to study the frequency 
spectrum of the radiation which is directly measurable 
by instruments. Laplace transforms are needed to 
relate the evolution of the field with its final value. Both 
transforms lead to a radial wave equation which has 
been studied in a previous paper26 called hereafter 
paper n. We rely heavily on the properties of the solu
tions derived in that paper and its notation is used 
without repetition of definitions and formulas. In Sec. 2 
we present in general the Fourier-transform analysis 
and a few fundamental special situations. In Sec. 3 we 
present the Laplace-transform method and the most 
important contribution of this paper, namely, the theo
rem concerning the radiation of multipole moments 
when the source falls into the black hole. Finally in 
Sec. 4 we comment on the achieved results and take a 
glimpse at future work. 

2. FOURIER TRANSFORMS OF SCALAR WAVES 
A. General formulation 

In this section our objective is to give some explicit 
formulas for the scalar field >J1(t, r, e, cp) which satisfy 
the second order partial differential equation 

(1) 

where f(t, r, e, cp) represents a point source (Greek 
letters take the values 0, 1,2,3). This means that for a 
given t we have f(t, r, e, cp) *0 only at a single point 
r', fY, cp'. In Eq. (1) g""v is the contravariant form of 
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the Schwarz schild metric 

(2) 

and we have neglected the contribution of \}I to the cur
vature of space-time (semicolon denotes covariant dif
ferentiation with respect to g,,). 

It has been shown in paper I that the explicit expres
sion of the source l(t, r, e, cp) affects the final behavior 
of the solution on the horizon. Following Misner et al. 11 

we choose I to be invariant under coordinate trans
formations 

(3) 

where uO=dt/dS along the particle's trajectory r(t) 
= [r'(t), e'(t), cp,(t)]. The strength q of the source can 
be a function of time. 

If we analyze the field in spherical harmonics (1 
=0, 1, "', m=O, ± 1, "', ±1) 

\}I(t,r, e,cp)=L: Plm(t,r)Y,m(e,cp), 
I,m 

where 

P,m(t, r) = f Yim (e, cp) \}I(t, r, e, cp) dn, 

then Eq. (1) reduces to 

~(1- ~rl P ,m,oo-[(I- ;)r2Plm,J1+1(l+I)P,m 

(4) 

(5) 

=47Tq(UOct16(r- r') Yim(8', cp') (6) 

(commas denote partial differentiation with x" equal to 
t, r, e, cp for !J. = 0, 1,2,3). To eliminate the time depen
dence we introduce the Fourier transform (k = w / C )27.28 

1 f'" . R,m(r, r.;k)= 27T _00 P,m(t, r) exp(zwt) dt (7) 

with inverse 

P,m(t, r) = 1: R,m(r, rs;k) exp( - iwt) dw. (8) 

We have assumed that P,m(t, r) is a generalized func
tion29 and, consequently, the Fourier transform exists 
and its usual properties are preserved. From Eq. (6) 
we have 

d ( dRlm) (k
2
r

3 
) - r(r-r)-d- + ---1(1+1) R,m=f,m(r,r.;k) 

dr S r r- r. 
(9) 

where 

I,m( r, rs;k) = (- 2) 1:" q(UOC)"l 6( r - r') Yim (8' , cp' )e iwt dt. 

(10) 

If the right-hand side of Eq. (9) is set equal to zero we 
have the homogeneous radial wave equation. In paper n 
we have studied in detail six solutions R. j(i = 1, 2, 3, 
4,5,6). We have given formulas for the constants K'J 
defined from the Wronskian and relating any three 
solutions according to the equation 

(11) 

We have also given expansions of R. i in the form of 
power series near 0 for R.1 and R. 2' near r. for R. 3 and 
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TABLE I. Solutions of the homogeneous radial wave equation. 

Singular Solutions General Region of 
point term convergence 

r:O Rt. R2. r" r< r. 

r:rs Rs. R4 (r- rs)" I r -rsl< rs 

r:+ ao R5' Rs r-" r:+ ao 

R. 4 and near + 00 for R. 5 and R. 6' The expansions found 
for the solutions R. 5 and R. a are only asymptotic expres
sions (see Table I below). Near the point r= r. two 
other expansions for R.3 and R.4 have been given [see 
Eqs. (40) and (41) of paper n] as power series of r-1 

- r;l. These expansions converge for r> r./2. Hence, 
for given r, r3 , and k we can directly evaluate R. 3 and 
R.4 and any other R. j using Eq. (11). This method is 
particularly helpful for the evaluation of R. 5 and Ra [also 
for R~j) and R~e) defined below by Eqs. (12) and (13)] 
since no use of asymptotic expansions is made. 

B. Interior and exterior solutions 

In flat space-time Eq. (9) reduces to the Bessel 
equation and the interior and exterior solutions are 
chosen28 to be j ,(kr) and h,(kr). In Schwarzschild's 
space-time let R~ j) and R~ e) be the interior and exterior 
solutions, respectively, for the time-dependent field 
and R~iS) and Ries ) for the static field (Riis) and RiBS) are 
explicitly given in terms of Legendre functions and ap
propriately normalized in paper I). The choice of Riil 
and RiB) is based on physical considerations. The most 
important requirement is that R i j) represent purely 
ingoing waves as r- rs + and R~B) represent purely out
going waves as r- + 00. Since 1< 4 behaves as exp[ - ike r 
+rslnlr-rsl)] near r=rs and R5 as exp[ik(r+rslnlr 
- rs I)] near r= + 00, we will satisfy these requirements 
if we choose 

(12) 

and 

(13) 

DIAGRAM 1. Relations among the solutions of special cases. 

~-O k-O 

C
fl(l)(O'k)h(kr):J I 

f/il(rs• k)Rlj) r 

k-O rs-O 
Rlls) 

3 4 
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Furthermore, we ask that two functionsf,(il(r., k) and 
f?)(rs' k) exist such that f,<il R\il and fJe) R\e) go to 
the flat-space solutions when rs - 0 and to the static 
solutions when k - O. Schematically this is presented 
in the diagram below. As numbered in the diagram the 
limits 2 and 6 are easily verified if fJ j) (0, k) and 
f,e) (0, k) behave as k-'(21 + I)!! and ik'+I[(21- I)! 1]-1 as 
k - O. The limits 4 and 8 have been given in paper I. 
The limit 5 has been shown in paper II. The limit 1 
would be satisfied if Riil had been chosen proportional 
to P.. 5 + P.. 6' Our choice [see Eq. (12)] will give the same 
limit if K4siK46- - 1 as rs - O. Preliminary considera
tions have s\lown this to be true although rigorous proof 
has not yet been given. The remaining limits 3 and 7 
have been established indirectly using the Laplace 
transform (see Sec. 3A). Obviously f,(i) and fie) are not 
unique. Property 2 of Sec. 3A gives a pair of such 
functions, but the simplest choice has still to be found. 
Finally, the behavior of Riil near r=O has not been 
examined analytically but quite probably Riil diverges 
there as lnr (it is a linear combination of P.l and P..2 
of paper II). 

In what follows we will need the Wronskian of R i il and 
Rie ) which is easily found to be (r is the independent 
variable) 

W[R(il R(e)]=~.!.W[D D]= i. (14) 
1 , 1 2 /\5'/\6 kr(r-r

s
) 

As we see the ratio K45/K46 does not enter into the 
Wronskian and will nofbe needed in what follows. 

C. Green's function and special cases 

To express the solution of Eq. (9) for some given 
f'm(r, r.;k) we are going to use Green's function 
G,(r, p, rs;k). The source f'm(r, r.;k) is different from 
zero only for r> rs' Thus the integrals expressing the 
solution in terms of G I involve integrations only from 
rs to + 00. The function G(r, p, r.;k) is the solution of 
Eq. (9) with right-hand side 6(r- p) and behaving as 
Riil and Rie) at rs + and + 00, respectively (p> rs)' The 
continuity of G, at r= p gives 

(15) 

where A is a constant and r< (r») the smaller (larger) of 
p and r. The discontinuity of dG / dr at r = p determines 
A through the relation28 ,3o 

~~' I r=p+ - ~~l II r=p-

1 
p(p - rs) 

Using the Wronskian from Eq. (14) we find A and 

G 1 = - ikRiil(r<, r.;k)R\e)(r), rs;k). 

The solution of the inhomogeneous Eq. (9) (uniquely 
determined by the boundary conditions) is now 

(16) 

(17) 

Rlm(r, rs;k)= - ik l~ R\il(ro rs;k)R\e)(r), rs;k)f1m(p, r.;k)dp. 
rs 
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r o, eo, 'Po and subsequently falling freely into the black 
hole; (iii) a particle of constant charge mOving perma
nently on a circular orbit r' = r 0' e' = 1T /2, 'P' == wi. 
Case (i) will be compared later with its Laplace coun
terpart. Case (ii) is important because we are inter
ested in the properties of the emitted burst of radiation. 
Case (iii) has been studied latelyll-13 in connection with 
the possibility of the existence of a mechanism for 
gravitational synchrotron radiation. 

In case (i) we have r' = r o, (J' == eo, 'P' = 'Po and 

q == qo U(t), (19) 

where U(t) is the unit step function equal to 0 for t < 0 
and 1 for t>O. From Eqs. (10) and (18) we have 

where r«r») is the smaller (larger) of r, roo 

In case (ii) we have e' = eo, 'P' = 'Po 

( 
rS)1/2 ( r )-1 

uOc = 1 - ro 1- /' , q == qo U(t). 

For r> ro we find f'm = 0, while for r'" ro 

(20) 

(22) 

(23) 

where tr is the unique solution of r - r' (t) = 0 corres
ponding to a given r ". roo The Fourier transform of 
P1m(t, r) is 

R1m(r, rs;k) 

In case (iii) we have r' = r o, (J' = 1T/2, 'P' = wot and 

uOc == [1 - r.r~l - ~w~ C-2]-1/2, q = qo' (25) 

Hence 

f'm(r, r.;k)= - 2qo(1- rsr~l- ~W~C-2)1/2 Y'm(1T/2,0) 

(26) 

(18) and 

We will give explicitly this expression for the following 
three cases: (i) a particle of constant charge created at 
1=0 and staying at ro=(ro, eo, 'Po) thereafter; (ii) a 
particle of constant charge created at t = 0 at the point 
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xR\il(r<, rs;k)Rie)(r), r.;k) 6(w - mwo)' 

(27) 
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with r«r» equal to the smaller (larger) of rand ro' 
Equation (27) is obviously the Fourier transform of a 
periodic function. 11 

Superimposing appropriately these three cases we 
can calculate the field for other situations. For exam
ple, the field of a scalar particle with constant charge 
qo stationary at a given point from t = - 00 to t = 0 and 
disappearing at t = 0 will be the superposition of a static 
field and of case (i) with charge - qo instead of qo' If 
we add also case (ii) we have the field of a charge qo 
stationary for t < 0 and starting to fall freely at t = O. In 
all cases a computer program can be written to give the 
frequency spectrum or the field itself at any point with 
input the trajectory and the charge of the particle. The 
computer should be asked to calculate R~i) and R ~e) as 
described in Sec. 2A, then Rim from Eqs. (21), (24), 
and (27). This would give us the frequency spectrum. 
The field can be found from Eqs. (8) and (4). 

For a physicist cases (i) and (ii) obviously have a 
limit as t - + 00 while the contrary happens for case 
(iii). Moreover, it can be argued that when t becomes 
large only the "small w" components of the spectrum 
will contribute to the integral (8), because of the fac
tor exp( - iwt) in the integrand. But in the theory of 
Fourier transforms there is no general mathematical 
theorem connecting the time-dependent field and its 
limit as t - + 00. Such a theorem is available in the 
theory of Laplace transforms. In Sec. 3 we will exploit 
that theorem to prove that no lines of force can be 
planted on a black hole by a falling inwards scalar 
particle. 

3. LAPLACE TRANSFORMS OF SCALAR WAVES 

A. Laplace transforms 

Our objective in Sec. 3D will be to prove rigorously 
and under very general conditions that the static field 
left in the exterior of a Schwarz schild black hole by a 
scalar charge falling inwards is the zero field. We 
develop here the necessary Laplace transform of the 
field starting from Eq. (6). Any field changing only for 
t> 0 can be written as superposition of fields which are 
zero for t < 0 and static fields. Consequently, we as
sume that Plm(t, r)=O for all t -'SO. Assuming that 
P1m(t, r) is piecewise continuous and of exponential order 
as t - + 00 so that its Laplace transform exists, 31,32 we 
set 

R1m(r, rs;A) = .( Plm(t, r)exp(- st)dt. (28) 

We have from Eq. (6) 

~(r(r_r)dRlm)+ ~2r -Z(l+1»)R lm =fim(r,r.;s) 
dr s dr r- r 

s (29) 

with A = ± islc and 

Jim (r, rs;s) = - 47T t' q o( r - r') Yim (Ii', qJ' )(UOct1 
o 

Xexp(- st)dt. (30) 

The left-hand side of Eq. (29) is similar to that of Eq. 
(9) with A appearing instead of k. Consequently, the ap
propriate interior and exterior solutions are R\il(r, rs;A) 
and R\e)(r, rs;A) derived from the Fourier case by sim-
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ply replacing kby A. Similarly, we have the Wronkian 
of the Laplace transforms from Eq. (14) and Green's 
function from Eq. (17): 

GI(r, p, r.;A) = - iAR~j)(r<, r.;A)R~e)(r>, r.;A). (31) 

Hence the unique solution o£ the nonhomogeneous Eq. 
(29) is 

R Im( r, r.;A) = - iA [~ R \/l(ro rs;A) Rie)( r>, r.;A) fi~71 (p, rs;s)dp. 

(32) 

Using the Laplace transformation we will prove that 
s R \ i) R \ e) is an analytic function of s for Re s > 0 and 
has a limit as s - O. These properties are obviously 
not directly connected with the Laplace transformation. 
They are properties of the solutions of Eq. (29) and 
presumably can be derived directly from that equation 
or from the expressions (12) and (13) of the solutions 
R(i) and R(e). However, attempts to that direction have 
failed for the moment. 

Our basic assumption in the indirect derivation of 
these properties can be stated as follows: The field of 
a canstant point charge created at t = 0 and staying 
thereafter at a fixed point goes to astatic field as 
t - + 00. This assumption is quite reasonable on physical 
grounds and we will not elaborate on it. We will com
ment in Sec. 4 on the possibility of eliminating it. 

We prove nOw the following two properties: 
Property 1: The quantity R~il(r<>rs;A)R:e)(r>, rs;A) is 

an analytic function of the complex variable s for 
Res >0. 

Proof: For a point charge at ro' 80 , CPo we find from 
Eq. (30) 

( 
r )1/2 

.f't, (r r 'S)=-47Tq 1- 2.. 
1m , $' 0 ro 

and from Eq. (32) (with A=islc) 

R,m(r, r.;A) 

= _ 47Tqo (1 _ r. )1/2 Yim (8
0

, CPo) R\ il( r<, r.;A) 
c ro 

x R\e)(r>, r.;A), (34) 

Because of the assumption P lm(t, r) has a finite limit as 
t- + 00. Hence, its Laplace transform Rlm(r, rs;A) con
verges absolutely32 and is an analytic function of s for 
Res> O. From Eq. (34) we conclude the property for 
the quantity R\ilRie). 

Property 2: As s - 0 with I args I -'S a, 0 < a <7T/2 
we have 

(35) 

Proof; The resulting static field as t - + 00 has been 
found in paper I. Consequently, 
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( 
2r<~ 

xQ, 1- r:r (36) 

But32 

lim P,m(t, r) = lim [sR,m(r, r.;x)]. 
t .. +tC1 s"O 

(37) 

Combining this equation with Eq. (36) we have property 
2. 

Equation (35) is related to the limits 3 and 7 in the 
diagram of Sec. 2B. In fact it establishes the existence 
of two functions fiil(rs' k) and f,<e)(rs' k) satisfying those 
limits [RiiS) and R;es) are proportional to P,(1- 2r)rs) 
and Q,(1- 2r>/rs)]' However, we must note that in this 
approach the restriction on s does not allow k to go to 
zero through real values. Generalizing our results we 
conjecture that s = 0 is a first order pole of R\il R(,e). 
This is easily verified in flat space-time but remains 
to be proved rigorously for rs if- O. 

B. Particle falling into the black hole 

In the next section our objective will be to prove the 
"baldness theorem" with as few as possible restric
tions on the timelike curve followed by the particle in 
its fall. To show that some integrals converge we pre
sent here a few properties which are common to all 
timelike curves representing the fall of a particle into 
a Schwarzschild black hole. We assume only that the 
curve is timelike and that dr/dT, dB/dT, dcp/dT are 
continuous functions of the proper time T (even at the 
horizon) and that dr/dT < - € for rs ~ r< rs + Ii (E and Ii 
are small positive quantities). This last assumption 
excludes a "pathological" time like curve along which 
the particle stops or reverses itself arbitrarily close to 
the horizon. From these assumptions we conclude that 
dB/dr and dcp/dr exist and are finite at r=rs' 

The properties are as follows: 

Property 1: For any particle falling into a 
Schwarzschild black hole we have as r- rs + 

(38) 

lim[( 1- ~)-1 ~aJ - _ c dx
a 

II (39) 
- dr T=TS 

where xa is equal to r, B, cp for Cl! = 1, 2, 3. 

Proof: From the Schwarzschild line element we have 

(1- ;) c :~ ={(:;y +r2[(~~r +sin2B{:~rJ 
X(1- ;.) -C2(1_ ;)f/2 (40) 

and in the limit r- rs + we have Eq. (38). USing Eq. 
(38) we have as r- rs + 

J. Math. Phys., Vol. 15, No.7, July 1974 

dx
a I 

= -c dr T=Ts' 

Property 2: As r- rs +, 

[ 
dt {, r \ -1J 

lim c dr + \1 - ;1 = c 

where C is a negative constant. 

Proof: From the Schwarz schild line element we 
have 

(1- ;~ c
2(::Y _ (1- ;y1 =c2(:~r +r{ ~! 2 

+ sin
2
B(:: YJ 

or 

dt ( r \ -1 [ dt ( r). J-1 
c dr + 1 - : '} = c dr 1 -: - 1 
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(41) 

(42) 

(43) 

x[c
2 (:;Y +r

2(::Y +r2sin2B(~l 
(44) 

Taking the limit r - rs + and using Property 1 [Eq. (39) 
for Cl! = 1], we have 

Property 3: For a particle falling into the black hole 
the quantity 

X(r)=ct+rsln(r -r.) 

is continuous and finite for r ~ rs. 

Pr oof: Obviously X is continuous and finite at any 
point r> rs' Furthermore, we can write for any 
rs < r ~r1 

(46) 

X(r) = fT[C :: +(1- ~r'] dr+ r l - r+ ctl + rs In(rl - rs)' 
T1 

(47) 

This relation holds because it is true for r= r 1 and its 
derivative with respect to r coincides with that obtained 
from Eq. (46). In Eq. (47) the integrand goes to a finite 
limit as r- rs +. Hence, X remains finite as r- rs + 
and the property follows. 

C. The "baldness" theorem 

We are ready now to prove that as a scalar particle 
falls into a Schwarzschild black hole, the scalar field 
outside the horizon goes to zero. With the properties 
proven in Sec. 3B we are able to prove the theorem for 
any timelike curve, whether or not this is a radial 
curve or a spiral, a geodesic or the trajectory of a 
propelled source. This generalization is important 
since the particle can be subjected to nongravitational 
forces during its fall. Again a basic assumption is 
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needed here as in Sec. 3A. We assume that as the parti
cle falls into the black hole the field outside the horizon 
goes to a final value. The necessity of such an assump
tion is due to the fact that in the corresponding math
ematical theorem32

,33 properties of the Laplace trans
form only are not sufficient to ensure the existence of 
the limit of the primitive function as t- + 00. 

One more assumption must be made concerning the 
history of the field. We will assume that the field was 
static (not necessarily zero) before some time in the 
past. Without loss of generality we can assume that the 
field starts changing at t=O. It seems that this as
sumption can be weakened but not completely ignored. 
For example, physical intuition suggests that the 
"baldness" theorem still holds for a particle falling 
from infinity freely from t = - 00 but does not apply to 
the field of a particle circling the black hole from 
t = - 00 and falling freely after t = O. Perhaps the crucial 
point is that the radiated energy from - 00 to + 00 must 
be finite, but we will not consider this question here. 

We shall presently prove the following theorem: 

Theorem: Let 'I1(t, r, e, cp) be the scalar field due to a 
point scalar particle of finite strength q(t) in the 
exterior of a Schwarz schild black hole and let '11 be 
static (independent of t) for t < O. If the particle falls 
into the black hole, then 

(48) 

provided the limit exists. 

Proof: The existence of lim '11 as t - + 00 guaranties the 
existence of lim P Im(t, r) as t - + 00. If R Im( r, rs;X) is the 
Laplace transform of P,m(t, r), then 

lim P Im(t, r) = lim[s R Im(r, rs;x)] 
t-+c> 5·0 

(49) 

with I arg s I <>s a, 0 < a < 11/2. Consequently, it is enough 
to show that s R 1m goes to zero when s - 0 staying in the 
above sector. 

Let q(O) at r o' eo, CPo be the charge responsible for the 
original static field. Then for t > 0 the total field can be 
considered as superposition of the following three fields: 
(i) the original static field due to q(O); (ii) a time-de
pendent field due to a charge - q(O)U(t) stationary at 
the fixed point r o' CPo' eo; (iii) a time dependent field due 
to q(t) U(t) which moves along a timelike curve and 
eventually falls into the black hole. The fields (i) and 
(ii) will cancel each other in the limit t - + 00 (see 
Property 2 of Sec. 3A) and we have to prove that 
s Rim - 0 for the Laplace transform of the field (iii) only. 

If rmax is the maximum of r'(t), then for r> r max 
fl':,,=O. For r<>srmax (dr' /dt*O) 

(50) 

where the summation is taken over all possible roots 
t, of r-r'(t)=O for a given r. Each term of the sum 
will contribute to R 1m [see Eq. (32)] a term 
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where r( (r» is the smaller (larger) of rand p. Since 

o I dr' I = dr' < _ E u ci dt I dT 
(52) 

the integrand in Eq. (51) is finite at any r> rs' More
over, only one of R\1l and Rie ) depends on p and, con
sequently, the product R;ilR;e) contributes a factor 
exp( - sr. c-1ln I p - r. I ) to the integrand. This factor 
combined with exp(- stp ) gives exp(- sX/c) which,.re
mains finite as p - r. +. Since the integrand remains 
finite in the closed interval r. <>s p <>s r max it goes to zero 
uniformly after multiplication by s as s - O. Hence sR 1m 

tends to zero as s - 0 remaining in the stated sector. 
This completes the theorem. 

To make the proof simpler we have deliberately 
neglected contributions to the field from points where 
dr' /dT = O. It is clear that only formal complications 
arise from such pOints without altering the result. For 
example, if r' = const for some time interval, then 
o(r-r') can be taken out of the integral in Eq. (30) and 
integrated easily with respect to r to give a finite term 
for RIm' Multiplication by s will make the product sR lm 
to go to zero as s - O. 

4. REMARKS 

The Fourier and Laplace transforms presented in 
Secs. 2A, 2C, and 3A contain the basic formulas for 
attacking wave problems in the exterior of a 
Schwarzschild black hole. It is clear that the whole 
procedure can be used to study weak electromagnetic34 

and gravitational fields. The vector or tensor character 
of these fields introduces more than one dependent 
variables representing the field and can lead to new or 
different phYSical phenomena but the basic method of 
study will remain the same. 

However, all these studies are limited by our in
complete knowledge of the radial wave functions R p 

namely the solutions of Eq. (9) and its counterparts for 
electromagnetic and gravitational fields. We expect 
that a study of the analytical properties of R J will 
answer many questions raised in the course of the 
present work, such as "Does K4 si46 go to - 1 as rs - O?," 
"What are the simplest fi il and ri e ) ?, " "Is k = 0 a first 
order pole of R~il(r(l rs;k)R\e)(r>,rs;k)?," "How does 
R~/) behave at r=O?," etc. 

In addition to these immediate results it is possible 
that using properties of R I and asymptotic expansions 
for the Fourier transform29 we will be able to prove the 
"baldness" theorem without assuming the existence of 
lim '11 as t- + 00. Also we will be able to see whether 
Price's results for the behavior of the field near t = + 00 

apply to the falling particle or are limited to the case of 
a source anchored on the collapsing star. This can be 
accomplished by examining the limit of sd"R/ds" as 
s- O. 

That this paper represents only a small step towards 
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understanding wave phenomena in a black-hole space 
becomes obvious from the fact that it raises more 
problems than it solves. As related subjects for study 
we mention the tails of the waves, the wavefront, the 
"collision of wavefronts" after the wave has engulfed 
the black hole, the initial conditions on the horizon 
which determine the evolution of the field inside the 
black hole, etc. To these problems analytical methods 
and numerical techniques are viewed as complimentary 
to each other. 

With respect to the ''baldness'' theorem it would be 
interesting to examine whether or not the conditions can 
be still weakened. Most probably the restriction to have 
a static field for t < 0 can be replaced by a weaker one. 
From our point of view the most undesirable condition 
is the assumed existence of a limit for the field as 
t- + 00. As we stated before there is a hope to eliminate 
the need of this condition using the asymptotic-expan
sion theory of Fourier transforms. Finally, another 
possibility of generalization of the "baldness" theorem 
must be mentioned here, namely, to more complicated 
black holes. However, in such cases the radial wave 
equation (when separation of variables is possible) is 
much more involved. 
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We consider equations of evolution with a small parameter in a Banach space. The method of 
singular perturbations is applied to derive inner and outer asymptotic solutions. It is shown that the 
neutron transport equation coupled with the equation for the concentration of delayed neutron 
precursors, if considered in the Hilbert space of square integrable functions, satisfies all the 
requirements set up in the paper. 

INTRODUCTION 

In a series of papers Hendry and BellI and Hendry2,3 

have introduced into neutron transport theory the method 
of singular perturbations originally developed in fluid 
mechanics4

- s as the method of matched asymptotic ex
pansions. The numerical tests show that the method is 
exceptionally advantageous in evaluating the response 
of a subcritical reactor system to an instantaneous 
pulse of neutrons. 

The method of Singular perturbations is based upon 
the observation that the derivative with respect to time 
is multiplied by a coefficient smaller than coefficients 
standing by remaining terms in the neutron transport 
equation by several orders of magnitude. Thus the 
properly defined small dimensionless parameter E> 0 
is introduced into the equation and the solution expanded 
into a power series in E. 

The analysis given in Refs. 1-3 has only a formal 
character and may not serve as a rigorous justification 
of the results. In this paper the method of singular 
perturbations is applied to the equations of evolution with 
a small parameter in a Banach space to show that in the 
zeroth-order perturbation the asymptotic solution tends 
to the exact one in a properly defined sense. The results 
are also generalized to the systems of equations such 
that only one of the equations contains a small 
parameter. 

The question of higher-order perturbations is not 
dealt with in the paper. The analysis is much more in
volved, especially for the inner asymptotic solution, 
and at the moment it is not clear to the author if it can 
be performed within the formalism used in the paper. 

In the last section it is shown that the neutron trans
port equation coupled with the equation for the concen
tration of delayed neutron precursors actually meets all 
the requirements set up in previous chapters. 

The results known from the literature are quoted 
without proofs. For the details see Ref. 7-10. 

EQUATIONS AND SYSTEMS OF EQUATIONS OF 
EVOLUTION IN A BANACH SPACE 

In this section a complex Banach space E with the 
norm II· II will be considered. 

Definition 1: A family {G(t) ; 0 .s t} of bounded operators 
in E will be called a strongly continuous semi group if 

(i) G(t + s) = G(t) G(s), O.s t, O.s s, 

(ii) G(O)=I, 

(iii) for each x E E the function t - G(t)x is strongly 

892 Journal of Mathematical Physics, Vol. 15, No.7, July 1974 

continuous on [0, 00). 

Definition 2: The operator 

AX=lim r 1 [G(t)x-x] 
1-0 

with the domain D(A) consisting of all x E E such that the 
limit exists in the norm in E, is called a generator of a 
strongly continuous semigroup G(t). It has the proper
ties: 

(i) It is a closed linear operator and its domain D(A) 
is dense in E; 

(ii) if xED(A), then for every tE [0, 00), G(t)xED(A) 
and the function t - G(t)x is strongly continuously dif
ferentiable on [0, 00) such that 

dG~iX =AG(t)x=G(t)Ax. 

Theorem 1 (Hille- Yosida): A necessary and sufficient 
condition that a closed linear operator A with the domain 
D(A) dense in E generates a strongly continuous semi
group {G(t); 0 .s t} of bounded operators such that for 
each t E [0, 00) 

IIG(t)II.sexp(wt) 

for some real w, is that the resolvent of A 

R(X, A) = (XI- A)-I 

for every X >w exists and is an operator defined on the 
whole E, such that 

IIR(X,A)II.s(X-W)-l. 

Lemma 1: If the operator A satisfies the requirements 
of Theorem 1 and the function t - q(t) with the values 
from E is strongly continuously differentiable on [0, T], 
where T is a fixed positive number, then the equation of 
evolution 

d;?) =Ax(t)+q(t), x(O)=xoED(A) 

has for tE [0, T] a unique strongly continuously differ
entiable solution 

x(t) = G(t)xo + fot ds G(t - s)q(s). 

The integral is understood as a strong limit of Riemann 
sums. The same meaning will be attached to other inte
grals of abstract functions appearing in this paper. 

Definition 3: A family {U(t, s); O.s s.s t.s T} of bounded 
operators in E will be called a strongly continuous 
quasi-semigroupll if 

(i) U(t,S)=U(t,T)U(T,S),O.sS.sT.st.sT, 

Copyright © 1974 American Institute of Physics 892 
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(ii) U(t,t)=I, O:ft:fT, 

(iii) for each XE E the function t, s - U(t, s)x is 
strongly continuous on the triangle 0 :f S :f t :f T. 

Theorem 2: Let a family {A(t); 0 :ft:f T} of closed 
operators in E is such that 

(i) for each t E [0, T] the domain D(A(t)) =D(A) is in
dependent of t and D(A) is dense in E, 

(ii) for each TE [0, T] the operator A( T) is a generator 
of a strongly continuous semigroup {GT(t); 0 :f t} such that 
for each t E [0, 00) 

and 

IIGT(t)II :fexp(aTt) 

a= sup a T< 0, 
T""IO,T] 

(iii) for each x E D(A) the function t - A(t)x is strongly 
continuously differentiable on [0, T]. 

Then the family {A(t) ; 0 :f t :f T} generates a strongly 
continuous quasisemigroup {U(t, s); 0 :f S :f t:f T} such 
that for each x E D(A) and 0 :f S :f t :f T the elements 
U(t, S)XE D(A) and the function t, s - U(t, s)x is strongly' 
continuously differentiable on the triangle 0 :f S :f t :f T. 
The partial derivatives of U(t, s) satisfy the identities 

oU~ti s) x=A(t)U(t, s)x 

and 

oU(t s) 
o~ X= - U(t, s)A(s)x. 

Lemma 2 (Kato): The quasi-semigroup U(t, s) gener
ated by the family A(t) can be expressed with the semi
groups GT(t) by the multiplicative integral 

U(t,s)=limfr GT.(ti-ti-l)' 
1=1 • 

where s = to < tl < ... < tn = t are the points of divisions of 
the interval [s, t] and t i _1 < Ti < t i • The limit is under
stood in the strong sense for maxi(ti - ti_J - O. 

Lemma 3: ForO:fS:ft:fT 

IIU(t, s)11 :fexp[a(t- s)], 

where a is defined in assumption (ii) of Theorem 2. 

Lemma 4: If the family {A(t) ; 0 :f t :f T} satisfies the 
requirements of Theorem 2 and generates the strongly 
continuous quasi- semigroup {U(t, s) ; 0 :f S :f t :f T} and the 
function t - q(t) is strongly continuously differentiable 
on [0, T] then the equation of evolution 

dx(t) 
I1t=A(t)x(t)+q(t), x(O)=xoED(A) 

has for t E [0, T] a unique strongly continuously differ
entiable solution 

x(t) = U(t, O)xo + t ds U(t, s)q(s). 
o 

Lemma 5: If the family {A(t); 0 :f t :f T} generates the 
quasisemigroup {U(t, s); 0 :f S :f t :f T}, then for E> 0 the 
family {c 1 A(t) ; 0 :f t :f T} generates the quasisemigroup 
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{U.(t,s);O:fS :ft:fT} such that for O:fS :ft:fT 

IIU.(t, s)11 :fexp[(a/e)(t- s)], 

where a is defined in Lemma 3. 

Lemma 6: Let the family {A(t) ; 0 :f t:f T} satisfies the 
requirements of Theorem 2 and generates a strongly 
continuous quasisemigroup {U(t, s); O:f S :f t :f T}. Let the 
family {B(t) ; 0 :f t :f T} satisfies also the requirements 
of Theorem 2 and generates a strongly continuous quasi
semigroup {V(t, s); 0 :f S :f t:f T}. Let {P(t); 0 :f t :f T} 
and {Q(t); 0 :f t:f T} be the families of bounded operators 
such that the functions t - P(t) and t - Q(t) are uniformly 
continuously differentiable on [0, T]. Let finally the 
functions t - q(t) and t - r(t) be strongly continuously 
differentiable on [0, T]. Then the system of equations 
of evolution 

d;?) =A(t)x(t) + P(t)y(t) + q(t), x(O) = Xo E D(A), 

d:it) = Q(t)x(t) + B(t)y(t) + r(t), y(O) = Yo E D(B) 

has for t E [0, T] a unique strongly differentiable solution 

Proof of the lemma follows by the application of the 
perturbation theorem (see VIII. 1. 22 of Ref. 7). 

Lemma 7 (Kisyhski): Let the function t - m(t) be 
strongly continuously differentiable on [0, T], the family 
of operators {W(t, s)} uniformly bounded, and the func
tion t, s - W(t, s)g strongly continuous for each gE E on 
the triangle 0 :f S :f t :f T. Then the Volterra-type 
equation 

z(t)=m(t) + tdsW(t,s)z(s) 
o 

has a unique solution for t E [0, T]. This solution may be 
obtained by the method of successive approximations in 
the form .. 

z(t)=6m (k)(t), 
k=O 

m(O)(t)=m(t), m(k)(t) = fat ds W(t, s)m(k-!)(s), 1 :fk. 

The series is strongly convergent uniformly on [0, T]. 

Lemma 8: Let 

m(t) = U(t, O)xo + r ds U(t, s) q(s) 
o 

+ Z(t, O)Yo + f ds Z(t, s) r(s), 

where U(t, s), q(s), and r(s) are defined in Lemma 6 and 
for each gEE and 0 :f S :f t :f T 

Z(t, s)g= r ds' U(t, s')P(s,) V(s', s)g. 
o 

Let additionally 

W(t, s) = Z(t, s) Q(s). 

Then the solution z(t) to the Volterra equation from 
Lemma 7 is identical with x(t) from Lemma 6. More
over, y(t) can be expressed by x(t) as follows: 

y(t) = V(t, O)yo + fot ds v(t, s) r(s) + fat ds V(t, s) Q(s)x(s). 

Proof: From the assumption of Lemma 6 it follows 
that the above defined m(t) and W(t, s) satisfy the re
quirements of Lemma 7 and the corresponding Volterra 
equation has the unique solution z(t). To show that z(t) 
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is identical with x(t) first apply Lemma 4 to the second 
equation from Lemma 6 to obtain the formula giving 
y(t) in terms of x(t). Substituting the resulting equation 
into the first equation and again applying Lemma 4 with 
the integral involving x(t) treated as a source term, one 
obtains the Volterra equation with m(t) and W(t, s) de
fined as above. 

EQUATIONS OF EVOLUTION WITH A SMALL 
PARAMETER 

Definition 4 (Krein): The family of functions 
{cp,(t); 0 < E":: Eo, 0 ..:: t ..:: T} tends almost uniformly on the 
interval (0, T) to the function cp(t) if for each 6> 0 there 
exist t1(6»0 and E1(6»0 such that 

IIcp,(t) - cp(t)1I < 6, 

for E< E1(6) and Et1(6)..::t..:: T. 

A simple example of the family tending almost uni
formly to zero on (0, T) is cp,(t)=e-atIE for a>O. The 
almost uniform convergence on the interval (0, T) im
plies the uniform convergence on any interval [to, T) for 
to> O. The inverse is not always true as it is seen for 
the family cp,(t)=E-1e-atl ,. 

Lemma 9 (Krein): Let the family A(t) satisfies the 
requirements of Theorem 2 and the function t - q(t) is 
strongly continuously differentiable on [0, T) and let 
additionally the family of operators dA(t)/dt be defined 
on the whole E and bounded uniformly on [0, T). Then 
the solution to the equation of evolution 

E d~it) =A(t)x,(t) + q(t), x,(O)=xoED(A) 

tends almost uniformly on (0, T) to the function 

.%'(t) = - A -1(t)q(t), 

which is referred to as the outer asymptotic solution. 

Proof: Define the function 

z,(t) = x,(t) - X"(t). 

It satisfies the equation of evolution 

E dz.(t) =A(t) z (t) _ E d.%'(t) 
dt ' dt 

with the initial condition 

Z,(O) = Xo - .%'(0) E D(A). 

The unique solution to the above equation is, ac
cording to Lemmas 4 and 5, given by 

z,(t) = U,(t, 0) z,(O) - fat ds U,(t, s) d~S) . 

Since the family dA(t)/dt is uniformly bounded and the 
function t - q(t) strongly continuously differentiable the 
term 

d;it) =A -1(t) ~~t) A"1(t) q(t) -A -1(t) d~~t) 

is uniformly bounded on [0, T). Thus the integral term 
in the expression for ~,(t) can be estimated from Lemma 
5 as follows: 
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lilt ds U,(t, s) d~~S) II ,;; Co f ds exp[ - a(t - S)/E 

..::s.:.. 
lal' 

where 

II dx(t) II co = sup --. 
tE(O,Tl dt 

Thus 

IIz.(t)ll..::exp(- at/E) IIz,(O) II + CoE/ I a I 
from which it follows that ~,(t) tends to zero almost 
uniformly on (0, T). If z,(O) = Xo - .%'(0) = 0, then x.(t) 
tends to-x(t) uniformly on [0, T). 

Lemma 10 (Krein): Under the requirements of Lemma 
9 the equation of evolution 

E d~?) =A(O)x,(t) + q(O), x,(O) =XoE D(A) 

has the unique strongly differentiable solution given by 

x,(t) = Go(tj€)xo - Go(t/€) x(O) + x(O), 

where Go(t) is the semigroup generated by the operator 
A(O). The function x,(t) is referred to as the inner 
asymptotic solution. 

The family x,(t) is uniformly bounded on [0, TJ and 
tends almost uniformly on (0, T) to 

~(t)=.%'(0) 

which is called the intermediate asymptotic solution. 
For any t2 > 0 and 6> 0 there exists S(t2' 6) such that if 
€ < S(t2' 6) then for 0 ..:: t ..:: E t2 

Ilx,(t) - x,(t)11 < 6. 

Proof: From the assumed properties of A(t) it follows 
that the operator A(O) generates the semi group Go(t). 
Thus from Lemma 1 the solution x,(t) has the form 

- It". 1 f t (! - s) ) X,(t) = GO\e} xO+e 0 dsGO\-E- q(O. 

The integral can be written as 

1f (t- s) ftl' e dSGO'-E- q(O)= ds Go(s)A(0)A-1(0) q(O) 
o 

= it I, ds dGJ;S) A -1(0) q(O) = Go(~) A -1(0)q(0) _ A -1(0)q(0), 
o 

from which the final expression for x,(t) follows. 

Since Go(t/E) tends in the norm on (0, TJ almost uni
formly to zero it follows that x,(t) tends almost uni
formly to ~t). 

To prove the last statement of the lemma, consider 
the family 

Z,(t) = x,(t) - x,(t). 

It satisfies the equation of evolution 
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E dlt(t) =A(t)z,(t) + [A(t) - A(O)] x,(t) + q(t) - q(O) 

with the initial condition z,(O) = O. The solution of the 
above equation is, according to Lemmas 4 and 5, 

Z,(t) = 1 t ds U,(t, s)[A(s) -A(O)]x,(s) 
E Jo 
111 + ds U,(t, s)[q(s) - q(O)]. 
E 0 

Since the function t- dX,(t)/dt is strongly continuously 
differentiable it is also uniformly bounded on [0, T]. 
This shows, on account of the evolution equation satis
fied by x,(t), that A(O)x.(t) is also uniformly bounded in 
E and t. Now from the fact that the domain D(A(t»=D(A) 
is independent of t and the function t - A(t)x is strongly 
continuous for any XE D(A) if follows that the function 
t-A(t)A-1(0) is uniformly continuous. Thus the quantity 

II [A(s) -A(O)]A-l(O)A(O)x,(s)11 

tends to zero with s - 0 uniformly in E. 

Now putting t = Et2 , changing the variables s = ES' in 
the integrals expressing z,(t), and using Lemma 5 one 
gets 

11Z',(Et2)1I.;; .(2 ds'II[A(ES') -A(0)]A-1(0)A(0)X,(ES')1I 

+ JO
l
2ds' IIq(ES')-q(O)lI. 

This shows that for any t2 > 0 and 5 > 0 there exists 
~(t2' 5) such that if E < ~(t2' 5), then for 0 .;; t .;; Et2 

Ilx,(t) - X,(t) II < 5. 

Theorem 3 (Krein): Under the assumptions of Lemma 
9 for sufficiently small E the solution x,(t) tends with 
E - 0 to the asymptotic solution 

x;as)(t) = x(t) + x,(t) - i(t) 

uniformly on [0, T]. 

Proof: It follows from Lemmas 9 and 10 that x,(t) 
tends to X'(t) and x,(t) to i(t) almost uniformly on (0, T]. 
Thus the family 

v,(t) =x,(t) -x;"")(t) 

tends to zero almost uniformly on (0, T]. This means 
that for any 5> 0 there exists to(5) > 0 and E1(5) > 0 such 
that for E<E1(5) and Eto(5).;;t.;;T 

IIv,(t) II < 5. 

Next from Lemma 10 it follows that for E< ~(to(5), t5) 
and 0 .;; t .;; Eto( 5) 

Ilx.(t) - x,(t)1I < t5. 

Finally, from the continuity of the function t - A -l(t)q(t) 
it is seen that for E < E3( 5) and 0 .;; t .;; Eto( 5) 

11X'(t) - i(t) II < t5. 

From the above inequalities it follows that for 
E < min(El'~' E3) and 0 ~ t .;; T 

Ilv,(t)11 < 5. 

This shows that the family v,(t) tends to zero uniformly 
on [0, T] which proves the theorem. 
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SYSTEMS OF EQUATIONS OF EVOLUTION WITH A 
SMALL PARAMETER 

Lemma 11: Let the families {A(t); 0 .;; t .;; T}, 
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{B(t); 0 .;; t .;; T}, {P(t); 0 ~ t .;; T}, {Q(t); 0 .;; t ~ T} and the 
functions t - q(t) and t - r(t) satisfy the requirements of 
Lemma 6. Let additionally the family dA(t)/dt be defined 
on the whole E and bounded uniformly on [0, T]. Then 
the system of equations 

A(t) X'( t) + P( t)y(t) + q( t) = 0, 

~~t) = Q(t) x(t) + B(t)y(t) + r(t), 

with the initial condition y(O)=YoED(B), has a unique 
strongly differentiable solution {X(t), y(t)} (the outer 
asymptotic solution). 

Proof: Solving the first equation for X'(t) and substi
tuting to the second equation one gets the equation of 
evolution 

~~t) = [B(t) _ Q(t)A-l(t)p(t)] y(t) 

+ r(t) - Q(t)A -l(t)q(t), y(O) = Yo E D(B). 

This equation has a unique strongly differentiable solu
tion obtained by the perturbation theorem since B(t) 
generates a quasisemigroup V(t, s) and Q(t)A-1(t)P(t) is 
a family of bounded operators. From the properties of 
A(t), P(t), and q(t) it follows that the function t - x(t) is 
also strongly differentiable. 

Lemma 12: With the assumptions of Lemma 11 the 
solution {x,(t), Y,(t)} to the system of equations of 
evolution 

dx (t) 
E --tt- =A(t)x,(t) + P(t)Y,(t) + q(t), 

dYJit) = Q(t)x,(t) + B(t)y.(t) + r(t), 

with the initial condition 

X,(O)=xoED(A), y,(O)=YoED(B) 

tends to the outer asymptotic solution {X(t), y(t)} almost 
uniformly on (0, T]. 

Proof: Let 

v,(t) = x,(t) - X'(t), W,(t) = Y,(t) - y(t). 

The families v,(t) and w,(t) satisfy the following system 
of equations 

E ~t(t) =A(t)v,(t) + P(t)w,(t) _ E d!(t) , 

m;;<t) = Q(t)v,(t) + B(t)w,(t), 

with the initial conditions 

V,(O) = Xo -A -l(O)[P(O)yo + q(O)] E D(A), 

w,(O)=O 

From Lemmas 6, 7, and 8 it follows that the above 
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system has a unique solution and is equivalent to a 
single Volterra type equation 

v,(t) =m,(t) + C l t ds W,(t, s)v,(s), 
o 

where 

and 

and 

m,(t) = U,(t, 0) {XO -A -1(O)[p(O)yo + q(O)]}, 

- Jot ds V,(t, s) d,!S) 

W,(t, s)g=Z,(t, s)Q(s)g, 

Z,(t, s)g= 1'ds U,(t, s')P(s')V(s', s)g, 

for any gEE. 

The function W,(t) is expressed in the following form: 

w,(t) = t ds' V(t, s') Q(s') o,(s'). 
o 

From Lemma 9 it follows that the family dx(t)/dt is 
uniformly bounded on [0, T] and Lemma 5 shows that the 
integral term in the expression for m,(t) tends to zero 
uniformly on [0, T]. Thus the family m.(t) is uniformly 
bounded on [0, T] and tends to zero in the norm almost 
uniformly on (0, T]. 

Since the families of operators A(t) and B(t) are as
sumed to satisfy the requirements of Theorem 2, both 
quasi-semigroups U(t, s) and V(t, s) are uniformly 
bounded and 

IIU(t, s)ll <> exp[ a(t - s)], IIV(t, s)1I <> exp[t3(t - s)] 

with a < 0 and t3< O. 

From these inequalities one gets 

Ilclw,(t, s) II <> e-l P ds' exp[( a/e)(t - s') + t3 (s' - s)] 
s 

IIP(s' )11·IIQ(s')1I 

<> [C~/(ej3 - a)] {exp[j3(t - s)] - exp[(a/e)(t - s)]}, 

where C 1 is a constant independent of e. Thus the kernel 
e-1W,(t, s) is uniformly bounded on [0, T]. 

With the above properties of m.(t) and W,(t, s) one can 
get from the Volterra equation the following inequality 
for the function g,(t) = II iJ. (t) II 

g,(t) <>CP.(t)+C.( dsg,(s), 

where 

and 

CP.(t) = IIm.(t) II. 

The family CP.(t) is uniformly bounded on [0, T] and tends 
to zero almost uniformly on (0, T]. 

From the above inequality it follows immediately that 
the family of functions g.(t) is uniformly bounded in e 
and t and 

g.(t) <>MeCT
, O<>t<>T, O<>e, 

where 

M = sup (f,(t). 
O:Ee,OEtET 

Since CP.(t) is almost uniformly tending to zero, for 
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each a> 0 there exists t1(a) > 0 and e~ll(a) > 0 such that 
for e<ep)(a) and etl(a)<>t<>T 

"iif.(t) < %a exp( - CT). 

Let e~I)(a»O be such that for e<ei2)(a) 

(,t (6) -
C Jo 1 dsg,(s)<%aexp(-CT). 

This is always possible since the family g.(t) is uni
formly bounded. 

Thus for e< e1(a)=min(ep)(a), e~2)(a» and et
1
(a) <>t <> T 

l.(t) < ae-CT + C t ds g.(s) 
,t1( 6 ) 

from which it follows that 

l.(t) < ae-CT exp{C[T - et 1(a)]} <> a, 

for E< E1(a) and et1(a) <> t <> T. This shows that the family 
g.(t) = Ilv,U)11 tends to zero almost uniformly on (0, T]. 

Taking the norm of w,(t) expressed in terms of v,(t) 
one has 

IIw.(t)11 <> C2 t ds g,(s), 
o 

where C2 is a constant independent of E. 

Since g.(t) is uniformly bounded on [0, T] and tends 
almost uniformly to zero on (0, T], for each Ii> 0 there 
exist t~(Ii) > 0 and E'1(1i) > 0 such that for E< €'1(1i) and 
Et~(Ii) <> t <> T 

g,(t) < 1i/2C2 [T - Et't(Ii)] 

This shows that w.(t) tends to zero almost uniformly on 
(0, T]. This concludes the proof of the lemma. 

Lemma 13: Under the assumptions of Lemma 6 the 
equation of evolution 

E d!t(t) =A(O) x.(t) + P(O)Yo + q(O), x.(O) = Xo E D(A) 

has the unique strongly differentiable solution x.(t). The 
family {X.(t) , Y,(t)}, where Y,(t) = Yo is called the inner 
asymptotic solution. 

The family x,(t) tends almost uniformly on (0, T] to 

x(t) = - A -1(0) [P(O)Yo + q(O)] 

(the intermediate asymptotic solution). 

For any t2 > 0 and Ii> 0 there exists ~(t2' a) > 0 such 
that if e < ~(t2' Ii) then for 0 <> t <> et2 

Ilx,(t) - x,(t) II < a, IIY,(t) - Y,(t)11 < Ii. 

Proof: The existence of X,(t) follows from Lemma 4 
and its asymptotic behavior for e - 0 from Lemma 9. 

To prove the last statement of the lemma, consider 
the functions 

V,(t) =x,(t) - x,(t), LV ,(t) = Y,(t) - Y,(t) 

which satisfy the following system of equations: 

€ d~?) =A(t)v,(t) + P(t)w ,(t) + i1,(t). 
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dW.(t) )-) )-) - ( ) dt =Q(t v,(t +B(t w,(t +r. t , 

with the initial conditions 

v,(O) =w,(O) = O. 

The functions 'ii.(t) ahd r.(t) are defined as 

'ii.(t) = [A(t) -A(O)] x.(t) + [P(t) - P(O)])b + q(t) - q(O), 

"".(t) = Q(t) x,(t) + B(t)yo + r(t). 

By Lemma 6 the above system has a unique solution 
{li,(t); w.(t)} and by Lemma 8 it is equivalent to the 
Volterra type equation 

v,(t) =m.(t) + E-
1 J: ds W.(t, s) v.(s), 

where 

m,(t) = E-
1 f ds U.(t, s) 'ii.(s) + E-

1 Jo
l 
ds Z.(t, s)r.(s), 

and Z.(t, s) and W,(t, s) were defined in the proof of 
Lemma 12. 

The family x.(t) is uniformly bounded in E and t. The 
same is also true with A(O)x.(t). This follows from the 
equation for x.(t) and the fact that E[dx,(t)/dt] and 
P(O)Y,(t) are uniformly bounded on [0, T]. 

Now the function t - A(t)x is strongly continuous for 
any XE D(A) and the family of operators A(t)A-1(0) is 
uniformly bounded. Thus the function t - A(t)A -1(0) is 
uniformly continuous and the quantity 

II [A(t) -A(O)]X,(t)1I = II [A(t) -A(0)]A-1(0)A(0)x.(t) II 

tends to zero with t - 0 uniformly in E. 

By assumptions of Lemma 6 the function t - P(t) is 
uniformly continuously differentiable and the function 
t - q(t) is strongly continuously differentiable. Thus the 
remaining terms in 'ii,(t) and the family li,(t) itself tend 
to zero in the norm with t - 0 uniformly in E. 

The operator family Q(t) is uniformly bounded and the 
family x,(t) is uniformly bounded in t and E. The terms 

B(t)yo = B(t)B-1(0)B(0)yo 

and r(t) are also uniformly bounded. Thus it is seen that 
1",(t) is uniformly bounded in t and E. 

IntrodUCing notation 

<p,(t) = IIm,(t) II 

and using the inequalities satisfied by the norms of 
U(t, s) and V(t, s) introduced in the proof of Lemma 12 
one gets from the definition of m.(t) the inequality 

<P.(t).:;; c 1 J: ds exp[(a/E) (t - s)]lIiJ,(s) II 

+c1 tdstds' exp[(a/E)(t-s')+,9(s'-s)] o s 

IIP( s' ) II· II r,( s )11. 

Substituting t = et2 , changing the dummy variable in the 
integrals, and denoting 

C3 = sup IIP(s')II·lIr.(s)lI, 
o Cs t s'4i T 

one has 

<p, (Et2) .:;; fat2 ds' IIq,( es') II 

+ C3 {[E/a(l3e- a)](I- eOlt2) - [{3(,9E- a)]-l(l_ e'BI2)}. 
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Thus for any t2> 0 and 0> 0 there exists ~(t2' 0) such 
that if E < ~(t2' 0) and 0 .:;; t .:;; Et2 then 

cp,(t)<o. 

IntrodUCing now the notation 

e.(t) = IIv.(t) II 

one has from the Volterra equation satisfied by v.(t) 
the inequality 

g.(t).:;; q,,(t) + C J: dsg.(s). 

The constant C was introduced in the proof of Lemma 
12. 

From the last inequality it follows that 

g.(t) .:;; cp,(t' eCI 
.:;; iP,(t) eCT 

which shows that for any t2 > 0 and 0 > 0 there exists 
~ 11 (t2 , 0) such that if E < ~ 11 (t2 , 0) and 0.:;; t .:;; Et2 then 

g,(t) = IIx.(t) - x.(t)1I < o. 
It follows from Lemma 8 that 

w.(t) = fat ds V(t, s) 1",(s) + fat ds V(t, s) Q(s) v,(s). 

Since :;:,(s) and Q(s)V,.(s) are uniformly bounded on [0, T] 
one gets from the last equation and from the inequality 
satisfied by V(t, s) 

IIw,(t)1I ':;;(C~,9)(eBI-1) 

which again shows that for any t2 > 0 and 0 > 0 there 
exists ~2'(t2' 0) such that if E< ~2'(t2' 0) and O.:;;t ':;;Eta 
then 

1IW,(t)1I = IIY,(t) - y.(t)1I < O. 

Choosing ~=min(~ll, ~2') one obtains the proof of the 
lemma. 

Theorm 4: Under the assumptions of Lemma 11 the 
solution {x,(t) , y,(t)} tends with E- 0 to the asymptotic 
solution {x!a.s'(t), y!"" '(t)}, where 

x~a.s'(t) = x(t) + x,(t) - f(t), 

y!a.s'(t) = y(t) + y.(t) - y(t) 

uniformly on [0, T]. The intermediate asymptotic solu
tion Y'(t) = Yo' 

Proof: It follows from Lemmas 12 and 13 that 
{x.(t), y,(t)} tends to {x(t), y(tn and {x,(t), Y.(t)} to 
{i(t), Y'(t)} almost uniformly on (0, T]. Thus {V.(t), W.(t)}, 
where 

V,(t) = x,(t) -x!as'(t), 

w,(t) = y.(l) - y!as'(t) 

tends to zero almost uniformly on (0, T]. This means 
that for any 0> 0 there exists to(o) > 0 and E1(0) > 0 such 
that for E< E1(0) and Eto(O).,;,t.,;, T 

IIv,(t)1I < 0, IIw,(t)1I < o. 
Next from Lemma 13 it follows that for E < ~(to( 0), ~o) 

and 0.,;, t.:;; Elo(O) 

IIx,(t) - x,(t)1I < ~o, lIy,(t) - Y,(t) II < ~o. 

Finally, applying the similar technique as was used 
in the proofs of Lemmas 12 and 13 one can show that 
there exists such E3( 0) > 0 that for E < E3 ( 0) and 0 .:;; t .,;, Eto( 0) 
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1IX'(t) - i(t) II < to, lIy(t) - Y(t)1I < to. 
Now, taking € "" min(€1'~' ~) and 0"" t "" T one has 

Ilv.(t)1I < 0, Ilw,(t)11 < 15 

which shows that {V.(t), W,(t)} tends to zero with € - ° 
uniformly on [0, TJ. 

APPLICATION TO THE NEUTRON TRANSPORT 
THEORY 

Let R be a three-dimensional Euclidean space and let 
each point in R be represented by the vector p. Define 
an open bounded convex set r E R and assume that its 
boundary a r is sufficiently smooth so that for almost 
all pEa r the re exists a normal n(p) pointed outward. 

Let R' be another three-dimensional Euclidean space 
and let each point in R' be represented by the vector v. 
Denote by n the sphere in R' of the radius I v I = v",. 

As the Banach space E used in previous sections take 
the Hilbert space of complex-valued square integrable 
functions defined over rxn. 

Let v(p, v; t) be the function defined over rx n x (0, TJ. 
It will be assumed that v(p, v; t) is for each (p, v) E r xn 
continuously differentiable on [0, TJ and for each t E [0, TJ 
the functions u(p, v; t) and (Jv(p, v; t)/at are square sum
mabIe over rx n. 

Let the functions K(p; v, Vi; t) and Q(p; v, Vi; t) are 
defined over r x n x n x [0, T) and have the properties 
analogous to v(p, v; t) with n replaced by n xn. 

Let the operator A(t) be defined as 

(A(t)j)(p, v)= - V' gradpj(p, v) - v(p, v; t)j(p, v) 

+ fndVIK(p;v,v/;t)j(p,v/), pEr, VEn, tE(O,TJ 

with the domain: 

D(A) = {j E E; (i) j(p - sv, v) is absolutely continuous 
in s for almost all pEr, v E nand s such that p - sv E r, 
(ii)AjEE, (iii)j(p,v)=o, pEar, v·n(p) <O}. 

Let finally Q(t) be the bounded operator defined as 

(Q(t)j)(p,v)=fodV'Q(p;v,v/;t)j(p,v'), pEr, VEn, 

fE[O,T) 

and the operators p(t) and 8(t) denote the multiplication 
by A and - A, respectively, where A is a positive con
stant. 

With the above definitions the system of equations 
considered in Lemma 6 describes the behavior of neu
trons in a reactor system with one group of delayed neu
trons if v(p, v; t) is the neutron collision frequency, 
K(p; v, v'; t) is the kernel describing the scattering and 
fisSion, Q(p; v, Vi; t) is the kernel describing the pro-
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duction of delayed neutron precursors, A is the precur
sor decay constant, x(p, v, t) denotes the neutron dis
tribution, y(p, v, t) denotes the precursor distribution 
and finally, q(p,v,t) and r(p,v, t) are the external 
sources of neutrons and precursors, respectively. 

It has been shown by Marti 12 that the operator A( T) as 
defined above for any fixed TE [0, T) generates a 
strongly continuous semi group G/t). If the system is 
subcritical then 

IIGT(t)11 "" exp( QTt), 

with Q T < ° for TE [0, T). 

The source functions are rather smooth in practical 
applications and may be assumed to obey the require
ments of Lemma 6. 

The small dimensionless parameter E > ° appears at 
the time derivative of the neutron distribution dx(t)/ dt 
if the system of equations describing the reactor with 
one group of delayed neutrons is put into the dimension
less form in which the coefficients are independent of 
the system of units (see Ref. 2). 

Now it is seen that all the requirements of previous 
sections are satisfied for the equations describing the 
evolution of a reactor system without or with one group 
of delayed neutrons and the results obtained valid in this 
case. 

The considerations in this paper could be easily ex
tended to the systems containing more than two equations 
of evolution, thus accounting for more than one group 
of delayed neutrons. 
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Considering the space of massless-particle wavefunctions transforming locally according .t~ the 
irreducible representation D(m,n) of the homogeneous Lorentz group, we determme explicitly, by a 
direct and elementary method, the matrices constituting the (reducible but indecomposable) 
representation of Lorentz transformations with respect to a helicity basis. 

I. INTRODUCTION 

It is a well-known fact that in the group theoretical 
classification of elementary particles according to 
Wigner1 and Bargmann and Wigner, 2 any massless parti
cle is associated with an irreducible representation (IR) 
of the Poincare group (PG) labelled by a vanishing value 
of the Casimir operator P" P u and a definite (integral or 
half-integral) value of the helicity3 X defined through the 
relation W" = XP". Here the P" are the translation gen
erators and {W"}= (J. P, pOJ - PXK), where J, K are 
the generators of rotations and boosts, respectively. 
Though an elementary massless particle has thus only a 
single value of the helicity, it is not customary to de
scribe such a particle by a single-component wavefunc
tion. Rather, one employs in general a multi component 
wavefunction which transforms locally according to some 
reducible or irreducible representation of the homo
geneous Lorentz group (HLG). Such a wavefunction in
volves as many helicity values (some of which may be 
coincident) as there are components, unless the com
pOl1ents are constrained in some suitable fashion. 

The problem of constructing fields characterized by a 
unique helicity has been studied by Weinberg4 who has 
shown that the only finite component covariant fields that 
can be constructed from entities transforming according 
to the Wigner IR [0, xl are those having the transforma
tion property D(m,m+~) with respect to the HLG, m being 
arbitrary. Conversely, it has been shown by a number 
of authorsS

-
7 that in a massless field which transforms 

locally according to D(m,n), there is just one helicity 
eigenstate, with X = n - m, which remains invariant under 
Lorentz transformations. Every state with X'" n - m 
develops admixtures with other helicity eigenstates. 
Thus the representation of the PG provided by wavefunc
tions transforming according to D(m,n) is not a direct 
sum of Wigner IR's, though it is reducible. In other 
words, the representation is indecomposable. The inde
composability has been interpreted in terms of gauge 
transformations by Shaws and later by McKerrell. 6 

MosesB has considered this aspect in some detail. How
ever the explicit determination of the representation 
matrices in the helicity basis does not seem to have been 
carried out so far. Our objective in this paper is to 
make such a determination. 

It is known that any Lorentz transformation A can be 
decomposed into a boost L and a rotation R. The rep
resentation of rotations in a helicity basis is diagonal, 
with diagonal elements which are known phase fac-

899 Journal of Mathematical Physics, Vol. 15, No.7, July 1974 

tors. 9,10 What needs to be done therefore is to determine 
the matrices representing boosts. Further, since any 
momentum vector can be brought into a specified direc
tion by a rotation (whose representation is known, as 
just mentioned) it is sufficient to confine attention to the 
transformation under boosts L of helicity eigenstates 
defined with respect to a specified standard momentum, 
and we shall do so in this paper. Specifically, con
sidering the space of (2m + 1)(2n + I)-component wave
functions transforming as I/!(p) -I/!' (Ap) =D(m,n\A) I/!(p) , 
we determine the matrix representing the effect of 
boosts on the helicity eigenfunctions for a given momen
tum. In a subsequent paper we shall explore some of the 
implications of the indecomposability of the representa
tion in the context of the quantum theory of the electro
magnetic fields described by the vector field A" . 

II. THE REPRESENTATION OF BOOSTS IN 
HELICITY BASIS 

Let us recall first that D(m,n) is defined by 
M 2 -m(m+I), N 2 -n(n+I), where 

M= ~(J + iK) and N= ~(J - iK) 

are two angular-momentum-like vector-s,obeying the 
algebra 

(1 ) 

[MpMjl=iEijkMk' [Ni,Njl=iEijkNk' [Mi,Njl=o. (2) 

Since M and N commute, any finite Lorentz transforma
tion exp(iB·J+ia·K) can be expressed as exp(il;·M) 
xexp(i/:*· N), where e, a are real vectors, and 1: = e 
- ia. The space of spinors l/! transforming according to 
D(m,n) may thus be thought of as a direct product of a 
(2m + I)-dimensional "M space" on which the matrix 
operator exp(i/: . M) acts, and a (2n + 1) -dimensional" N 
space" acted on by exp(i/:· N). In the case of a pure 
Lorentz transformation (boost), 

l;=-l;*=-ia=-ifia, (3) 

where fi is the unit vector in the direction of the boost. 
Hence the transformation of a wavefunction I/!(p) under 
boosts is 

0(P)-I/!'(p')=D(L) I/!(p), 

D(L) = exp(il;' M) exp( - iL"N), 

(4a) 

(4b) 

where the two factors in D(L) act on two separate indices 
labelling the components of 0. 

We now introduce, for any lightlike 4-momentum p, 
sets of "helicity" eigenfunctions in the M and N spaces, 
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defined by 

(M·p) U(M)(p;/J.) = /J. Ip 1 U(M)(p;/J.), 

/J.=m, m-l, .•• , -m, (5a) 

(N'p)U(N)(p;v)=vlplu(N)(p;V), v=n,n-l, •.• , -no 

(5b) 

Since J = M + N, the direct products 

u(P;/J., v) "'U(M)(p;/J.)U(N)(p;V) (6a) 

of these functions are eigenfunctions of the helicity 
operator (J'p)/Ipl, and they form a basis for the space 
of functions zj;(p): 

(J·p)u(P;/J., v)='Au(P;/J., v), 'A=/J.+v. (6b) 

Now, let 

exp(il;' M) U(M)(p;/J.) =:0 U(M) (p' ;p) d~~>, 
p 

exp(- it; 'N)u( N)(p; v) =:0 u( IV) (P' ;(1) d~~r), 

(7a) 

(7b) 

where the helicity states appearing on the right-hand 
side are defined with respect to the transformed momen
tum P' =Lp. Then the matrix LJ(L;p) with elements 
LJ pa,uv (L ;p) defined by 

n(m,n) (L)u(P;/J., v) 

=:0 d~~) d;:)u(P';p, (1) '" L LJpa,uvu(p';p, (1), (8) 
pa 

evidently gives a helicity representation of the boost L. 
Our task now is to determine this matrix LJ • 

Consider the relation 

exp(it;· M) [exp(-it;. M)(M' p')exp(il;' M)]U(M) (p;/J.) 

which follows immediately from (7a). As we shall now 
see, the first member of this equation can be easily ex
pressed in terms of the U(M)(p';p) and hence a recurrence 
relation for the d~~) obtained. For this purpose we need 
to use only the following elementary facts: 

exp(- it;· M)Mexp(it;· M) =Mcos I; - (ftxM) sin I; 

- (M·ft)ft (cos I; - 1), 

p' = P + (ft· p)ft (cos I; - 1) - iftlp 1 sin 1;, 

(10) 

(11) 

where n is defined as in (3), and I; '" - ia is pure imagi
nary. Equation (10) simply states the transformation 
property of a vector operator under rotations. (Since 
this relation depends only on the algebra of the compo
nents of M, it holds irrespective of whether I; is real or 
complex.) Equation (11) is just the 3-vector part of the 
boosted lightlike momentum vector. Combining Eqs. (10) 
and (11), we obtain 

exp( - il;' M)(M· P') exp(il;' M) = (M· p) cos I; - i(ftxM)· p 

- i(ft· M) Ip 1 sin 1;. (12) 
o 

Let us specialize now to the standard vector p = p, 

p= (K, 0, 0, K). (13) 

In this case I p' I = K (cos I; - in3 sinl;), and we can write 
(12) then as 
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exp(- it;· M)(M· P') exp(il;' M)=M3 1p' 1- (i Kll. sin t;)M., 

(14) 

where 

On using (14), the first member of Eq. (9) becomes 

/J. 1 p' 1 exp(il;. M) u( M) (j;;/J.) - (i Kit. sin 1;) 

( 15) 

x [(m + /J.)(m - /J. + 1)]1/2 exp(il;· M)U(M) (P;/J. -1). (16) 

Here we have used the fact that with p as in (13), Eq. 
(5a) reduces to 

(17a) 

and hence, from angular momentum theory, 11 

M. u( M) Cb;/J.) = [(m + /J.)(m - /J. + 1)]1/2 U(M) (P;/J. - 1). 

(17b) 

Finally, on substituting for the first member of (9) the 
expression (16), and using (7a), we obtain 

L; [iJ.Ip' Id~~)-(iKn. sin 1;) 
p 

x [(m + /J.)(m - /J. + 1)]1/2 d~~~_Ju(M)(P';p) 

=I;p 1 p' 1 d~~) U(M) (p' ;p). (18) 
p 

On equating coefficients of the linearly independent func
tions U(M) (p' ;p), we get the recurrence relation 

(/J. - p)d~~) == c[(m + /J.)(m - /J. + 1)]1/2 d~~~_I' 

C = i(K/ /p' / )n. sinl; = (i1z. sinl;)/( cosl; - in3 sinl;) 

= (n. sinh a)/( cosh a - n3 sinh a). 

(19) 

(20) 

Equation (19) implies that d;~)=O for all p> /J.. For any 
p ~ /J. it gives 

d(M)- cu.·p ((m+/J.)!(m- p)!)1/2 d (M) (21) 
Pu -(/J.-p)! (m-/J.)!(m+p)! pp' 

Thus any U(M) (P;/J.) for given /J. gets transformed into a 
linear combination of all the u (M) (P';p) with p ~ /J.. The 
only case where there is no admixture with other helici
ties is when /J. itself has the minimum possible value, 
/J.=-m. 

The above derivation does not give the values of the 
diagonal elements d;:). It can be seen however that they 
must be of the form exp(ipe). This is a consequence of 
the well-known fact that if a group representation is re
duced to a form wherein all nonvanishing elements out
side of diagonal blocks (square blocks along the diagonal) 
are confined to one side of the diagonal, then these di
agonal blocks themselves must form representations of 
the group (even if the given representation is not fully 
reducible). In the present case the diagonal "blocks" are 
just the diagonal elements d;:). Thus d;:) for each p 

must give a representation of the group. This is of 
course just the helicity-p Wigner representation, which 
gives d!:) = exp(ipe), where e is characteristic of the 
particular boost, and depends on p too. 4,9,12 

The coefficients d~:) in Eq. (7b) can be obtained in 
exactly the same way. The counterpart of Eq. (10) in 
this case is obtained by the replacements M - N, l; - - t; 
(or ft - - fl.), while Eq. (11) remains unchanged. Then 
Eq. (14) goes over into one with N3 , N., and n. instead 
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of M 3' M., and - n •. Consequently the d:':) are nonzero 
only for a greater than v. It may be verified that they 
are given by 

d(N) _ (- c*)"-" (n+ a)!(n- V)!)1/2 d(N) 
"" - (a- v)! (n- a)!(n+ v)! "0 , 

with d~~) = rcp(iae). Thus we have finally 

c"'P (- c*)"'" 
f)p",,,,"= (Il - p)!(G- v)! 

(22) 

x (m + Il)! (m - p)! (n + a)! (n - v) !)1 /2 ei (p.o)6 (23) 
(m - Il)!(m + p) !(n- a)!(n+ v)! ' 

where c is given by (20). The value of e remains un
determined until a specific prescription is adopted for 
the definition of the phases of helicity eigenfunctions 
u(P;X) for arbitrary momentum p. The convention used 
in Ref. 9 is to define u(p, X) as RZou(P;X), where Zo is 
the boost in the direction of the standard vector p 
which changes I p I into I pi, and the rotation R takes the 
direction of p into that of p. (The helicity remains un
altered in both these steps. ) With the phases fixed in 
this manner, it follows from the work of Ref. 9 that 
e = 1 for all boosts in the direction of P. Any other 
boost can be decomposed into a boost of this type 
together with rotations preceding and following it. The 
corresponding value of e is obtained then from the 
knowledge of the rotation properties of helicity 
functions. 10 

III. DISCUSSION 

Though we have made use of the standard vector (13) 
in the derivation of Eq. (23), extension of this result to 
other vectors can be carried out easily. One way is to 
accomplish the transition from a reference frame 5 to 
the boosted one, 5', in three steps: first a rotation in 
the plane containing the z axis and the vector under con
Sideration, to bring the z axis along this vector; then 
the boost; and finally a rotation to bring the axes in co
incidence with 5'. For the second step, Eq. (23) applies, 
but with fi replaced by fi', the direction of the boost with 
respect to the axes obtained after the first rotation. The 
two rotations themselves are of course represented by 
known diagonal matrices in the helicity representation. 
An alternative procedure is based on the observation 
that Eq. (14), on which the remaining derivation rests, 
holds good for any vector p, provided that fi is inter
preted as the direction of the boost with respect to an 
orthonormal triad of vectors of which the third one is 
along the direction of p. The direction cosines A can of 
course be expressed in terms of those with reference to 
a fixed coordinate system (i. e., one which is indepen
dent of p), and with the use of such expressions for the 
components of fi, Eq. (23) becomes valid for any 
arbitrary vector. 

Finally, as we have noted in the Introduction, any 
general Lorentz transformation A can be decomposed 
into A = RL, where R is a rotation and L is a boost, and 
hence the matrix f)(A;p) representing A may be deter-
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mined. The set of matrices f)(A;p) for all A and p pro
vides a helicity representation of the Lorentz group in 
the sense that D(~;A1P)j)(A,;P)=±f)(~A1;P). It is well 
knownl that ambiguous (±) signs arise in the case of the 
double-valued representations corresponding to half
odd-integral values of (m+ n). As for translations, they 
are represented by the familiar phase factors exp(ip, a), 
and these taken together with the f) (A;p) corresponding 
to homogeneous Lorentz transformations, complete the 
representation of the Poincare group. 

It may be easily verified that the matrix f) defined by 
Eq. (23) for given p is not unitary. This is related to the 
fact that the little group of the Poincare group associ
ated with any lightlike four-vector is the noncompact 
group E(2). It is also a necessary concomitant of inde
composability: if a representation were reducible and 
unitary, it would be completely reducible. In a sequel 
to this paper, we shall show that the gauge problem and 
the appearance of the indefinite metric in the quantum 
theory of the electromagnetic potentials Au have their 
origin in the indecomposability (and nonunitarity) of the 
representation of the little group associated with any 
lightlike vector p over functions transforming according 
to D(l/2,1/2) under the HLG. 
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Rigged Hilbert space formalism as an extended 
mathematical formalism for quantum systems. I. General 
theory 
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Roberts' proposal of a rigged Hilbert space 4> C C; C <p x for a certain class of quantum systems is 
reinvestigated and developed in order to exhibit various properties of this kind of rigged Hilbert 
spaces which might be of interest for the application of this formalism to special quantum systems. 
It is shown that on the basis of this proposal one also obtains a satisfactory solution for a rigged 
Hilbert space for composite systems. Another part is concerned with topological properties of the 
so-called eigenoperators y( t) belonging to an A -eigen-integral decomposition of <P with respect to a 
self-adjoint operator A on C;. We derive a representation of 'Y(t) in terms of the generalized 
eigenvectors of A and in the same context give a rough topological characterization of these 
eigenvectors. 

I. INTRODUCTION 

The present paper is mainly intended to give a sys
~ematic description of a mathematical apparatus which, 
in the opinion of the author, is suited to cope with some 
problems inherent in the Hilbert space formalism for 
quantum systems. In the usual terminology problems of 
this type are named "choice of the representation," 
"transformation of one representation into another," and 
"representation of operators in a given representation. " 
As it is well-known all these problems are connected 
with the presence of continuous parts in the spectra of 
most of the self-adjoint operators in a separable Hilbert 
space C; which represent observables (physical quanti
ties) in the mathematical scheme of quantum mechan
ics. On the other hand, in scattering theory it is some
times very useful to work with plane wave "states" 
which, in a certain idealization, may still be regarded 
as physical states. Since these states no longer belong 
to the Hilbert space in question one runs into mathemat
ical troubles when applying Hilbert space operators 
onto these states. 

In order to be able to treat all these problems in a 
unified scheme we present in this paper a mathematical 
apparatus based on a formalism which for the first time 
was systematically developed by Gel'fand1 and is there
fore known as the Gel'fand-triplet-formalism; very often 
it is also called "rigged Hilbert space formalism. " In 
the scope of Gel'fand's work this formalism was intended 
to provide an extended space q,x of C; which should con
tain "generalized eigenvectors," corresponding to points 
of the continuous spectrum of a given self-adjoint opera
tor in C;. 

The general idea is to replace the Hilbert space 
structure by a space triplet q, c C; c q,", where q, is a 
dense subspace of C; equipped with a finer topology and 
q," is the dual space of q,. The above inclusions then are 
defined by means of the continuous canonical injection I: 
q, - C; and its adjoint 1":C; - q,x. Applications of the rigged 
Hilbert space formalism to "physics" have already been 
investigated by Bohm, 2 Roberts, 3 and Antoine. 4 In this 
context we should also mention the work of Grossman5 

and Prugovecki. 6 These authors have tackled the prob
lem of modifying the usual Hilbert space structure by 
methods closely related to those employed in the rigged 
Hilbert space formalism. For an early attempt to treat 
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similar problems we mention also the work of Mayer. 7 

However, it is still an unsolved question whether all the 
new technical features that appear in this formalism 
admit of a clear-cut physical interpretation, if any at 
all. 

As for the physical relevance of the rigged Hilbert 
space structure we understand the problem as follows: 
As long as one deals with ordinary quantum systems the 
basic mathematical structure which carries all th~ 
physical interpretation is after all the Hilbert space 
structure. In special caseS some elements of the space 
q," may be regarded as idealized phYSical states, for 
instances, in scattering theory. However, in dOing so 
one has to be very cautious and always to keep in mind 
the original physical states from which these idealized 
states have been abstracted. Thus, at the present stage 
we would say that there is no general rule of assigning 
a clear-cut "physical" meaning to all elements of q,". 
In particular, we cannot agree with the proposal of 
Antoine 4 to interpret all elements of q," as potential 
experiments which can be performed on the physical 
system in question. We have to refuse this interpreta
tion for the simple reason that the definition of the 
space q," itself depends very strongly on the topology of 
q,; the choice of this topology is to a certain extent 
arbitrary and cannot be properly justified by physical 
arguments. The same argument applies to the space 
L (q"q,"). Furthermort!-again for phYSical reasons-we 
cannot accept without further criteria the proposal of 
Antoine that the set of all "preparable" states of the 
physical system can be identified with the set q, since 
this assumption would necessarily require an additional 
postulate for the characterization of the "preparable" 
states of a physical system. We would like to argue as 
follows: From the purely physical point of view it is 
always sufficient to work with a dense linear subspace 
q, of C; since up to an arbitraryly small error of mea
surement we can approximate any state by an element 
of q,. Then we try to choose q, in such a way that all 
elements of q, have nice properties with respect to cer
tain mathematical requirements. For instance, we can 
choose q, as the subset of all infinitely differentiable 
vectors for a strongly continuous unitary representation 
of the central extension of the Galilei group in C; which 
form a dense set in C;. This resembles very much the 
situation in ordinary mechanics where we usually work 
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with differentiable functions. Physics tells us at most 
that the path of a particle should be represented by a 
continuous function. However, in order to have a handy 
formalism we confine ourselves to a subspace of the 
space of all continuous functions, namely, the space of 
differentiable or-more restrictively-infinitely differ
entiable functions. Summarizing the argument we may 
say that it is largely a matter of mathematical con
venience to use the rigged Hilbert space as a formalism 
for the description of quantum systems instead of the 
usual Hilbert space structure. In our opinion, the 
rigged Hilbert space formalism does not bring about any 
enrichment of the structure of the physical theory prop
er; however, it may provide powerful means for the 
solution of certain mathematical problems of quantum 
mechanics thus possibly leading to new results (e. g. , 
in scattering theory). Also it makes possible a rigorous 
formulation of this extended ("idealized") quantum 
mechanical scheme. 

Now, in order to make the rigged Hilbert space 
formalism efficient for its application to quantum sys
tems, one has to construct a triplet <I> cg c <l>x satisfying 
a special requirement: <l>x should contain the generalized 
eigenvectors for all observables that belong to the sys
tem in question. Even such a triplet is in no way unique! 
For the case where the set of observables is supposed 
to be an algebra ~ (with <I> as the common invariant do
main of definition), a construction of such a triplet was 
given by Roberts. 3 Since in this case the topology of <I> 
is essentially the initial topology with respect to ~ 
which is mathematically well-known, we took this solu
tion as a basis of our investigations. 

The essential result within this context is a general 
representation of the elements of the dual space <l>x. We 
shall need this result in a forthcoming paper in which we 
will treat the transformation theory of nonrelativistic 
quantum mechanics. 

However, we emphasize that in principle the solution 
of Roberts3 could exclude some of the observables 
which might be of interest to physics. This complex of 
questions is intimately connected with the problem 
which self-adjoint operators on Hilbert space corre
spond to phYSical observables; these problems will form 
the subject of further research. 

In this paper we have adopted the scheme of spectral 
decompositions originally proposed by Foias8 and later 
modified by Roberts3 by using the Garding-Maurin 
theorem. 9 This scheme is essentially based on the no
tion of the so-called eigenoperator y(t) of an operator 
A. y(t) is in a way a generalization of the Hilbert space 
projector on the eigenspace of a Hilbert space operator 
A. Foias10 had already given a representation of the 
operators y(t) in terms of the generalized eigenvectors 
of A. However, for technical reasons, he had to confine 
himself to the case where <I> and <l>x are normed spaces. 
It is, of course, always possible, even in the general 
case of locally convex spaces 1> and <l>x to reduce this 
representation problem to the case of normed spaces 
<1>' and <I> 'x (by choosing suitable subspaces <1>' and <I> 'x of 
<I> and <1>", respectively). For phYSical applications, 
however, it is desirable to work exclusively in the 
general structure with topologies corresponding to the 
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duality of the spaces <I> and <I> X • 

Working in this general framework we have obtained 
a representation of the operators y(t) with results very 
similar to those of FOias. 10 We have assumed here that 
<1>" is equipped with the strong topology /3 (<I> x ,<1». 

Last but not least we emphasize that we regard the 
work as presented in this paper as an extension and a 
completion of the work of Roberts3 and Foias. 10.8 

However, we think that the mathematical apparatus 
as presented in this paper has now reached a stage of a 
satisfactory generality and thus can provide a sound 
basis for the treatment of some open mathematical 
problems within the Hilbert space formalism of quan
tum mechanics. As an application of this formalism the 
transformation theory in nonrelativistic quantum mech
anics will be treated in a forthcoming paper. 

II. THE NEED FOR A NEW FORMALISM 

In almost all phYSical theories that are based on the 
Hilbert space formalism one has to deal with unbounded 
self-adjoint operators. It is well-known that such 
operators have a unique spectral decompOSition 

From the mathematical point of view this decompOSition 
is very satisfactory. But as for practical purposes one 
is faced with the shortcoming that the "eigenfunctions" 
belonging to the continuous spectrum do not belong to 
the Hilbert space in question. This difficulty can partly 
be overcome through the use of the so-called eigen
packets. However, even then the discrete and the con
tinuous spectrum, respectively, cannot be treated on 
the same footing. Just for this reason the choice of the 
representation and the transformation theory still rep
resent unsolved problems in quantum theory. 

On the other hand, the formal eigenfunctions belonging 
to the continuous spectrum are very often well-behaved 
functions (in particular, for differential operators) 
although they are not elements of the Hilbert space. The 
problem we are concerned with may be tentatively for
mulated as follows: Does there exist a space X that con
tains the given Hilbert space g as a subspace and such 
that the eigenelements of a given unbounded self-adjoint 
operator A in C;, both for the continuous and the discrete 
spectrum, belong to X and satisfy a completeness rela
tion, i. e., every element of g can be decomposed with 
respect to this set of eigenelements in a well-defined 
fashion. Now the general ideal underlying the construc
tion of such a space X is essentially the following: Let 
A be a cyclic bounded or unbounded self-adjoint operator 
A with the domain D(A)[<I>C::: D(A)cgl. Let 

g -q = jq(A)d/l(A) , 

f-{j(A)}, fEg, }(A)Eq(A), 

Af- {A] (A)} , fE <1>, 

(J,g)g =j (j(A), g(A)).d/l(A), 

be the direct integral decompOSition of g that originates 
from the spectral decomposition of A. Then one can 
search for a locally convex (1. c.) topology T in <I> which 
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is finer than the topology induced in cP by the norm
topology of q such that the linear form cfJ - $(A) with 
cfJ E cP is a continuous linear form on cP for every 
AE (_00,00). Then one can write 

where cP I denotes the space of all continuous linear 
forms over CP. Since cP is dense in q and the canonical 
injection from cP into q is continuous q may be densely 
embedded into cP I. Thus we are led to the triplet 
structure 

Furthermore one can look for such a 1. c. topology in 
which A becomes a continuous map from cP into itself. 
Then there exists the transpose A' of the operator A 
that maps CP~ continuously into itself where the subscript 
(3 means that cpl is endowed with the strong topology 
!3(cpl,cp). A' is defined by the relation 

(A'~, cfJ) =( ~,AcfJ) for every cfJ E cP and ~ E cpl. 

The relation between A' and A*, the adjOint of A (Ax=A 
in q), is not apparent at first sight, and will be cleared 
up later on. The linear forms ~~ introduced above are 
eigenforms of A I 

(A'~~,cfJ)=(~~,AcfJ)=A(~A'cfJ) for all CPECP. 

This relation can be written in a shorter form 

A'~A =A~~. 

After these introductory heuristic remarks we may now 
give a correct mathematical formulation of the problem 
to be solved. 

(I) One has to look for a dense linear manifold cP in 
q which belongs to the domain of definition for A and is 
invariant under A. Furthermore one has to endow cP 
with a 1. c. topology 'T which is finer than the topology 
induced by q on cP such that the operator A maps cP con
tinuously into itself. 

(II) The dual space cP I of cP has to be sufficiently large 
so as to contain a complete system of eigenforms of 
A I. Completeness means that each element of cP can be 
uniquely decomposed with respect to this complete sys
tem of eigenforms of A'. This system fulfills a com
pleteness relation of the following form: 

II cfJII 2 = J ! (~~, CP) !2d/J.(A) 

holds for every cfJ E CP. 

For a given s. a. operator A on q this problem has 
already been solved by Foias. B We summarize his re
sults in the following. 

Proposition 1: Let A be a selfadjoint operator on q 
with a domain of definition D with ADc D and D dense in 
q. Then there exists a dense subspace cP of q with 
cP C D such that cP can be equipped with a 1. c. topology 
'T such that cP is a Frechet space. Furthermore with 
respect to 'T, A becomes a continuous map of cP into 
itself. 

The situation one frequently encounters in physical 
applications is somewhat different from the situation 
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described so far. Instead of one operator A one is given 
an algebra ~ of unbounded operators (observables) 
which has the following properties: 

(a) All elements of ~ have a common, dense domain 
of definition cP in q which is invariant under every ele
ment of ~. 

(b) Every element A E ~ admits a closure A. We shall 
call cP the basic domain for ~ . 

Examples: 

(1) In the case of nonrelativistic quantum mechanics 
of a single particle the algebra ~QM is given by the en
voping algebra of the generators of a unitary irreducible 
representation of a central extension of the Galilei 
group for m *0. As it will be shown later cP can be 
chosen to be the linear hull of the set of all infinitely 
differentiable vectors for the representation in question. 

(2) In an axiomatic approach to quantum field theory 
one usually postulates that the algebra of field operators 
has a common dense invariant domain of definition in 
q. 

Now to cope with this situation first one has to settle 
the follOwing problem: cP has to be equipped with a 1. c. 
topology 'T finer than 'Tr:; (the topology on cP induced by q 
on cp) such that every ~ E ~ becomes a continuous map 
from cP into itself. In the second step one has to find out 
which conditions should be imposed on ~ in order that 
cP becomes a nuclear locally convex space. Then the 
injection I: cP -q (which is continuous) is also a nuclear 
map [Ref. 11, p. 100]. 

In the sequal we shall be concerned with the situation 
characterized by conditions (a) and (b). For the solution 
of (a) and (b) we shall adopt here essentially the method 
proposed by Roberts. 3 Without loss of generality we can 
adjoin to ~ the l-operator in q. Then let cP be equipped 
with the initial topology 'Tin with respect to all elements 
of ~, i. e. , with the coarsest topology for which all the 
maps 

A:cp-q, AEW 

are continuous. We have at once that 'Tin is locally con
vex and that 'Tin is finer than Tq since 1 belongs to ~. 

Furthermore, from the general properties of the 
initial topology we deduce the following properties of 
cP 12: 

(1) The space (cp, 'Tin) has a o-neighborhood base that 
consists of all sets of the form 

with u arbitrary but finite, and K is the unit ball in q . 
(2) (cp, 'Tin) is a Hausdorff locally convex space. This 

follows by the fact that 1 belongs to ~ since for each 
cfJECP there is an A, namely 1, such that AcfJ *0. Then 
cP can be identified with a subspace of the topological 
product space n", E 11 "" where A is an index set which 
has the cardinality of ~. 

(3) The topology 'TIn on cP is generated by the following 
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family of seminorms 

cf>-IIAcf>11 with AE ~ and cf>E 01>. 

(4) Each map A: 01> - g with A E ~ is also continuous, 
considered as a map from 01> into 01>. Due to the initial 
property12 a map A", E ~ 

A",: (01), "TIn) - (01), "TIn) 

is continuous if and only if the maps 

AaA",: (01), "TIn) - (01), "TIn) - g 
are continuous for all (3 EA. Since ~ is assumed to be 
an algebra, the latter condition is obviously fulfilled. 

Next we shall deal with completeness properties of 
(01) , "TIn)' We as sum_ed at the beginning that eve ry A E ~ 
admits a closure A in g. In some cases the algebra ~ 
is generated by a finite set 0 of symmetric or even 
essentially self-adjoint operators on a Hilbert space g 
such that all elements of 0 have a common invariant 
dense domain D. We consider the free algebra generated 
by 0 but without taking into account the multiplication by 
scalars. For the topological properties of 01> only the 
elements of ~ really matter. Finally one can take into 
account the multiplication by scalars as well ~ithout 
altering the topology on 01>. Since the closure A of an 
operator A in g is given by ~** we see that every ele
ment of ~ admits a closure A. The maximal invariant 
domain of definition is given by 

~ = n D(A) with D(.A) as the domain of A. 
AE~ 

Then the algebra generated by 0 is given by ~o = ~/0I>. 3 

Since 0I>:::J D, 01> is also dense in g. The invariance of 01> 

under all elements of ~ 0 follows from the semigroup 
property of ~o. 

Proposition 2: 01> =n AE~D(A) equipped with the initial 
topology with respect to the elements of ~o is a complete 
locally convex space. 

Proof: Let] be a Cauchy filter in 01>. We know that] 
is a Cauchy filter in 01> if and only if A~ is a Cauchy 
filter in g for every A", E ~o. Since 1 E ~o, ] is also a 
Cauchy filter in g . 

By the completeness of g ,J converges to an element 
xEg. Therefore every Cauchy filter A~ converges to 
the element A",x since every A", E ~o is by assumption 
closable. Hence we have x E <T>. Now we want to show 
that] also converges to x in the topology "TIn on <T>. Let 

be a o-neighborhood in <T>. For each i = 1,2, 0 • 0, u there 
exists a F j E] such that 

A",/F/CA",/+ E;K. 

Then we have 

F=nF/E] 
/=1 

and Fcx +ij, i. e. , the Cauchy filter 7 converges to x 
in the topology in <T> • QED 

We denote now by <T>x the space of all continuous anti
linear forms over <T>. (In this case the embedding of g 
into <T>x is a linear map.) The next proposition deals with 
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the general form of elements of <T>x. First of all we see 
that every expression of the form ~ • A = ~ A with ~ Eg 

and A E ~ which operates on <T> according to the equation 
< fj A' cp) = (A cp, f)) is a continuous antilinear form on <T> • 
The linearity of this form follows from the linearity of 
A. For the proof of the continuity of ~ A let EA-1K with K 
as the unit ball in g be a o-neighborhood in <T>. Then we 
have 

I <9 A' cp) I = I (ACP,fj) I ~ II~ I11fAcp11 <EH~ II 
for all CPEEA-IK. 

The same assertion is true for all finite linear com
binations of antilinear forms ~ A' We want to show that 
every element of <T>)( can be represented in the form of a 
linear combination of continuous antilinear forms ~ A 

defined above. 

Proposition 3: Let (<T>, "TIn) be the Hausdorff locally 
convex space endowed with the initial topology with re
spect to ~. Then each element cpx E <T>x can be repre
sented in the form 

u(~X ) 

cpx="'6 (j .A 
k=1 rf '" K '" K 

which operates on 01> in the following way: 
u (~X)77 __ :;--"'" 

< cpx, cp) = L, (A", cp, (j '" ) 
k=1 K rf K 

for every cp E <T>. 

Proof: Since the topology "TIn on <T> is separating the 
space 01> is topologically isomorphic to a subspace of the 
topological product space 

n r 12 
"'EA'::i"" 

Again, we denote by A an index set which has the 
cardinality of the algebra~. The injective map indi
cated above 

i:<T>- n r 
",EA'::i'" 

is defined by 

i(cp) = {A",CP}A nl . 
'" 

Now the dual space of the topological product n"'EAg" 

can be identified with the locally convex direct sum of 
the duals of the spaces Ci "" i. e. , we have 

(n r",\'= "'6 EBr~. 
\"EA'::i ') "EA ':j 

Since there exists a conjugate norm-isomorphism from 
each g ~ to g" there exists a conjugate canonical identi
fication of 

( n g,,\1 with "'6 Etlr". 
",EA 'J "EA '::i 

Therefore one can define a linear map 

j: "'6 ~r -<T>x 
"EA '::i'" 

by the equation 
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where A: denotes the transpose of the operator 

By the preceding remark we have j=ix. Indeed, for 
CPE ifl and 

it follows 

(i(cp) ,{9 a}) = a~ (Aa cP, 9 ,,.)q a = a~ (cp ,A: g) 
=(cp,j({,9 a})' 

Now i is an injective map from ifl into TIaEAq a which is 
continuous in both directions. By means of general 
properties of continuous mappings it follows that i has 
the same properties for the topologies U(ifl, iflX) and 

U(JJAq a' aPA $ q a) 
and finally we arrive at the conclusion that the map j is 
surjective. Hence for each cpx E iflx there exists a se
quence {9 a} E {q a} such that 

cpX=j({9a})= aPAA:(9a} 

holds, whe re J a = 0 except for a finite set {a I}' i 
=1,2, ... , u, i.e., for each cpxEiflx there exist 
finitely many vectors 9 a E q a , i = 1, ... , u(cpX) and 
finitely many Aa E~, i ~ 1, 2,t ... , u(cpX) such that 

U«/IX) j 

cpX= 6 AX «() ) 
1.1 a l qa l 

holds. The functional cpx on ifl is defined by the equation 

U(<jIX) 

(cpx,cp)= 6(cp,A~1 "') foreverYCPEifl. QED 
1=1 • 

In what follows we shall denote by I the canonical injec
tion of ifl into g. Then the transpose 1": q - iflx is deter
mined by the relation (j,I(CP))q =(P(j), cp) for every 
cp E ifl and fEq. We shall always assume that iflx is 
equipped with the strong topology with respect to the 
dual system (ifl X, ifl) 

Proposition 4: I" is an injective map. JX(q) is dense 
in iflx with respect to any topology compatible with the 
dual system (ifl X, ifl) . 

Proof: I is an injective map which maps ifl onto a 
dense subspace of q. Then JX is an injective map. By 
the same reasoning it follows that I"(q) is dense in iflx 
with respect to cr(iflX,ifl) and hence in any topology com-
patible with the dual system (iflX ,ifl). QED 

Proposition 5: Let 21 be an algebra of operators which 
is generated by a finite set of essentially self-adjoint 
operators in q with a common dense invariant domain. 
The ifl is a complete metrizable, reflexive 1. c. space, 
i. e ., a reflexive Frechet space. 

Proof: Under the conditions assumed in the proposi
tion, ifl is complete by PropOSition 2. Since ~ is count
able ifl has a countable o-neighborhood base whence ifl is 
metrizable. Furthe rmore since q is a reflexive 1. c. 
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space it follows that TIaEAq", is a reflexive space. But 
a closed subspace of a reflexive space is also a reflex
ive space whence ifl identified with a closed subspace of 
TIaEAq a is a reflexive space. QED 

Corollary: The antidual space q,x endowed with the 
strong topology is a barrelled and complete 1. c. space 
and the strong topology i3(ifl x, ifl) is compatible with the 
duality of (iflX ,ifl). All these assertions are immediate 
consequences of the refleXivity, metrizability and com
pletness of the space ifl. 

Proposition 6: The map y=I x• I: ifl- iflx is a contin
uous injection. yifl is dense in iflx for any topology com
patible with the dual system (iflX ,ifl). 

Proof: The first assertion is a trivial consequence of 
PropOSition 4. 

The second assertion follows from the relation 

Indeed IX -lUX(I(ifl))) is closed and contains I(ifl) since]X 
is injective. Therefore we have 

Since I(ifl) =q and ]X (g) is dense in q,x for any topology 
compatible with the dual system (iflX,ifl) we get 
I"(I(ifl))=ifl x whence I"(I(ifl)) is dense ing. QED 

III. RIGGED HILBERT SPACES 

In this section we shall specify which conditions may 
be imposed on 21 in order that ifl becomes a nuclear 1. c. 
space in the topology Tin defined in II. or that I: ifl-q 
becomes a nuclear map with respect to Tin' Let now q" 

g, and iflx be introduced as in II. 

Definition 1 : Let ifl c g c q,x be a space triplet where 
ifl cg and g c iflx are defined via the continuous injection 
I: ifl-g and the conjugate transpose of I, respectively. 
This space triplet is called a rigged Hilbert space or 
sometimes a GePfand triplet provided the injection I is 
a nuclear map. 

In the first step we shall deal with the case of "ele
mentary systems." In the second step we shall settle 
the problem of "composite systems." Throughout this 
section we shall assume situation described in II. First 
we shall state a result which is due to Roberts. 3 

Propo'>ition 7: Let ifl be equipped with the initial 
topology with respect to ~ . Then the following condition 
is necessary and sufficient for the nuclearity of the 1. c. 
space ifl: There exists a self-adjoint operator B in ~ 
whose inverse B- 1 =H exists and is a nuclear operator 
in g, i. e. , H is an element of the trace-class. 

Proposition 8: The canonical injection I: q, - g (which 
is continuous) is a nuclear map if and only if ~ contains 
a self-adjoint operator B whose inverse B-1 =H exists 
and is a nuclear operator in g . 

Proof: The sufficiency follows immediately from 
proposition 7 and the general properties of nuclear 
spaces :11 
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The condition is necessary: 

Let I: <I> -q be nuclear. By a general theoremll a 
linear map from the 1. c. space <I> into the 1. c. space 
q is nuclear if there exists a circled convex a-neigh
borhood U in <I> such that l{lj)e B where B is a bounded 
subs~ o~q for which q B is complete and the induced 
map 10: <l>u -q B (for the definition of the spaces i u' q B 

we refer to Ref. 11, p. 97) is nuclear. Without loss of 
generality we can assume Be K, where K is the closed 
unit ball in q. It is easy to see tE-at the map q B -q K =q 
is continuous. Thus the map T: <l>u -q is nuclear. But 
this case can be disposed of by repeating the second part 
of the proof of the preceding proposition given by 
Roberts. 3 QED 

At first sight one could conjecture that the requirement 
of the nuclearity of the 1. c. space <I> is too strong. How
ever, Proposition 8 shows that the condition imposed on 
~ , namely, that ~ contains a self-adjoint operator 
whose inverse B-1 =H is a nuclear operator in q cannot 
be weakened if the canonical injection I: <I> - q is to be 
nuclear. 

In the next step we shall tackle the problem how to 
deal with composite systems in physical applications. 
Obviously one might apply the same method as for 
elementary systems. What we are mainly interested in 
is the question whether there is a similar procedure for 
constructing the rigged Hilbert space for a composite 
system as it is usually applied to the Hilbert space for a 
composite system, i. e ., by taking the tensor product of 
the Hilbert spaces of the elementary systems. 

In what follows we shall always assume that the 
algebras ~j of the elementary systems have the proper
ties indicated in Sec. II. We shall also assume that each 
~j contains a self-adjoint operator B j whose inverse 
Bj1 exists and is a nuclear operator in q i . 

First we sketch the procedure for setting up the Hil
bert space formalism for a composite system. For the 
sake of simplicity we restrict our discussion to the case 
of two elementary systems. Letqll q2 and ~1~2 be the 
Hilbert spaces and the algebras of observables of the 
two systems, respectively. Then the Hilbert space of 
the composed system is built up as follows: First one 
takes the tensor product q 1 0 q 2 consisting of all ele
ments of the form 

u 

f=0f~1)0f~2) withf.~1)Ef.1 and f
j
(2) Ef.

2
• 

i=l s s ::J '::f 

The scalar product in q 10 q 2 is defined as follows: 

(f g) - ~(fU) g(l») (f (2) g(2») 
, - _.1 j 'J 1 j 'J ' 

with 

If the spaces q I' i = 1, 2, are infinite dimensional, 
q10q2 is not necessarily complete. Usually one takes 
q 1 0 q 2' the completion of q 1 ° 92 with respect to the 
norm which is given by the scalar product defined 
above. 

Now the algebra of "observables" operating on 
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q 1 ® q 2 is given by the algebra ~ which is generated by 
the set ~ 10 ~2' An operator A 1 0 A2 E ~ 10 ~2 is defined 
on q 1 ® q2 as follows: 

(A1 0 A 2)(/l) ° j(2») =AJ<l) ° A 2 f(2) • 

The problem we are going to investigate now can be 
stated as follows: 

(I) Does there exist a tensor product <1>10 <1>2 with <1>1 
and <1>2 as domain of definition for ~1 and ~2' respec
tively, such that <I> 10 <1>2 i~ dense in q 1 ® 9 2 and the em
bedding of <I> 10 <1>2 into q 1 ° q 2 is continuous? 

(II) Is <I> 10 <1>2 a nuclear 1. c. space? 

(III) Are the operators in the algebra ~, generated by 
the set ~10 ~2 continuous mappings from <1>10 <1>2 into 
itself? 

Now let <I> = <I> 1 0. <1>2 be the tensor product of the 1. c. 
spaces <1>1 and <1>2 endowed with the n-topology (c.f. Ref. 
13). The n-topology on <I> =<1>10 <1>2 is generated by the 
following family of seminorms: 

n (A~1), A~2») (4)) = inf ~ II A~1)ct>l1)1I1I1AJ2) ct>:2) 112 , 
• 

where A~)E ~1' A~2)E~2 and the infimum is taken over 
all possible representations of the element ct> in the form 

One can ask whether this n-topology on <1>10<1>2 is com
parable with Tin' the initial topology on <1>10 <1>2 with re
spect to the algebra of operators ~ introduced above. 
Tin is generated by the following family of seminorms: 

with 

Obviously one has 

whence the n-topology is finer than the topology Tin' 

Now we shall give an answer to the three problems (I), 
(II), (III) stated above: 

Proposition 9: <1>10 <1>2 is dense in q 10 q 2' The canon
ical injection of <I> ° n <I> 2 into q 1 ° q 2 is continuous; there
fore the image of <l> 10 n <1>2 under the extended canonical 
injection 1: <l>1®n<l>2-q10q2 is dense inq10q2' 

Proof: In order to prove the first assertion let 

be an arbitrary elements of q 1°92 and let 

by any element of <1>10 <1>2' Then we have 
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~ tllh(l) ° h(2) - h(l) ° <1>(2)11 + tllh<l> ° <1>(2) - <1>(1) ° <1>(2) II 
1=1 I I i I 1=1 I i I I 

=E{lIhil)lIlIhi2) - <I>?)II + II <l>i2)1I2I1hi1) - <I>?)II}. 

Since <PI and <P2 are dense ing1 andg2, respectively, 
for a given e > 0 and hi K ) E g K' K = 1, 2 there exist 
<I>?) E<P K, K=I, 2 such that 

Hence we get 
u 

11<1> -hll ~ L, {lIhi1)II'e + (/Ihi2) II +e)e}=ue2 +M'e =e', 
1=1 

with 

Thus for every hE g , ° g2 and e' > 0 there exists a 
<I> E <P 10 <P2 such that II <I> - hll <e' holds [We choose 
e = (M2 + 4ue ')1 /2 /2u.J For the proof of the second asser
tion it suffices to show that the 7T-topology on <P 10 <P2 is 
finer than the topology induced by g 10 g 2 on <P 1 ° <P 2 • 

Now for each 
u 

<1>='0<1>:1)0 cf>1(2) E<P 10 <P2 
1:1 

we have 

II <1>112 <'9.1 (cf>il), cf>}l)(<I>i2) , cf>?» ~ 'BII <l>i1) IIII<I>?) 1111<1>:2)1111 <I>?) II 

~{EII<I>:I)IIIIcf>i2)1IY. 
Since the canonical injection I K: <P K - C; K' K = 1, 2 are 
continuous there exist positive numbers CK and opera
torsA(K)E~K' K=I, 2 such that 

Thus we have 

11<1>11 ~ C
i

• C2 ~IIA (l) <l>jl)IIIIA (2) <1»2)11. , 

Since this relation holds for every representation of the 
element <l>E<P10 <P20 we obtain 

1I<I>II~Cic2n(A(l)'A(2)(<I» for every <l>E<P 10<P 2 • 

Hence the inj ection I: <P 1 ° rr<P 2 - g 10 g 2 is continuous. 
This mapping can be extended continuously to the map 

I: <P 10 rr <P 2 -g 10g2' 

It fo11ows that l(<P 10rr<P2) is dense in g 10 g 2' QED 

Proposition 10: The elements of the algebra ~ gen
erated by ~10 ~2 are continuous mappings from 
<P 1 Orr <P 2 into itse If. 

Proof: It is immediate that every element of ~ maps 
1>10 <P2 into itself. 

Furthermore A (1) ° A (2) maps i!> 1 ° cI>2 continuously into 
itself if for each continuous seminorm II(B (1), B (2» (.) on 
<P 1 0 IT <P2 there exist another continuous seminorm 
n w (I),D(2» (.) and a positive number M such that the 
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By the saturation property of the seminorms on <PI 
0 rr <P 2, we see that also every element of ~ is a con
tinuous map from <p10 rr <P2 into itself. Finally by taking 
the continuous extension of every element in ~ we see 
that every element of ~ is also a continuous map from 
<p10 rr <»2 into itself. QED 

Thus we have succeeded in showing that the problems 
(I) and (III) can actually be settled. For if <P l' <P2 are 
nuclear I.c. spaces it follows (c.f. Refs. 11, 13) that 
also <P 1 0 <P2 is a nuclear 1. c. space. 

For nuclear Frechet spaces <P 1 and <l>2 it follows 
(c. f. Ref. 11, p. 175) that the strong antidual space, 
i. e. (<l>10rr <P2)~ can be identified with the space 

~0rr<p~, 

One might ask at this point whether the n -topology and 
the topology Tin coincide in case both <PI and <P2 are 
nuclear 1. c. spaces. It is known that in this case the 
e-topology and the n-topology on <P 10 <P2 coincide. Un
fortunately, we were not able to show that the e topology 
(c.f. Ref. 13) is coarser than the topology Tin which 
would imply the equivalence of both topologies. It is 
perhaps worthwhile to note that the method described in 
Propositions 9, 10 and the preceding remarks applies 
to a far more general situation. Let <I> 1> i = 1, 2 be nu
clear 1. c. spaces which are domains of definition for 
sets of operators ~ l' i = 1,2, respectively, such that 
all elements of ~ i' i = 1, 2 are continuous mappings 
from <P I' i = 1, 2, into itself. 

<PI and <P2 are assumed to be continuously embedded 
into Hilbert spaces q 1 and C; 2' respectively. Then one 
can follow the same lines as in Propositions 9 and 10 to 
show that problems (I), (II), and (III) can be settled for 
this case as well. 

IV. EIGENOPERATORS OF AN OPERATOR IN <P 

Let L (<1» be the set of all linear continuous operators 
from <P into itself. Then ACE L(<p) and (N<I>,1/!) = (<I>,A1/!) 
for all pairs <l>11/! E <P. A is called real if N =A. The set 
of all those A E L (<p) that have a conjugate AC will be 
denoted by LC(<p). 

Definition 2 : Let L (<p , q,X) denote the set of all linear 
continuous mappings from <P into <px where <px is assumed 
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to be equipped with the strong topology 13(4)\ 4». Then an 
element YE L(<I>, if>X) is called self-adjoint if (q" y1J;) 
= (I/J, yq,) for all q" I/J E if>. I" is called positive if (q" yq,) 
~ 0 for every q, E <I>. We shall summarize some results 
mostly obtained by Foias8 and Robertss : 

(1) YE L (if>, if>X) is self-adjoint if and only if (q" yq,) is 
real for every q, E <I> • S 

(2) If A E L C (<I» then IAI -1 (I denotes the continuous 
injection <I> -g) defines a linear operator ing. Ob
viously r 1 is applied to the subset 1(<1» c 9 only. The 
operator IAr1 is densely defined in 9 and has an ad
joint operator (IAI-1)*:J ACI-1 which is also densely de
fined in g. Therefo.,Ee IAr1 admits a closure in q which 
will be denoted by A (recall an operator A in 9 admits 
a closure A in <:J if and only if A * is densely defined in 
q). Let now A E L c(<I» be an operator that originates 
from a linear operator on 9 with if> as domain. At the 
beginning of the last chapter elements q,x E <l>x were 
called eigenforms to the eigenvalue A of an operator A if 
the follOwing relation (Aq"lJ;") =(q"NI/J><) = A(q,,1/J><) for 
every q, E <I> holds. Within the structure of a rigged 
Hilbert space one can identify the transpose AX of the 
operator A regarded as a continuous map from <I>x into 
itself with the continuous extension of Ae on <I>. Indeed, 
let I" =]X. I. Then as it has been shown in II I" is an 
injective map from <I> onto a dense subspace of if> X • For 
all q" 1J; E <I> we have 

(IAq"II/J) =( q"AXyl/J) = (Aq" I/J) = (q"NI/J) 

= (Iq"INI/J) =(q" yAc1J;). 

Thus the equation AXy1J;=yN1J; is valid for every 1J;E<I> 
and therefore AXy= yAe or ACx y = yA. By the last rela
tion we can identify ACX with the continuous extension of 
A on <I> to an operator on if> x • 

Definition 3: A positive element I" of L (<I> ,<1>*) is 
called an eigenoperator of A belonging to the eigenvalue 
>.. provided I" satisfies the relation 

Acxy=yA=Ay. 

(3) Then it is immediate that we also have 

AXy=yAc=Ay. 

If I" is an eigenoperator of A to the eigenvalue A and if 
yq, '" 0 then yq, is aE eigenform of A and N both to the 
eigenvalues A and A. 

Definition 4: An integral decomposition of <I> is a 
triplet {y(z),Z, t-t} which has the following properties: 

(I) y(z) E L (<I> ,<!>X) and y(z) is positive (z E Z), 

(n) 11 is a positive regular measure on the Borel sets 
of a locally compact Hausdorff space Z, 

(m) z - (q" y(z )1J;) is Il-integrable for all q" 1J; E 4> , 

(IV) (1), 1J;) = f (q" y(z)l/J)dJl(z) for all q" 1J;E <1>. 
~ 

The following proposition is due to Foias, 8 and 
Roberts.s 

Proposition 11: Let {y(z), z, Jl} be an integral decom
position of 4>. Then there exists a unique operator-val
ued measure m on Z with values in L (<I>, <l>X) which is 
a-additive with respect to O'(L (<1> ,<1)X), <I> X <I> ; in satisfies 
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Definition 5: An operator-valued measure B with 
values in L (g) (9 being a Hilbert space) and defined on 
the Borel sets B of a locally compact Hausdorff space 
Z is called a semispectral measure if B(O') is a sym
metric operator for every Borel set 0', 0 ~ B(CT) ~ 1 and 
(h, B(CT)g) is a measure on B for all h, gE g. Further
more B(1)) =0 and B(Z) 1. By a theorem of NaImark14 

any semispectral measure 5 - B(I) in 9 may be extendec 
to a spectral measure 5 - E(5) in an extended Hilbert 
space if:J q. Let P be the orthogonal projection of g on
to q; then E(5) is the extension of B(5) in the following 
sense: If the extension of 9 to 9 is ~minimal, i. e ., if the 
set {E(5)h;hEg ,5EB} is dense ingthen this extension 
is unique up to isomorphisms. With the aid of this 
definition ,one can derive a sharpening 
,of the preceding proposition which is alSQ due to 
Roberts3 and Foias. 8 

Proposition 12: Let <I> be a 1. c. space continuously 
embedded in a Hilbert space q and let <l>x be the space of 
all continuous antilinear forms on <1>. Let {y(z) , Z, Il} be 
an integral decomposition of <1>. Then there exists a 
unique semispectral measure 5 - B(5) defined on 9 
satisfying the relation 

(Iq"B(5)I1jJ) =(q"fh(5)1J;) = f (1), y(z)1J;)dll(Z) 
6 

for all q" 1/JE <I> and 5 EB. 

Definition 6: Let A be an element of L c(if». Then if> is 
said to have an integral A-eigendecomposition if <I> has 
an integral decomposition with y(z) either equal to zero 
or y(z) an eigenoperator of A (z E Z). <I> is said to have 2 

real integral A-eigendecomposition if it has an integral 
decomposition {Y(A),R, Jl} such that 

This relation shows that the yeA) 's, A E R, are in a way 
a generalization of the Hilbert space projectors onto 
the eigenspaces belonging to discrete eigenvalues of A 
ing. 

Recall that a closed operator A on q is called formal
ly normal if D(A)c D(A*) and IIAxl1 IIA*xll for every 
XE D(A) hold. An operator A is called subnormal if 
there exists an extension A of A in an extended Hilbert 
space (j :J 9 such that A is a normal ope rator . 

Proposition 13: Let A E L c(<I». If <I> has an integral A
eigendecomposition then the closure A of A is subnormal 
and formally normal. 3 In a rigged Hilbert space as de
fined in Definition 1 the converse of Propositicn 13 is 
also true. The proof of this assertion is based ,on the 
following propositicn which is due to Girding and 
Maurin. 9 

Propo<;ition 14: Let if> c q be a nuclear 1. c. space 
which is continuously embedded into 9 and let 

<:J -g = jg(z)dll(Z) 
z 

be a direct integral decomposition of 9 with Z as a 
locally compact Hausdorff space. Then for t-t-almost all 
z E Z there exist nuclear mappings I(z) satisfying the 
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following conditions 

I{z):~-q{z), ZEZ 

and 

(Icp,h)=J(I(z)CP,k{z»edlJ.{z) for every CPE~, hEg. 
" 

Proof: We present a proof of this proposition since we 
will need some of the details in the following section. 
Since the map I: ~ - I ~ - ~ cq is a nuclear map, the 
map I has a representation of the following form (c. f. 
Ref. 11, p. 99): 

with 

an equicontinuous sequence in wx, i. e. {tp~ eva, where 
V is a o-neighborhood in ~ and {k II} a bounded sequence 
of vectors in;; . We denote by va the polar of V (c. f. 
Ref. 11, p. 125). 

Then for cp E' V we have 

IItAII(CP,tp~hl!lI ~ t I Alllllh,.!1 <"". 
k:1 k::l 

Without loss of generality we may assume each vector 
h" to be of norm 1. 

Then we derive from the last relation 

t 1\1 !lh1l 11 2 < "". 
11=1 

Let us now consider the function IIhl!{z}lI~ depending on 
the descrete variable k and the continuous variable z. 

We conclude that the iterated integral 

exists where the summation over I \ I has been inter
preted as an integration with respect to a discrete 
measure. Since Ilk" (z) II; ;:,. 0 for all z E' Z, it follows by 
Fubini's theorem (note that IIhk(~II! need not be mea
surable! Ref. 15, p. 204) that IIh,,{Z)II~ is also integrable 
with respect to the product measure and the iterated 
integral with the reversed order of integration also 
exists, i.e., we have 

From this relation we deduce 

t I AI! IlIhll(zlll~ < "" for all Z but Z E' N, 
11=1 

where N is a subset of Z with IJ.-measure zero. 

Now we want to show that all the mappings 

I(z)cp = ¢(z) = t \ (cp, ~>h,,(z) 
11=1 

are continuous mappings from ~ into q(z) for all Z E Z. 

These mappings are even nuclear. Indeed, if cp E ~ we 
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have 

II I(z) cpU! == IIt\(CP,c,o")hl/(zm: ~ (Py(cp)t I \llIkl/(zHI.)2 
11=1 11=1 

where C(z) is finite for every z E Z, z <to N. This proves 
the continuity of the mappings I{z) for all Z E Z but 
ZEN. 

In order to prove that the mappings I(z) are nuclear 
we shall show that 

t.:V/{® h,,(z) 
1/=1 

is an element of ~~®nq(z) (c.f. Ref. 11, p. 99). But 
this follows from the relation 

(t I AI< III tp~lIlIk,,(z)U,,\2 ~ (t I \ 11/21 AI! 11/2I1h,,(z)II .. \2 {IV. 1) 
11=1 1 11=1 1 

In this formula II tp~1I denotes the norm in the space 
~~ := ~~o which is defined as follows 

IItp~1I ==sup{l(cp,tp~ I}. 
0EY 

For the definition of the spaces ~y and ~yO we refer to 
Ref. 11, p. 97. Since tp~ E va we have Iltp~1I ~ 1. 

Thus we conclude from relation (IV. 1) that 

is convergent so that 

t \tp~® hl/(Z) 
1/=1 

defines an element of ~~o@nq(z). Hence we have proved 
the nuclearity of the mappings I(z) for all z E Z, zEN. 

QED 
With the aid of the last proposition one can derive the 
next proposition which is due to Roberts. 3 

Proposition 15: Let ~ be a nuclear, separable 1. c . 
space which is continuously embedded into g. Let 
A E L C (~) and let .if be the closure of IAI -1 in g which is 
subnormal and formally normal. Then ~ has an integral 
A-eigendecomposition. The eigenoperators y{t) are 
defined as y(t) = r(t) ·I(t). 

Corollary: An operator AELC(~) has a real integral 
A-eigendecomposition if and only if A is real, i. e. , 
A =Ac. The next problem arising in the theory is the 
following: Under what conditions is the integral A
eigendecomposition unique. 

Definition 7: Two integral decompositions {y, (z),C , 
1J.1} and {Y2(Z),C,~} of ~ are called equivalent if there 
exist a positive regular Borel measure IJ. and measur
able functions fl and fa such that 1J.1 =f,lJ., 1J.2 =f,1J. and 
f 1Yl(z)=f2'>'Z(Z) hold with the exception of a set Nc C 
with i-I-measure zero. 
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Proposition 16: A real ope rator A E L C (<I» has a unique 
integral A-eigendecomposition up to the equivalence de
fined in Definition 7 if and only if A is a maximal 
Hermitian operator in g . 

Proof: By Proposition 12 an integral decomposition of 
<I> determines a unique semispectral measure. Obviously 
two integral A-eigendecompositions are equivalent if and 
only if they determine the same semispectral measure 
on a:. Therefore <I> has a unique integral A-eigendecom
position up to equivalence if and only if there is a unique 
generalized spectral measure which is attached to A. 

But this is exactly the case when A is maximal 
Hermitian. For if A is already a self-adjoint operator 
in g then the conditions of the preceding proposition are 
fulfilled. It follows at once that an essentially self-ad
joint operator on <I> induces a unique integral A-eigen-
decomposition of <I> up to equivalence. QED 

For an operator A E L C (<I» which is essentially self
adjoint on <I> we may summarize the results obtained so 
far: There exists an integral A-eigendecomposition of 
<1>, i. e., 

(cp,1/J)== j(cp,y(t)1/J)dJJ.(t) for all cp, 1/JE<I>. (IV.2) 
R 

The semispectral measure B(o), which according to 
Proposition 12 is defined by this integral A-eigende
composition, is already up to isometry a (uniquely) de
termined spectral measure in g and hence unitarily 
equivalent to E(o), i. e., the spectral measure which is 
given by the spectral representation of A in g, i. e . , 

(cp, E(a)1/J) = j (cp, y(t)1/J) d JJ.(t) = j (1 ([) cp, I(t)1/J)tdJJ.(t) , 
a a 

(IV.3) 

where (·'·)t denotes the scalar product in q(t) (cf. Prop
osition 14). 

Recall that a symmetric operator A with the domain 
D(A) is essentially self-adjoint if the closure A in g is 
a self-adjoint operator. The most advantageous property 
of a symmetric operator which is essentially self-ad
joint is that it admits a ~nique self-adjoint extension in 
g , namely the closure A. In particular for phYSical 
applications it is very essential to have, for an obser
vable, i.e., an (unbounded) symmetric operator, a 
domain on which this operator is essentially self-adjoint 
(note that in many phYSical applications we obtain from 
physical considerations a priori only a symmetric 
operator for the mathematical representation of an 
observable). Otherwise one needs additional criteria in 
order to choose the correct, i.e., the physically im
portant, self-adjoint extension of the symmetric opera
tor provided self-adjoint extension of the operator 
exist. We shall come back to the question later when 
dealing with the case of nonrelativistic quantum 
mechanics. 

We conclude this section by extending the formalism 
described so far to operators in g that have <I> as their 
domain of definition and are e. s . a. on <I> but do not map 
<I> continuously into itself. 

In this case we shall assume that such an operator is 
at least a continuous map of <I> into a space ¥y for such 
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a o-neighborhood V in <I> that the canonical embedding 

;r,y - q is nuclear. 

This assumption seems to require some further expla
nation. We have started with the general assumption 
that <I> is a nuclear 1. c. space. 

This entails that the canonical injection 

1:<I>-g 
is a nuclear map. 1 is nuclear if there exists a circled 
convex o-neighborhoods in <I> such that 1(V) c F, where F 
is a bounded set in g for which g F (for the definition of 
the space g F we refer to Ref. 11, p. 97) is complete. 
Without loss of generality we can assume F=K, where 
K is the closed unit ball in g . Therefore, g F ==g. In 
addition the map 

4:;r,y - q must be nuclear 0 

Then for all circled convex o-neighborhood U with U c V 
the map 

cp u, vo~ :~ u - ~v - g is nuclear. 

These comments are intended to show that o-neighbor
hoods with the required property always exist. 

The transpose AX of A: <I> -¥y is continuous map from 
(¥y):::: <I>~o into <I> X . The generalized spectral decomposi
tion has to be performed in the triple of spaces. 

V. THE REPRESENTATION OF THE 
OPERATORS "'1ft) 

The aim of this section is, on one hand, to derive a 
representation of the operators y(t) in terms of eigen
functionals of the operator A and on the other hand to 
give a rough characterization of these eigenfunctionals 
by the fact that for fixed t E sp(A) all eigenfunctionals 
occurring in the representation of y(t) are contained in a 
certain subspace of <I> x • The results in this section have 
mostly already been obtained by Foia~. 10 However, 
Foiafl works with a direct decomposition of the mapping 
y into eigenoperators y(t) based on the use of vector
valued measures of bounded variation. 

Using the A-eigenintegral decomposition of Roberts 
which is based on the Garding-Maurin theorem we are 
able to rederive some results of Foiafl in a different 
manner and last but not least to work directly with the 
strong topology 6 (<I> x ,<I» on <J>x. However, we emphasize 
that in some parts we can follow the line of the proofs 
gi ven by Foia!3. 10 

Let AE L c(<I» be e.s. a. on <I> and let E(a), aEB, de
note the epectral measure originating from the spectral 
decomposition of the closed operator A. B denotes the 
lattice of Borel sets on the real line R. Throughout 
this section we shall assume <I> to be a separable nu
clear 1. c. space. As we know the fact that <I> is a 
metrizable nuclear space already entails the separabil
ity of <1>.13 

Now we want to derive a representation of the eigen-
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operators y(t) of A that fulfill the relation 

(ycpl?/J)=f(y(tht>I?/J)d/-t(t) (V.l) 
R 

in terms of the so-called eigenfunctionals of AX . 

Let hE q be a fixed vector and let q h be the closed 
subspace of q generated by all elements of the form 
E(al)h with ai E B. Let Ph denote the orthogonal projec
tion of q onto q n' It follows at once that Ph commutes 
with every E(a), aEB. 

Proposition 17: There exists a function cp~(t) E epx 
which is uniquely defined on R, /-t almost everywhere, 
such that 

(PhE(a)Icp,I1/!) = f (cp~(t)1 cp)(cp~(t)I?/J)d/-t(t) (V.2) 
a 

for any pair cp,?/J E ep and any a E B holds. 

Proof: First we observe that by Proposition 14 

(PhE(a)I cp,I1/!) = (E(a)Picp, I1/!) = f( (F;i¢>(t) I I(M) tdll(t) 
a ------. 

= f(p(t)(p/cp)(t) I?/J)dll(t) is valid. 
a 

In the usual way there is an isometric mapping from q h 

onto L!. Hence we ~et 

for all cp,?/J E ep and a E B . 

It follows that up to a Il-null set N(cp, ?/J) 

W(t)(p;i;NU) I?/J) =uPh<l! (t)uPh",(t), (V. 3) 

Let Po be a countable dense set in P. Then 

N= U N(cp,?/J) 
",."'E~o 

is again a /-t-null set and (V3) is valid for all Cp,?/J E epo 
and all t E R except tEN. 

In particular (V. 3) yields 

------. I uPh</J (t) I 2 = (P(t)(Picp)(t) I cp). 

We want to show that up </J (t) is a continuous linear form 
over ep. Now with the ai~ of the theorem of Beppo Levi 
we may derive the following inequality (cf. the proof 
Proposition 14). 

W(t)(p/¢){t) I cp) ~ {Py (cp)}2(E I AI I" (Phhl)(t)ll t) 2 

~{Py(cp)}2't I \ It I Ai Illhl(t)II~ = C(t){py(</.»}2, (V.4) 
1=1 i=1 

for all t E R but t E N( cp). Let Po be the countable dense 
set in ep defined above and set N=U</JE~oN(CP). Now we 
know from the proof of Proposition 14 that 

tllh l (t)II
2
t I < 00 for all tE R but tE N'. 

1=1 

Hence for all t E R, t <t NUN" we have 

------. 
W(t)(Picp)(t) I cp) '" c(t){Pv(cpW, 
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for every cp E epo which means that </.>- up '" (t) is contin
uous linear form over epo. This form can"continuously be 
extended to all cp ~ ep whence there exists an cp~(t) E epx 
for all !E R, tt NUN'. If we set now cp~(t) =0 for all 
tE NU NU N' we get 

<cp~(t)ICP)=UPh",(t), for all CPEep. 

Moreover, we have <cp~(t) I cp) E L! for every cp E ep. The 
unicity of cp~(t) is obtained by checking (V. 2) with all 
aEB. QED 

/"""'--.. 
Proposition 18: P(t)(Picp)(t) defines Il-almost every-

where a continuous positive mapping Yh(t) E L (ep ,epX). 

Proof: Yn (t) is a mapping since, up to a Il-null set N, 
the function P(t)(:P';;?fW) is uniquely defined. In order 
to prove the continuity of Yh(t) we observe that the strong 
topology f3(epx, ep) on epx is determined by the seminorms 

PB(cpX) =sup{I(cpxI cp)I, CPE B}, where BEB 

(8 is the class of all bounded sets in ep). Now we have, 
with 

~ ~ ~ 

cA(t) = 6 I AI I IIPnhl)(t)//; and u=~ I Al I, 
1=1 1=1 

I (yA(t)cp I ?/J) I ~U·Ch(t)oPY(</.»Py(?/J) for all cp, ?/JEep 
(V.5) 

and t E R, t tN. Since B as a bounded set can be ab
sorbed into the o-neighborhood V it follows at once 

The positiveness of yh(t) is obvious. QED 

We remark in paSSing that yh(t) is Il-almost every
where an eigenoperator of the operator A in question. 
Let now {hn} be a sequence of elements of q such that 
q =$:=1qn holds with each q n =qhn as the closed sub
space of fJ generated by all elements of the form 
E(ai)hn , aEB. We shall denote by Pn the orthogonal 
projection of q onto q n' Each P n commutes with every 
E(a), aEB. For the next proposition we shall need the 
following: 

Definition 8: (Ref. 11). Let E be a 1. c. space. We say 
that a sequence {xn} C E converges unconditionally to 
x E E it for each o-neighborhood U in E there exists a 
finite index set NuC N such that for every finite index 
set N with Nuc NC N 2mE ilxn EX +U holds. We say that 
the sequence {xJc E converges absolutely to XE E if it 
converges unconditionally to x and if for each continuous 
semi-norm p on E the series Ln E NP(Xn ) is convergent. 

Proposition 19: The sequence {Yn (tn is absolutely con
vergent y(t) for Il-almost all tE R, in the strong topo
logy of L (ep ;epX). Moreover, y(t)cp has the representation 

(V.6) 

Proof: We remark that the so-called strong topology 
in L (ep, epX) is given by the following family of 
seminorms: 
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where B, B' run through all bounded sets in <P. Now by 
(V5) we have at once 

With the aid of the theorem of Beppo Levi we get from 
.. ~ .. 
i~11 All [II(Phhl)(t)ll~dM(t)::s E I Ai I < 00 

that 

Hence 

Furthermore, we have 

whence by the theorem of Beppo Levi 

for all cp, 1/JE <P. 

Thus 

(E(a)cp, 1/J) = J (y(t)cp 11/J)dM(t) 
a 

Now, by standard arguments we can show that 

is a sesquilinear continuous form on <P X<P. Therefore 
we get for all CP,1/JE<P and tER, t<FN[M(N)=O] 

~(Yn(t)CP 11/J) =( y(t)cp 11/J) . 

Let NuC N be any finite index set. As before we can 
derive the inequality 

Let now 

be a o-neighborhood in L b(<P, <pX). 

Then we can choose an M > 0 that 

p) Alln E} ~(t)II~ < 2.1 U AB\B' 

holds, with U = ~7=11 All. For the remaining part 
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61 Ai I "0 II (Pnhi)(t)ll~ 
1=1 ntNu 

~e can find such a Nu that for every finite index set 
N~Nu 

M ~ 1 1 
"B I Ai I ?;) II(Pnhl)(t)II~ < 2 U .--
i=l n<FN Nn • AB • AB • 

holds, where AB , AB• fulfill the conditions BC AB V and 
B' cAB' V, respectively. Thus 

1(,EZi)N/n(t) - yet)) cp 11/J}1 ::s Pv(CP)Pv(1/J) ' AB\B' ' 
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for all CP,1/JE <Po and tE R, tt Nwith M(N) =0. However, 
by continuity this relation holds for all cp, 1/J E <P. Finally 
we get 

PB B'( L Yn(t)-y(t))<1. • nEDNu 

Obviously y(t)cp has the representation 

for all tE R, tt N with M(N) = O. QED 

Next we want to show that the elements cp~(t) (for fixed 
t) occurring in the representation of yet) are contained 
in a certain subspace of <p x • 

We shall need the following: 

Lemma: Let {kn}cg be a sequence converging to zero 
in g"-. Then there exists a subsequence {k n } such that 
ret) knp (t) converges to zero with respect to the strong 
topology in <p x for M-almost all t E R. 

Proof: We have 

j I UX(t)h(t) I CP) IdM(t)::s [(E(a)h,h))112 (!(y(t)CP I CP)dM(t)) 1/2, 

with hE g, cp E 1>, and a E B. Now since (E(a )kn, kn) is 
absolutely continuous with respect to M(a) by the Radon
Nikodym theorem there exists a function kn(t) such that 

(E(a)kn, kn) = J k~ (t)d M(t) 
a 

holds with aE B. This relation yields 

J I ( l' (t)kn (t) I CP) I d M(t) 
a 

Let now10 

an(tY, {i, y) ={t:1 (fX(t)kn(t) I CP) I ~ tY, 

Ikn(t)I::S{i, [(y(t)CPlcp)]1/2 ::s y}, 

where O!, {3, yare assumed to be rational numbers that 
fulfill the conditions {3, y ~ 0, (3y < r:t. Then we have 

r:t. M[an (O!,{3,y)]::S J I UX(t)kn(t) I CP) I dM(t) 
an(a,B,'Y) 

::s( J k~(t)dM(t)\1/2. (Jan (o<.B.t)(y(t)cp I CP)dM(t))1/2 
(1n(cx,8,,..) ) 
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~ {132 • M[O"n((Y , 13, y)]}l /2. {y2 • M[O"n(O' ,8, y)]}l /2 

= 13 • y. M[ 0" n ((Y ,8, y) J. 

However, this relation is fulfilled if and only if 
M[O"n(a,13,y)]=O. Since the set N/¢) of all tE R for 
which the inequality 

is not valid is the countable union of the sets an (0' ,13, y), 
it follows that M(Nn(¢)) = O. Let <f>o be a countable dense 
set in <l>. Then Nn=U4>E~oNn(¢) is again a set of M-mea
sure zero and (V. 7) can be extended to hold for all 
¢ E <l>. Then for any bounded set B in <l> we get 

(V.8) 

for all tE R but t<l= Nn, where PB,B(') is a continuous 
seminorm in the space L b(<l>, <l>X). We have to show that 

where N is independent of B. In order to do so we ob
serve PB,B(y(t))=sup{/<y(t)¢/CP)/; ¢EB, cpEB}. Now we 
have by Proposition 14 

< y(t)¢ / CP) 

= (I(t) ¢ / I(M) t 

I~l \~ i< ¢~ / ¢)<¢~ / CP)<h k (t) / hi (t) t' 

whence 

Since B is bounded we can absorb it into the o-neighbor
hood V determined by the seminorm Pv (')' Referring to 
the proof of Proposition 14, we obtain 

PB ,B (y(t)) ~ A~' u' C(t) < 00 for all tE R but tE N, 

where N is the Il-null set indicated in the proof of Prop
osition 14 and 

u='t/\/<oo. 
k=l 

Nis in fact independent of the set BEB in question. Now 
if we put 

~ '" 
N=UN 

n=1 n 

then we have Il(}n = 0 and the inequality (V. 8) is valid 
for all t E R but tEN. Let {kn } be a subsequence of 
{kn} such that P 

'Bilk W<oo. 
pol np 

From 
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Therefore, Iknp(t)I-O ifj-oo for t<l=N' with Il(N') =0. 
Up to the M-null set NU NU N' it follows 

PB (I'(t)kn (t)) - 0 if P - 00 
p 

which concludes the proof. QED 

Henceforth, we shall denote by <l>x(t) the closure of 
y(t)<l> with respect to the strong topology 13(<l>x, <l» in <l>x. 

Proposition 20: For hE g it follows r (t)it (t) E <l>x (t) for 
Il, almost all tE R. 

Proof 10: Let 

h = /] Ai E(ai )l¢i with O"j E B, ¢j E <l>. 
j 

We set h(t) =Z,iAiXa/t)¢i E <l>. Then it follows 

= ~A; (E(an ai)l¢i I 1¢) = ~ Aj f ana/y(t)¢j / ¢)dll(t) 

= f<y(t)h(t)/ ¢)dM(t). 
a 

From this relation we get P(t)h(t) = y(t)'Ii(t) for M, al
most all tE R, which means that P(t)h(t) E y(t)<f> for Il, 
almost all t E R. 

Let now {kn} be a sequence of elements indicated above 
which converges to an element hE g. Up to a Il-null set 
N if follows 

and 

]X (t)kn (t) E y(t)<l> for all n = 1, 2, .... 

Now if we apply the preceding lemma to the sequence 
{h - kJ we get a subsequence {kn } such that 
P(t)(r-!i;; )(t) - 0 in the strong tbpology in <f>" for all 
tER but t~ N' with Il(N') =0. Therefore we obtain 
I'(t)h(t) E <l>"(t) for all t E R but t E NU N' with Il(NU N') 

=0 QED 

Proposition 21: Let ¢~(t) be the function indicated in 
Proposition 17. Then for M, almost all tE R, ¢~(t) 
E<l>X(t). 

Prooflo: We denote by h(t) the image of h under the 
isomorphic mapping g h - L~. We set Zh ={tE R; h(t) 
=O}. 

Then for every fEgh it follows u/(t) =0 for tEZh\ 
Zh(f), where Zh{f) is a Il-null set. Let <l>o denote a 
countable dense set in <l' and set Z~=UI/>E~oZh(Ph¢)' It 
follows Il(Z~) =0 and 

for every ¢E <l> and tE Zh/Z~ whence ¢~(t)=0 for tE Z/ 
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Z~. On the other hand, we have 

(]X E(CT)h [l/J) = J (l"(t)h(t) [l/J)djJ.(t) = J h(t)up ,; (t)djJ.(t) , 
a a 

from which we derive l"(t)h(t)=h(t)cf>~(t), for all tE R, 
t f" N' with jJ.(N') = O. 

Now if cf>~(t) =0 we have already arrived at the conclu
sion. Let us consider those t E R with t Et N' U Z~ and 
tEt Zh' Then we have h(t)tfo and by Proposition 20 it fol
lows 

QED 

At the beginning of Sec. II we had introduced the so
called eigenforms of a self-adjoint operator A in q 
corresponding to value t in the spectrum of A to be 
those continuous antilinear forms cf>; E q,x that fulfil the 
condition 

<cf>~[Acf»=t(cf>~1 cf» for every cf>Eq,. 

Now let for a fixed t E sp(A) q,~ denote the space of all 
eigenforms of A corresponding to t. q,; is a closed 
linear subspace of q,x. Indeed, we observe that (cf>; I (A 
- t1)cf» =0 for every cf> E q,x. Since (A - t1)q, =M is a sub
set of q, we obtain q,; = Ml is orthogonal to M. Ml is a 
CT(q,x, q, )-closed subspace of q,. Since the strong topology 
in q,x is stronger than the weak topology CT(q,",q,) it 
follows that q,; is also a closed linear subspace of q,x 
with respect to the strong topology in q,x. 

Proposition 22: For /1., almost all t E R, it follows 
q,x(t)cq,~. 

Proof: Recall that q,X(t) was defined to be the closure 
of y(t)q, in q,x with respect to the strong topology in q,x. 
According to the remark following Definition 3 we have 
y(t)q, c q,;. Since q,; is closed we see immediately that 
q,X(t) c q,;. QED 

Corollary: The continuous antilinear forms cf>~(t), 
k = 1, 2, , •• originating from the representation of the 
mappings y(t) are jJ.-almost everywhere elements of 
q,;. Moreover for every hE q we have l"(t)h(t) E q,~ for 
/1., almost all t E R. Indeed, by PropOSition 21, we have, 
/1. almost everywhere, cf>~(t)Eq,x(t)Cq,~. Furthermore, 
by Proposition 20 it follows l"(t)h(t) E q,X(t) c q,~, /1. al
most everywhere. 

Proposition 23: q,;n IXC; *{O} if and only if t is an 
eigenvalue of A in q, In this case q,~ n I"q is the sub
space of I"g which is generated by the l"-image of all 
eigenvectors of A in g . 

Proof: Let hE g be an eigenvector of A in g belonging 
to the eigenvalue t. Then for every cf> E q, we get 

(Ixh,Acf» = (h,IAcf» = (Ah, cf» =t(h, cf» = t(Ixh, cf». 

Thus l"h E q,~ and we have shown that q,~ contains the 
image of all eigenvectors of A in g for an eigenvalue t. 
On the other hand, if q,~n IXC; *{OJ it follows that t is an 
eigenvalue of A and every element of q,; n IXC; is an 
eigenvector of A. Indeed, for 0 *hx E q,; n IXC; we have 
(hX ,Acf» = t(hX, cf» for every cf> E q,. Since A is self-ad-
joint and q, is dense in g we have AXhx = thx. QED 

Corollary: y(t)cf>n IXC; *{O} if and only if t is an eigen
value of A in g. Indeed, for if y(t)epn IXC; *{O} it follows 
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q,~ n I"g *{O} and hence by the preceding propOSition tis 
an eigenvalue of A in q. Conversely, if E({t}) *0, we get 
jJ.({t})*O. Thus for every l/JEq, we obtain 

and therefore 

y(t)q, n IXC; =l"E({t})Iq, n I'q *{O}. 

In addition we emphasize that it is unknown whether 
q,x(t) =q,~, jJ. almost everywhere, holds. This fact makes 
it difficult to set up a simple calculus for the general
ized eigenvectors of a self-adjoint operator A in q. By 
solving the eigenvalue equation AXcf>~= tcf>; in q,x one 
might find solutions which have nothing in common with 
the generalized spectral decomposition within the 
Rigged Hilbert space q, c g c q,x. Further conditions are 
needed in order to decide whether a solution ep; belongs 
to the space q,x(t) for /1., almost all tE R. We emphasize 
that we always restrict our attention to the spectrum of 
the operator A in 9 only. The spectrum of the operator 
AX in q,x can be larger than the Hilbert space spectrum 
of A. 

At the end of this section we shall investigate some
what more closely the relationship between the form 
I"E(CT)Iep and y(t)cf> for ep E q,. Before entering into de
tails, a few preparatory remarks are needed. 

First we observe that the canonical embedding I of q, 
into g and its conjugate l": g - q,x can be decomposed in 
the following way: 

.... _.i: _I':",. ... X_ ... X 
"'Iy "'Yi '::J IX "'y I~ '" • 

Note that ¥~ and (q,X)yO (cf. Ref. 11, p. 97, and Ref. 12, 
p. 277) are normisomorphic. 

From the proof of Proposition 14 it is obvious that the 
mapping I: q, -q(t) is given by l(t)· Iy , with I(t): 
¥y-g. Since the norm-topology and the strong topology 
on (q,X)yO coincide, it follows that I~ is a continuous map 
with respect to the norm-topology in (q,x)yO and t3(q,x, q,) 
on q,x. We set 

y(t) =I(t)X • I(t). 

Let then q,~ (t) and q,X(t) denote the closure of y(t)¥y 
(with respect to the norm in q,;) and the closure of y(t)q, 
[with respect to {:3(q,",q,)], respectively. 

Proposition 24: Let to E sp(A). Then there exist se
quences {t~} and {t':J, with t~ t to and t'~ + to such that for 
each cf> E q, 

converges to y(to)cf> for n - 00 with respect to {:3(q,", q,) in 
q,x. 

Proof: Foias1o has shown that there exist sequences 
{t':J such that 

I E([t~, t;:])Iepv 
jJ.([t~, t'~J) 
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converges to f(to)cf>v with respect to the norm in (4.>X)vo. 
Now, since I~: (cJ>X)vo - cJ>x is a continuous map we 
arrive at the conclusion. 
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Rigged Hilbert space formalism as an extended 
mathematical formalism for quantum systems. II. 
Transformation theory in non relativistic quantum 
mechanics 

O. Melsheimer 

lnstitut fiir Theoretische Physik, Universitiit Marburg, Marburg, Germany 
(Received 6 September 1972) 

Results of a previous paper are used to obtain a rigorous mathematical formulation of the 
transformation theory of nonrelativistic quantum mechanics within the framework of rigged Hilbert 
spaces. 

I. INTRODUCTION 
In his original form the rigged Hilbert space formal

isms was invented to provide a framework for establish
ing a generalized eigenfunction decomposition for self
adjoint operators A in a complex Hilbert space q. This 
essentially offers the possibility to treat both the dis
crete and the continuous spectrum of as. a. operator 
in g on equal footing. The general idea of this formal
ism is to have the generalized eigenfunctions as ele
ments of an enlarged space <l> x:J q. To give <l> x a mathe
mati cal meaning one establishes <l> x as the antidual space 
of a locally convex space <l> c g. 

Constructively one can set up a generalized spectral 
decomposition of a s. a. operator A in g within the trip
let structure <l> cg c <l> x provided the operator A is a 
continuous mapping of <l> into itself and the embedding 
of <l> into g is nuclear. 

For application of the rigged Hilbert space formalism 
to the eigenfunction decomposition of a given s. a. 
operator one has to find such a triplet with the proper
ties indicated above. However, in order to be able to 
cope with the interrelationships of various observables 
in a certain quantum mechanical theory Roberts, 1 

Bohm,2 and Antoine3 investigated the problem whether 
there is a common triplet for all operators which be
long to the class of observables of the quantum system 
in question. Roberts made the assumption that this class 
of observables is an algebra. Then under a special 
assumption on this algebra W of unbounded operators 
in q, namely, that W contains an element whose inverse 
exists and is an element of the trace class he found a 
very elegant solution for such a triplet. In a previous 
paper4 which henceforth will be referred to as I, we 
have reinvestigated the solution of Roberts. Together 
with other results of paper I concerning the topological 
aspects of the generalized spectral decompOSition we 
shall give in the present paper a rigorous treatment of 
the so-called transformation theory in nonrelativistic 
quantum mechanics. Although this problem seems at 
present to be of no direct physical relevance it still 
seems of interest being an as yet unsolved problem 
within the Hilbert space formalism of quantum mechan
ics. For our purpose we identify the Roberts algebra 
~ with the enveloping algebra n(A) of a unitary repre
sentation of the central extension of the Galilei group 
which, however, certainly does not represent the full 
set of observables of nonrelativistic quantum mechanics. 

On the basis of well-known properties of n(A) we 
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derive a very handy representation of the elements of <l>x 
which then in fact allows us to set up the desired trans
formation formulas. It turns out for example, that the 
mapping of the functions (cpx(t) I CP) (A-representation) 
to the numbers (IV(U) I cp) (B-representation) is in general 
a distribution. 

II. THE BASIC DOMAIN <I> OF 
NONRELATIVISTIC QUANTUM MECHANICS 

We shall assume that the algebra of observables of 
nonrelativistic quantum mechanics of one particle can 
be identified with the enveloping algebra of the infinites
imal generators of an irreducible unitary representa
tion of the central extension of the Galilei group for 
mass m and spin s. 

A vector h Egis called an infinitely differentiable 
vector for the strongly continuous unitary representa
tion W (G) of the Lie group G if the map g-U(g) h be
longs to the class C"(G). The set of all such vectors 
will be denoted by C, C is called the domain of all in
finitely differentiable vectors of the representation 
~(G). 

Let ~ denote the Lie algebra of the Lie group G. If 
A E ~ and if a(s) is the one -parameter subgroup of G 
that is generated by A then ALI is defined as follows: 

A"h = lim S·I{U[exp(sA) -1 l}h for every hE C. 
U 8-0 

C is invariant under all AU with A E '.:f. Now the question 
arises whether C is dense in g. This question will be 
answered positively by the following proposition which 
is due to Garding. 5 

Proposition 1: Let r be a natural number (finite or 
infinite) and let gr be the set of all elements of g of the 
form 

h(cp)=!GCP(g)U(g)hdJ.1.(g) with cpEC~(G), 

h E g, d J.1.(g) as the left invariant measure on G, and C~ 
the class of all functions of Cr with compact supports. 
Then gr is dense in g for all r, gr+l cD(AU) and AUqr+l 
cqr for everyone-parameter subgroup {a\s)}c G. 
Since q ~ c C we have at once that C is dense in q. The 
set goO is called the Gar ding domain of the representa
tion W (G). It is well known that the Lie algebra ~ of a 
Lie group G can be realized by a set of differential ~ 
operators on C~(G). This yields a representation i of 
~. For each one-parameter subgroup x(t) of G one has 

(Xj)(g) = lim f'1[f(x(t)g'j - f(g)] with fE C-(G). 
t-O 

Copyright © 1974 American Institute of Physics 917 
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The operator X so defined is right-invariant, i. e. , 

(R"X)(.n = (XR.)(.n with Ryf(g) = f{gy), for 9 E G. 

Then any pair (X, Y) of such operators can be associated 
with a commutator [X, Y) defined as follows: 

[X, Y) f(g) = x[Yf]- y[Xf). 

It is immediate that [X, Y] is also a differential opera
tor, i. e., 

[X, Y]U·cp)=cp([X, Yl!) +f{[X, Y]cp) for f,cpEC~(G). 

For a basis Xu ... , Xn of ~ one has 

[XUXk)='t C~kXv, 
11=1 

Now one can define the right-invariant enveloping alge
bra of the Lie group G. This algebra is the associative 
algebra A which is generated by all operators of XI E~. 
The elements of A are polynomials in the operators 
XI E~. Furthermore, we have 

XiXk=XkXI + t C~kXv, 
&/=1 

By definition, a representation 1T of the Lie algebra 
is any homomorphism nof ~ into the set of Hermitian 
operators in a Hilbert space g with D as a dense set 
in g that has the following properties: 

n([x, Y])h=[n(X)n(y)-n(y)n(X»)h for every hED, 

n(X)DcD for every XE~. 

We summarize the results obtained so far in the 
following: 

Proposition 2: Every strongly continuous unitary rep
resentation of a Lie group G on a Hilbert space q in
duces a representation of the Lie algebra ~ on g ~. This 
representation is given by 

n(X)=dl/(X) for XE~, 

where d(j(X) is defined by the. relation 

dl/(X) h(cp) = (j(Xcp )h = -lim t -l[jj(X(t») -1)h(cp) 
toO 

with 

U(cp)h= k cp(g)U(g)hdjJ.(g) =h(cp), cpEC~(G) and hEg. 

Each d(j(X) is skew-symmetric. 

Thus (j(G) induces the so-called differential represen
tation X-d(j(X), ~E ~ on the Gar ding domain g~. This 
representation can be extended to a representation of 
the right-invariant enveloping algebra A on g ... 

Now n(A) is an algebra that has all the properties 
indicated in I, Sec. 11.6 

Propos ition 3: The initial topology T in on q .. = ~ with 
respect to all elements of n(A) is given by the following 
family of seminorms: 

</>_II~n</>lI, n=O, 1, 2, ... , </>E~, 

with 

~ = L;~=ln(Xk)2 + 1. 

Proof: Since every ~v (v = 0,1, ... ) belongs to n(A) 
we see that the topology T ~ defined by the seminorms 
</>_II~n</>11 is coarser than the topology Tin' In order to 
prove that T ~ is also finer than T In we have to show that 

J. Math. Phys., Vol. 15, No.7, July 1974 

918 

for any AE n(A) there exists a ~nA such that 

IIA</>II~CAII~n"'</>1I for every </>E~ holds. 

However, this relation has explicitly been proved by 
Nelson. 6 QED 

Quite often ~ is called the Nelson operator for n(A). 

Corollary 1: The initial topology Tin on ~ with respect 
to nUl) is equivalent to the initial topology with respect 
to the algebra A ~ which is generated by the elements 
1 and~. 

The proof is immediate by repeating all the arguments 
that have been employed for the case of the original 
algebra !t. 

Corollary 2: The space ~x of all continuous antilinear 
forms over ~ consists of all elements of the form 

operating on </> E ~ as (~XI </» = ~:!f) (~"'u' ~"'u </», 

where u( </>X) is finite and .9 "'u E g . 
Again, the proof of this assertion is achieved by 

following the same lines as in the proof of I, Proposi
tion 3. 

Now we come to the point mentioned at the beginning 
of this section. We shall refrain here from explaining 
all the details of the so called central extension of the 
Galilei group. In order to fix the notation let us define 
the Galilei group G to be the group of all transforma
tions of space -time (R 3

, T) of the form g = (D, 1/, v, u) 
defined on (R 3

, T) as x' =Dx +vt +u, t' =t +1/ and obey
ing the multiplication law 

g' g' =(D ·D',1/ +1/', u +Du', v +Dv'). 

Here D denotes an element of the rotation group SO(3), 
u is a space translation, v is a pure Galilei transforma
tion, and 1/ denotes the time translation. Then the 
central extension G of the Galilei group is the set of all 
elements g=(e,D, 1/, v, u) = (e,g) satisfying the multi
plication law 

g. g' =(e +e' +vDu' +1/'(v2/2),g' g'). 

Let us adopt the following notations: 

J
I 

(i = 1 ,2,3,) are the generators of the rotation group 
SO(3), 
QI (i=1,2,3) are the generators of the pure Galilei 
transformation, 
PI (i=1,2,3) are the generators of the space transla
tion, 
H is the generator of the time translation, 
M is the generator of the central extension. 

Thereby we get the follOwing Lie algebra of the group G: 

[JI ,JI] = elJk Jk;[JI' QJ] = elikQk;[Jp PJ] 

=eIJ~k; (i,j,k=1,2,3); 

[JoH]=O; [J/tM]=O; [QI,Qj)=O; [Q/>Pj]=/iIjM; 

[QI,Hl=PI; [Qj>Ml=O; [p/,Pj]=O; [Pj,H]=O; 

[PI,M]=O; [H,Ml=o; (i,j=1,2,3). 

The unitary irreducible representations of G can be 
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classified according to the eigenvalues of the following 
three Casimir operators: 

M, MH -p2/2, (MJ _QXP)2=S2. 

Vector representations for different values of MH - p 2/2 
become equivalent when considered as ray representa
tions of the Galilei group G. Since we are interested in 
ray representations of the Galilei group only we have 
to consider only the representations of G with values 
of M(- 00 <M <00) and S2=28 +1 (S=O,t, 1, ... ). For 
aA detailed explanation of the representation theory of 
G we refer to Refs. 7 and 8. In the so-called spin rep
resentation of G the infinitesimal generators indicated 
above have the following form: Up to a factor the opera
tors Q I can be identified with the three components of 
the position operator, Pi with three components of the 
momentum operator, and J with the total angular mo
mentum S + L, where Sand L denote the spin and the 
angular momentum, respectively. Hand M are the 
energy and the mass of the free particle, respectively. 

The Hilbert spacAe ~-[m,sl for a unitary irreducible 
representation of G characterized by the spin 8 and the 
mass m can be written as the following tensor product 

where g is the Hilbert space that belongs to the irreduc
ible representation of the operators Pi> Q i> i = 1, 2, 3 
and R2

s+1 is the representation space for 50(3) for the 
spin 8. 

In what follows we restrict ourselves to the case 8 = O. 
Then, as is well-known, the representation in ~[m,OI is 
unitarily equivalent to L2( - 00,00) where the operators 
Pi' Q I' L, and H are given by - ia lax l , xi> ixiX a lax, 
and a2jax2, respectively. 

Now in this case the enveloping algebra of the infini
tesimal generators in the representation [m, 01 is equal 
to the enveloping algebra of the operators -iajaxl , 

Xi (i=1,2,3). 

The operator 

3 

H = L; P~ + Q~ + 1 
1=1 t 1 

has a purely discrete spectrum with finite multiplicity. 
The spectrum of H is equal to the set N. Therefore the 
operator (H2)-1 is a nuclear operator since 

.. 1 
L;2" <00 . 
• =1 n 

The operator H is strictly positive, which leads to the 
conclusion: The topology in <J> is generated by the posi
tive-definite Hermitian forms 

{<1>, <1>} - (Hk<1>, Hk<1» = (<1> I <1»k' 

<J> becomes a pre-Hilbert space with respect to each 
such form. The completion g k of such a space is 
achieved by taking the closure of the operator Hk in g. 

For this case we are able to sharpen the result indi
cated in Corollary 2 of Proposition 3. Since each ele
ment <1>x of <J>x fulfills the relation 

it follows that <1>x is a continuous form over the Hilbert 
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space g k' Therefore <1>x can be represented by an ele
ment h which is in the domain of definition of the opera
tor Hit. We have 

<<1>X!1»= (Hlth, H It1» for all1>E<J>. 

Hence the element <1>x can be represented by 

<1> X H2k c h with hE D(HIt). 

Furthermore, we emphasize that the spectrum of 

H=t~+Q~+l 
1=1 

can be determined completely without referring to any 
special representation of the operators PI> Q I' i 
= 1, 2, 3. 9 The assumptions which have to be made are 
the commutation relations of the operators PI' Q/ and 
the essential self-adjointness of the operator H on a 
domain 4> c g which is a common invariant domain of 
definition for the operators Pi> QI' 

According to what has been explained in this section 
the last condition can always be fulfilled. The essential 
self-adjointness of H on the Garding domain has been 
shown in Ref. 10. We use again the Nelson method6 

quoted above in shOwing that every eigenvector <1>. of H 
belongs to the common invariant domain of all operators 
ofA(PpQi). Nelson has shown that, for every 
B EA(P i, Q j) there exists a power of H such that for all 
hEg we have 

IIBhl1 ~ kllH"'hli. 

For if h = <1>. we get for any B EA(P I , Q/) 

IIB<1>.11 ~ kllH"'<1>. I! = k~I!<1>. I!, 

for all n E N. This relation shows that all eigenvectors 
of H belong to the maximal invariant domain of defini
tion for all B EA, i. e. , 

4>= nAD(B). 
BE 

Now the maximal invariant domain D CL2(_ 00, 00) for the 
operators xI> -ialaxl> i =1, 2, 3, consists of all func,;, 
tions from C" with the property 

xk<1> (m )(x) E L 2( _ 00, 00), 

where we have used the abbreviations k = (ku k 2 , k3)' 

The initial topology T i. on D is given by the following 
family of seminorms: 

1> - I!(± i)x!tl1>(m1) + ••. + (± i)x!t. <1>("")11. 

Let us endow now the space D with a topology that is 
determined by the following family of seminorms: 

P k,m(<1» = <J ~k <1> (m)(x) <1> (m)(x) dx)l/2. 

Then D equipped with this topology is homeomorphic to 
the space S.l 

III. TRANSFORMATION THEORY 
" In this section we shall attempt to use the formalism 
of a rigged Hilbert space to provide a tool for tackling 
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the following problems pertaining to the usual Hilbert 
space formalism of quantum mechanics: Choice of a 
representation, transformation of one representation 
into another, representation of operators in a given 
representation etc. First, we shall sketch the problems. 
Let A be an observable (s. a. operator) in g with a pure 
discrete spectrum. Then the eigenvectors h. of A form 
a complete orthonormal system in g. 

Using this fact, by the applicationf-{(hl>f)} one has 
an isometric mapping from g onto l2 ~ l~. l~ is called 
the A-representation of g. 

A is diagonal in this representation 

A(h., f) = (h.,Af) for f E D(A). 

Obviously this procedure fails in the presence of a 
continuous part in the spectrum of A. It is essentially 
this problem which can be very easily settled within 
the framework of a rigged Hilbert space. For the case 
of nonrelativistic quantum mechanics we shall use the 
triplet <I> C g C <I> x described in Sec. II. Let A E L C( <I> ) 
(cf. I, Sec. IV) be an operator which is essentially 
self-adjoint on <I>. 

For the sake of simplicity we shall assume A to 
possess a simple spectrum. Then according to I, Prop
osition 18 the existence of the eigenforms cp'(t) E <I>'(t) 
implies the existence of an isometric mapping 

cp - (cpX(t) I CP) for all cp E <I> , 

with (cpX(t) I cp) EL~(sp(A». cpX(t) being an eigenfunc
tional of A, J.L almost everywhere, entails 

A (CPX(t) I cp) = (1)X(t) IA CP) = t(CP'(t) I CP). 

Note that this method is confined to the submanifold <I> ! 
For an operator A with spectrum of multiplicity n we 
have 

Now we come to the problem of transforming one such 
representation (according to A) into a representation 
corresponding to another operator BEL C( <I> ). In the same 
context we shall be concerned with the representation of 
an operator DELC(<I» within the given A-representation. 
Both problems are settled provided we are able to estab
lish relations of the form 

(</JX(u) I CP) = i.P(A)k(u, t)(cbX(t) I CP)dp.(t) 

and 

(DXcpX(t') I CP) = f D(t' ,t) (CP'(t) I CP) d p.(t), 
81>(A) 

where we again assume A to possess a simple spectrum. 

By these relations we are led to inquire about the 
possibility of establishing a general integral decomposi
tion of certain elements of <I>x in the form 

'V(u) = fsp(A)K(u, t) cpx(t)dJ.L(t) 

and 

DxcpX(t') = f A D(t', t) cp'(t) dp.(t). 
sp( ) 

In what follows we shall investigate the possibility of 
decomposing the whole of <I>x with respect to the mea
sure p. related to the direct Hilbert space decompositio~ 
with respect to a given operator A E L C(<I». This prob-
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lem has already been investigated in a different context 
by Foia§. 11 We recall that in this case <I> is a nuclear 
Frechet space. Now we shall give the formal 
decomposition 

cpx = f A CPX(t)dp.(t) for cpx E <I> X 
81>( ) 

a precise mathematical meaning. Within this context we 
shall follow Bourbaki. 12 

Let J.L be a positive Borel measure on R. For every 
function </J(t) with values in a 1. c. space F we denote by 
(z', </J) the numerical function z' 0 </J over R; z' E F'. We 
shall say that </J has numerically the property P if (z', </J) 

has this property for every z' E F. According to this 
general definition we shall say that a function </J(t) E> F is 
numerically J.L-integrable if (z', </J) is p.-integrable for 
every z' E F'. We emphasize that according to this def
inition the integrability depends essentially on the dual 
pair (F, F'). Any topology compatible with the duality of 
(F, F') leads to the integrability of </J if </J is integrable 
for the given topology in F. If </J is numerically J.L
integrable then the map 

z' - f (z', </J(t» dp.(t) 

is a linear form over F', i. e., an element of F'*. 

Definition 1: f<J;(t)d J.L(t) is called the integral of </J with 
respect to J.L where N(t)dJ.L(t) being an element of the 
algebraic dual space F'* of F' is defined by 

(z', f IP(t) d p.(t)) = f (z', </J(t» d p.(t) 

for every z' E F'. 

Now we shall investigate functions </JX(t) over R with 
values in <I> x. We are mainly interested in the problem 
under what conditions the integral of a function </J'(t) is 
again an element of <I>x. For that purpose let us consider 
those 1. c. spaces which posses the so-called property 
GDF ("du graphe denombrablemente ferme"). 

GDF: Let u be a linear map of the 1. c. space F into 
a Banach space B. Then if the limit of any convergent 
sequence in the graph rCFxB also belongs to r it 
follows that u is continuous. 

We note that every Frechet space has the property 
GDF.13 For 1. c. spaces that have the property GDF the 
follOwing theorem is valid. 

Gel'fand-Dunford: Let F be an 1. c. Hausdorff space 
which has the property GDF and let F' be the dual space 
F endowed with the weak topology (J(F', F). Then for each 
each function </J(t) over R with values in F' which is nu
merically integrable the integral !<P(t)dp.(t) belongs to 
F,.12 

Let now A be an element of L C(<I» which is an e. s. a. 
operator on <I> , i. e., induces a unique A -eigenintegral 
decomposition of <I>. 

As in I, Sec. V, we define <I>'(t) to be the t(<I>x,<I»
closure of y(t)<I>, where y(t) are the eigenoperators be
longing to the integral A-eigendecomposition of <I> 
(cf. I, Sec. IV). 

Definition 2: <I>x is said to have a unique p.-integral 
decompOSition if every element cpxE<I>x can be repre
sented in the form 
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with lJi"(t) E;: Il> X(t) p.-almost everywhere a'ld lJix(t) is unique 
up to a p.-null set. In what follows we shall investigate 
whether this definition is useful in the case of the non
relativistic quantum mechanical rigged Hilbert space. 

Recall that in this case all elements of Il> x are of the 
form 

according to Corollary 2 of Proposition 3 or even of the 
form <px=H"oh (d. Sec. I). 

Proposition 4: For every operator A E C(<I» being 
e. s. a. on <I> and strongly commuting with H there is a 
unique p.-integral decomposition of <I>X. 

Proof: We define A and H to commute strongly if all 
spectral operators of H and A commute with each other. 

Now let A be such an operator and let 

be a direct integral decomposition of 0 which originates 
from the spectral decomposition of A. Then for any 
<pxE <I> X we have 

By I, Proposition 20 if follows r(t)j(t) E <I>X(t). We have 
to show that under the condition of strong commutativity 
of A and H, H"x map Il>X(t) into itself. For that purpose 
we shall show that H" and y(t) satisfying the following 
relation H"Xy(t)<p =y(t)H"<p for all <p E <I> and Il-almost 
all t E R. This relation means that H nx maps y(t)<I> into 
itself. But then (y(t)<I»s = cI>x(t) being a closed subspace 
of the complete space cI>~ is mapped continuously into 
itself by H"x. 

Now the strong commutativity entails in particular 
[H n, E(oo) 1 = 0 for all a E 13 and n E N, where E(oo) are the 
spectral operators of A. Therefore we obtain 

(H "E(oo)I<p,!>p) = (E(oo)H"I<p, ll/J) = (E(oo)lH"<p,!?p) 

= J (y(t)H"<p, >jJ)dp.(t) = (E(oo)I<p,H"ll/J) = (E(oo)I<p, IH">jJ) 
o 

= J (y(t)<p IHnifJ) dll(t) = J (H"Xy(t)<P I If!) dll(t). 
o 0 

Since these equations hold for every OOE13 (class of 
Borel sets on R), it follows that 

(y(t)H"<p I If!) = (H nXy(t)<p I >jJ) 

for all <p, 'f! E cI> and t E R but t E N(<p, If!) with Il(N(<P, If!)) 
=0. 

Using the separability of <I> , we conclude by the usual 
reasoning that y(t)H" =H"xy(t) holds, p. almost every
where. Hence we have obtained a representation of any 
<p x E <I> x in the form 

Il almost everywhere. According to Definition 1 this 
integral is well defined. Now we shall prove that this 
integral decompOSition of <p x is unique. To this end, let 

J. Math. Phys., Vol. 15, No.7, July 1974 

921 

cpX(t) E Il>x be another function for which we have 

<p x= J cpX(t)dll(t) 

and cp"(t) is an eigenfunctional of AX, p. almost every
where. Then h"(t) = lJiX(t) - cpX(t) is, p. almost everywhere, 
an eigenform of AX and fulfills the relation 
f(h"(t) I <P)dll(t) =0 for all <PEIl>. 

Because of AcI> ell> we have 

0= J (h"(t) IA<p) dll(t) = J t(hx(t} I <P) dll(t) , <p E cI>. 

Now let us consider the following expressionsll : 

J[(t +i)/(t -i)lkhx(t)dp.(t)=h~. 

Since (P(t) = [(t + i}/(t - i)]k is a bounded function, we 
conclude that 

J IP(t)(hx(t) I <P) dll(t) 

does exist for all <p Ell>. Therefore, by the theorem of 
Gel'fand-Dunford it follows that h;Ell>x. We shall show 
that all h~ are equal to zero. We already have h~=O. 
Let then k >0. If we set 'f!~=(A +il)k<p and Xk=(A -il)k<p, 
it follows (note that 'h, Xk Ell» that 

(hk(t) IlJik) = (t - i)k (hX(t) I <P) = [(t - i)/(t + i)]k (hx(t) I >jJ~ 
and therefore 

(h~ lifJk) = f[(t + i)/(t - i)]k (hx(t) IlJik) d Il(t) 

= J (hx(t) lifJk) d Il(t) = O. 

From this relation we derive 

(h~l(A +il)k<p)=O for all <PEIl>. 

For the moment we take it for granted that A x does not 
have the eigenvalues ± i in cI> x whence we conclude h; = 0 
for all k = 1, 2, ... . The same reasoning applies to 
k=-l, -2, .... Now we choose a fixed element <PEIl>. 
Then let us consider the measure 

v(oo) = Ju(O) (hx(t) I <P)dll(t) on {;\. I;\. I = I}, 

with u(t) = (t +i)/(t - i). We have 

o=(h~I<p)=J,{ ;\.-kdv(;\'), k=O, ±l, ±2, .... 
),1I),I=l} 

Since the trigonometric polynomials 6Ck exp(ikB) are 
dense in C([0,21T]) we arrive at the conclusion v=O. 
This means that (h x(t) I <P) = 0 up to a Il-null set N( cf». 
Let now again <I> 0 be a countable dense set in cI>. Then 
for all cf> E cI> 0 and all t E! N = U N( <P), it follows that 

4>E4> 
(h x(t) I <P) = 0 whence by continuitY arguments we obtain 
h'(t) = 0, Il almost everywhere. To conclude the proof, 
we shall show that A x cannot have the eigenvalues ± i in 
cI>x. As it has been shown at the end of Sec. II all ele
ments of <I>x are of the form <p x =H2m oh with hE D(Hm). 
Now assume that a relation of the form (note that 
[Hm,A]=OoncI» 

(A xI'1Imh I Hmcf» = (nmh,AHm<p) = (h,AH2m<p) = i(h,H2m<p) 

would hold for all <p E cI>. Since all eigenvectors <Pk of 
H are contained in cI>, we would have k2m(h,A<Pk) 
= ik2m(h, <pk) or a~(h, <Pk) = (h,A <Pk) = i(h, cf>k) for all k = 1, 
2, ... , where a k are real eigenvalues of A. Since 
{<p k' k = 1 , 2, ... } is dense in q, we conclude h = 0 which 
completes the proof. QED 
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In the following proposition we shall essentially show 
that.p'is separable with respect to any topology com
patible with the duality of (cf>x, cf». In a quite formal 
sense this proposition will also provide an answer to the 
questioIiwhether there exists an integral decomposition 
of cf> x with respect to any operator A being an element of 
LC(cf»ande.s.a.oncf>. 

Proposition 5 (c. f. Ref. 11): Let 

3 

H =.0 P~ + Q~ + 1 
i=l t t 

and let CPn denote the eigenvectors of H. Then {YCPn' 
n E N} is dense in cf>x with respect to any topology com
patible with the duality of (cf> X, cf> ). We have cf> x = 
~n (cpx I CPn)YCPn for every cpx E cf>X. 

Proof: We know from the last proposition that H in
duces a unique integral decomposition of cf>x. Hence 
every cpx E cf>x, in particular, every eigenform cp~, with 
t' real (we know already that H X cannot have any com
plex eigenvalue in cpX) of H can be represented in the 
form 

cP;,= f cP;,(t)dJ.l.(t) with cp;,(t) E cf>X(t). 

Hence it follows that 

t( cP;, I CP) = (Hxcp;.1 cp) = (cp;,1 H CP) 

= f (Hxcp;,(t) I CP)dJ.l.(t) = f t(CP;,(t) I CP)dJ.l.(t) for all cP E cf>. 

This relation yields f(t' -t) CP;,(t)dJ.l.(t)=O. Because of 
the uniqueness of cp~.(t) it follows (t' -t) cp;,(t) =0, J.l. 
almost everywhere. We obtain cP;, (t) = 0 except for t = t', 
whence 

Since jJ. is a discrete measure, we conclude that this t 
is a discrete eigenvalue of H. This fact entails that cf>~n 
=cf>x(tn) (cf. I, Sec. V) for all discrete eigenvalues of H. 
Then by I, Proposition 23 we obtain that I"q n cf> x(tn) is 
equal to FP t'/;, where P t.r;; is the whole eigenspace for 
the eigenvalue tn' Furthermore, by the discreteness of 
J.l. we conclude that each element cpx E cf> x is fo the form 
cpx = ~ncpX(tn) J.l.({tn}), where this series converges in the 
weak topology a( cf> " cf> ). 

Now since r is an injective map there exists for each 
n a unique element h:x E Pt.r;; such that cpx(tn) = Ph:x 
holds. However, Ptng possess at most finitely many 
linear independent elements, say h~i; j=l, 2, ... , m 
whence 

q,x_~( q,x ) hn - L. hn ,hni hni • 
i 

Therefore, we have 

cpx = ~ (h: " hni) rh~j J.l.( {tnt). 
noJ 

Furthermore, we know that all eigenvectors of Hare 
contained in cf> whence we have hni = I CPni' 

Thus cpx is of the form 

cP x = 6. (h: " hni)!' 0 ICPni J.l.({tn}) = ). (cpx, CPni)Y CPni' 
n" :rt 

This leads to the conclusion that the set {YCP~i' n, j EN} 
is dense in cf> x in the weak topology a( cf> X, cf» and hen~e in 
any topology compatible with the duality of (cf> X, cf». QED 

Corollary 1: cf>~ being a complete nuclear space, is 
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separable (Note that cf>; is not metrizable!). F or the 
proof of this assertion we remark that the strong topol
ogy is compatible with the duality of (cf>x,cf». 

Then the assertion follows by I, Proposition 6. By 
definition14 a sequence {Xi} in a topological vector space 
E is called a basis in E if for every X E E there exists 
a unique sequence {a i } of complex numbers such that 

X= lim ); OI i XI 
n"' oo ~ 

holds with respect to the topology of E. Then X - a i de
fines linear functionals over E. A sequence {x;} in a 
topological vector space E is called a Schauder basis 
if {Xi} is a basis and if the coefficient functionals fp 

f/(x) = a I are continuous linear functionals on E. We 
shall make use of these definitions by assuming the 
coefficient functionals fi either being linear or anti linear 
continuous functionals on the space E in question. These 
definitions enable us to state the following: 

Corollary 2: Let {CPn} denote the set of eigenvectors 
of the operator H. Then we have (I) {CPn} is a Schauder 
basis in cf>; (II) {YCPn} is a Schauder basis in cf>;; (In) For 
every cpxEcf>X, {(cpxl CPn)YCPn} is absolutely convergent to 
cpx with respect to fJ"cf>x, cf». 

Proof: (I) By the completeness of the system {CPn} in 
the Hilbert space g, for each cP E cf> we have the unique 
decomposition 

In order to prove that 

converges to cP with respect to the topology of cf> we have 
only to show (Ref. 15, p. 120) (note that cf> is complete!) 
that the series 

are convergent for all k=O, 1, 2,···. This is an 
immediate consequence of the equation 

~ I (cp., cp) IllHkcpn l1 = ~ I (H::~' CPn) I nkll CPn ll . 
~ 

CP=.0(CPn' CP)CPn can be rewritten as ,.,=1 

00 

cP = .0 (yCP., CP)CPn' 
"=1 

YCP. are continuous antilinear functionals on cf> whence 
{CPn} is a Schauder basis for cf>. 

(II) By Proposition 5 the decomposition 

cpx = t (cpx I CP.) YCPn 
n=1 

is unique. Moreover, the CPn' n = 1, 2, ... , are contin
uous linear functionals on <1>; whence {YCPn} is a Schauder 
basis in cf>~. 

(In) We have to show that for each continuous semi
norm PB(') on <1>~ (B any bounded set in cf» it follows that 

L l(cpXICPn)lpB(yCPn) <00. 
"=1 

We have 
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Now each element of <I>x is of the form ¢X=H2k ok. 
Therefore we get 

x sup I (¢n,H2k+2¢) 1<;: t (1/n2)llkll sup II H2k+2 ¢11. 
fl>EB ,=1 fl>EB 

Since IIH2k+211 is a continuous seminorm on <I> and B is 
bounded in <I>, there exists a A > 0 such that 

sup II H2k+2¢11 < A. QED 
tbEB 

At the end of this section we shall discuss the results 
obtained so far in order to see if they permit the con
struction of a rigorous formalism for the transforma
tion theory in nonrelativistic quantum mechanics. To 
this end let A E L C(<I» be any operator which is e. s. a. on 
<I>. Then, <I> has a unique A-eigenintegral decomposition 
(cf. I, Sec. IV) so that we can write 

Y¢=J y(t)¢d/J.(t) for all ¢E<I>. 

By the theorem of Gelfand-Dunford the right-hand side 
of the last equation is well-defined. 

Then by Proposition 5 we can write 

for every ¢x E If> X, where ¢n are the eigenvectors of H. 
Now if BEL C( <I» is any other operator e. s. a. on <I> and 
</JX(u) E <I> X(u) is an eigenform originating from the B
eigenintegral decomposition (cf. I, Proposition 17 or 
21) then we have 

(</JX(u) I ¢> = ~ (ljJX(u) I rp,> J (y{t) rpn I rp> d/J.(t) , (1 ) 

for all rp E <I> and the right-hand side of (1) is absolutely 
convergent for every rp E <I>. In the same way for any 
operator DEL C( <I» we have 

(Dxrpx(t') I ¢> = ~ (DX¢ "(t') I rpn> J (y(t) ¢n I ¢> d/J.(t), (2) 
n 

for every rp E <I> and again the right-hand side is abso
lutely convergent for every ¢ Elf>. 

We remark in passing that formulas (1) and (2) allow 
us to deal with any multiplicity of the spectra of the 
operators A, B, and D in question. 

Now, for the sake of SimpliCity, let us assume that 
the operators A and B have a simple spectrum. Then 
according to I, Proposition 17 we can rewrite (1) and (2) 
in the form 

and 

(DXrpX(t') I ¢> =6 (DX¢X(t') I ¢n> J (¢X(t) I ¢,>(rpX(t) I ¢>d/J.(t), 
n 

(4) 

for all ¢ E <I>. These formulas give us the most general 
possibility to deal with the transformation theory in 
nonrelativistic quantum mechanics. These formulas 
would be essentially Simplified if we could rewrite them 
in the form 
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(ljJX(u) I ¢> = J K(u, t)(¢"'(t) I ¢> du(t) 

and 

(DX¢X(ti) I ¢> = J D(t', t) <¢X(t) I rp> d/J.(t) 

with mathematically well-defined kernels 

K(u, t) = ~ W(u) I rpn>< ¢ X(t) , rpn> , 
and 

D(t', t) = ~ <DxrpX(t') I rpn>< rpX(t) I rpn>, 
n 

respectively. In this formulation we would in fact obtain 
an integral representation of the operator D. For the 
general case these equations can not be deduced in our 
scheme. It would be interesting to see what conditions 
must be fulfilled by the operators A, B, and D 
(especially, what spectral properties A, B, and D must 
posses) in order that the transformation equations (3) 
and (4) can be written in an integral form. 

Finally let us consider the character of the mapping 

J ~« ¢x(t) I rp» = : ~<</JX(u) I ¢n> J < rpx(t) I rpn>( ¢ X(t) I rp> d /J.(t). 
n 

We denote by <I> A the image of <I> under the isometric 
mapping U:<I>-<¢x(t)lrp>. <I>A is a dense linear sub
space of the space L 2 • 

" 
<I> A is a 1. c. space and the 1. c. topology is given by the 

the following family of seminorms: 

{JI<¢X(t)IH nrp>1 2d/J.(t)}1/2, n=O, 1,2, '" . 

Now, for all u E R, t u is a distribution over If> A as can 
easily be checked. The same assertion is true for the 
mapping 

.D t ,« ¢x(t) I ¢» = : ~ <Dxrpx(t') I rp,> J (rpx(t) I rpn>< rpx(t) I rp> d /J.(t). , 

IV. FINAL REMARKS 
The usefulness of the rigged Hilbert-space <I> c C; c <I> x 

which we have treated in Secs. II and III depends sub
stantially on whether all s. a. operators which are of 
physical importance are already e. s. a. on the basic 
domain <I>. At present no solution of this problem is 
known. Up to now one has not been able to prove that all 
elements of the enveloping algebraA(P i , Qi)' i=l, 2, 3, 
are e. s. a, operators on <I>. In Ref. 16 it has been 
proved that all polynomials of second degree in the 
operators Pi> Qi' i=l, 2, 3, are e.s.a. on 1>. How
ever, since the property of essential self-adjointness 
of an s.a. operator is preserved under unitary trans
formations we can pass to the Q-representation in which 
we essentially have to deal with differential operators. 
In Ref. 17 it has been shown that all differential opera
tors that occur in physical applications are e. so a. on 
the domain <I> ~ S C L 2( - 00, 00). As already explained at 
the end of I, Sec. IV, it is not necessary that all ob
servables map <I> continuously into itself. The method 
described at the end of I, Sec. IV enables one to weaken 
the reqUirements on the order of differentiability both 
of the coefficients of a differential operator and the 
potential function. 

Another question which arises in connection with the 
use of the formalism of a rigged Hilbert space concerns 
the following fact: In this new formalism only the vec-
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tors of ~ have to be used in practical calculations. 
Then for the practicability of this concept it is very 
desirable that all eigenvectors and eigenpackets 17 are 
already contained in ~. It seems that this require
ment cannot be fulfilled in general. Thus in order to 
make the rigged Hilbert space formalism more handy 
for practical applications one has to enlarge the basic 
domain ~. Obviously this enlarged domain ~ no longer 
has the property of being invariant under all elements 
of It (p i> Q). We shall refrain here from explaining the 
details of a formalism which is based on an enlarged 
domain ~ since we have not yet obtained definite results 
in this direction. 

To ensure the full applicability of the rigged Hilbert 
space formalism some additional problems would have 
to be solved. First of all for e. s. a. operator A in Cj it 
would be desirable to be able to solve the eigenvalue 
equation of the map A x in ~ x and in this way to obtain 
the spectrum of the operator A in C;. Following Babbitt18 

we may define sp(A X) to be the closure of the set of all 
eigenvalues of the mapping A x in ~ x (cf. also Ref. 19). 
Then the question arises whether sp(A) = sp(A X). A 
necessary and sufficient condition for this equality is 
that (A + "-1)~ is dense in ~ for all "- cf: sp(A). 18 It would 
be very desirable to show that any operator A E L C( ~) 
which is e. s. a. on ~ already fulfils this condition. 

Even if this problem could be settled there is still an
other problem which, in our opinion, is much more rel
evant. In I, Sec. V, we have shown that all eigenfunc
tionals (for an eigenvalue t) of an operator A that belong 
to the generalized eigenfunction decomposition of A have 
to be sought in the space ~X(t). However, as has been 
pointed out at the end of I, Sec. V, it is by no means 
clear whether ~x(t)= ~~ (cf. I, Sec. V) for /L-almost all 
t E sp(A). In the same way we do not know of any condi
tion which would lead to this equality. 

Despite all these open problems and even of some 
drawbacks inherent in the rigged Hilbert space formal
ism we should like to advocate this formalism as a 
natural enrichment of the usual Hilbert space formalism 
for quantum systems since it makes the whole formal
ism more transparent and allows one to deal with 
mathematical problems which cannot be adquately 
treated within the pure Hilbert space formalism. 

Finally we may ask whether in other realizations of 
rigged Hilbert spaces <I> cC; c <I> x for nonrelativistic 
quantum mechanics the whole space cI> x is really needed 
for the formulation of the transformation theory. It is 
obvious that the argument in nI is based on very special 
structural properties of the spaces <I> and cI>x which be
long to the Robert's triplet. In a more general situation 
it would already be of great help if one could confine 
oneself to a subspace of <I>x for which a similar decom
position as in III should be derived. 

A subspace possessing some of the necessary funda
mental properties (let us denote it by \]!X) could, e. g. , 
be constructed as follows: suppose cI> is a metrizable 
separable 1. c. space with a nuclear embedding I of cI> 
into the Hilbert space q. If we denote by \]!X the ,8(<I>;cI»
closure of y<I> = I' • I ~ we have 
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Proposition 6: \]!X has the following properties: 

(I) For every A-eigenintegral decomposition {y(t), 
R, /L} of <I> with A E C(~) and A e. s. a. on <I> it follows 
<I>x(t) c \]!X /L almost everywhere. 

(n) For every BEC(<I», B X is a ,8(~;<I»-continuous 
mapping of \]!X into itself. 
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Proof: First, we shall show y(t) cI> C \]!X 11 almost 
everywhere for any operator A E C(~) which is e. s. a. 
on cI>. To this end let us consider the norm 11·11 I on the 
subspace I~q of <I> x defined by 

II rhll ' = Ilhll for every h E(,;-. 

Then ,8 (<I> X, <I» restricted to rc; is coarser than 11·11 I. 

Indeed, for every continuous seminorm P B(') of ,8 (<I>; <I» 
with B as a bounded set in ~ we have 

PBUX h) = sup{1 (I'h I (P) I; <P E B}= sup{1 (h, I<p) I; <P E B} 

,,;; sup{llhll ·11 <PII; <P E B}";; "-Bllhll = "-Bllhll = "-B IIrhll I 

since B, being a bounded set, can be absorbed into the 
a-neighborhood II <PII ,,;; 1. 

Since y<I> is dense in Ixq with respect to 11·11 I it follows 
that \]!x contains 1"4' Therefore \]!x contains all elements 
of the form I'E(a)I<p with <P E ~ and E(a)(aE.B) being a 
spectral operator of A. This entails (cf. I, Sec. V) 
y(t)<p E \.IFx, 11 almost everywhere. We conclude y(t) <I> c \]!X 
and therefore (y(t)<I»a=cI>X(t) c\]!x. For the proof of (n) 
we note that ~~ is complete. Furthermore, for every 
BELC(cI» we have 

BCXy=yB (d. I, Sec. IV). 

This relation shows that BCX maps y~ into itself. But 
\.IFx being a closed subspace of a complete space is itself 
complete. Therefore B CX can be continuously extended to 
a mapping of \]!X into itself. QED 

The existence of a suitable topology of ~ permitting 
a decomposition of the elements of \]!X should, of course, 
still be investigated. 

To comment upon the last proposition we remark that 
the subspace \.IFx c cI> x is large enough to contain all eigen
forms of any operator A E L C(<I» which is e. s. a. on <I> 
and to enable the transformation of one representation 
into another and the representation of any operator 
DELC(~) in a given representation (cf. I, Sec. V). 

For a nuclear Frechet space the assertion of the last 
proposition is trivial. ~ being a nuclear Frechet space 
is a reflexive space. In this case the strong topology 
,8 (cI>x, cI» is compatible with the duality of ~ x and ~. Thus 
\]!x= ~x. 
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On the inverse problem in radiative transfer 
N. J. McCormick* and I. Ku~er 

j)epartment of Physics. University of Ljublja1lQ, Ljubljana. Yugoslavia 
(Received 2 February 1974) 

The inverse problem in monochromatic radiative transfer is considered for an infinite medium with 
anisotropic scattering. It is shown that each Legendre coefficient of the scattering function can be 
related independently of the others to an appropriate integral over space and angles of the intensity 
due to a monodirectional plane source. This result offers some advantage over the analogous one for 
an isotropic plane source if the medium is weakly absorbing. 

I. INTRODUCTION 

In a recent paper, Case has shown how moments of 
the infinite-medium, azimuth-independent Green's func
tion for monochromatic radiative transfer can be used 
to extract the expansion coefficients of the scattering 
function. 1 To obtain the Nth coefficient, it is required 
to know all lower-order ones plus the 2Nth spatial mo
ment of the angle-integrated intensity due to an isotropic 
plane source. A systematic technique to determine more 
of these coefficients is discussed. 

The primary purpose of this note is to show that a 
simplified method enables each coefficient to be re
lated independently of the others to the spatial integral 
of the corresponding azimuthal Fourier component of 
the radiation field due to a monodirectional plane source. 
The importance of azimuthal components for determin
ing the scattering function from measurements of the 
intensity has also been noted by Pahor in a related 
context. 2 

II. MONODIRECTIONAL PLANE SOURCE IN AN 
INFINITE MEDIUM 

If the intensity depends only upon one coordinate (T), 
on the cosine of the polar angle with respect to the 
positive Taxis (J.I.), and on the azimuth (ep), the equation 
of transfer in the absence of a source is3 

~aaT +1) I(T,J.I.,ep) 

1 11 f2r =-4 dJ.l.' dep'p(cos6)I(T,J.I.',ep'). 
1T -1 0 

Anisotropic scattering of arbitrary but finite order 
will be admitted, which shall mean that 

L 

P(cos6) = L; Ul,P,(cos6). 
1=0 

We assume that some absorption is present, hence 

(1) 

(2) 

0< Ulo < 1, in order that the infinite-medium Green's 
function be uniquely defined. For a source of unit mag
nitude, the definition is given by the conditions that 
I( T, J.I., ep) stays bounded at T- ± 00 and that 

I(O+, J.I., ep) - 1(0-, J.I., ep) = J.l.o16(J.I. - J.l.o) 6(ep), -1"" J.I. "" 1. 

(3) 

Multiplying both sides of (1) by (1- J.I. 2)m/2 
cos(mep) dJ.l. dep and integrating, we derive the following 
identity: 

d (1 dJ.l. ro2r depICT, J.I., ep) J.I.(1 _ J.l.2)m/2cos(mcf» 
dT J-1 In 
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where hm = 2m + 1 - Ul m, and 

We now integrate both sides of Eq. (4) over T, taking 
account of the discontinuity of I at T= O. The result is 

(4) 

(6) 

In this way the spatial integral of the mth azimuthal 
Fourier component of the radiation field is directly re
lated to the mth Legendre coefficient of the scattering 
function. 

Another way to derive the above result is to express 
the solution in terms of singular eigenfunctions,4-6 and 
to invoke the closure relation. 5 

III. ISOTROPIC PLANE SOURCE IN AN INFINITE 
MEDIUM 

For the isotropic source of unit magnitude, the func
tion which must be considered is 

(7) 

for which we derive the identity 

(8) 

From symmetry considerations 7.8 it follows that K I. n = 0 
for (n+l) odd and for n <l, while use in Eq. (8) of the 
recursion relation for Legendre polynomials, followed 
by an integration by parts, gives 7 

(l+I)K,+1• n_1 +K,•1• n_1 - (h,/n)K,.n=O, n?-1. (9) 

The starting equation which accompanies this set of 
equations, 

is found from Eq. (8) and the discontinuity at T= 0. 

(10) 

Equation (9) gives a closed set of 2N +N(N - 1)/2 
equations8 for determining K O• 2N for N ?- 1. The results 
of Case (with a correction for K O• 2) are 

K O• 2 = 2/(h~ h1), (11) 

K O• 4 = (24/hg hf)(1 + 4holh2) , (12) 

Copyright © 1974 American I nstitute of Physics 926 
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and we illustrate the increasing complexity of the mo
ments with the result 

_ 720 ( 4ho) 2 25,920 
Ko.s- hthi 1+~ + h~hth~h3' (13) 

For weak absorption, when ho «1, the leading con
tribution to K O• 2N comes from the dominant mode of the 
radiation field. In the notation of Refs. 4 and 6, this 
mode is 

21T J~t I(T, p.) dp. "'[2N(vt)]at exp(- I TI/vt) 

= [Vlg(Vb vt)A'(vt)]-t exp(- I Tl/vt) 

'" t ht Vt exp(- I Til Vt), 

with vl"'l/hoht • Hence 

(14) 

(15) 

Thus we see that in an evaluation for a weakly ab
sorbing medium the moments K O• 2N could hardly reveal 
much more than the first two coefficients y,o and U)t that 
approximately determine the dominant mode. At larger 
distances that are relevant for the higher moments, 
everything else is drowned out by this one mode. Rela
tion (6) offers some advantage in this respect, because 
the zeroth spatial moment of the higher azimuthal 
Fourier components might be eaSier to disentangle. 

IV. COMMENTS 

While it is encouraging to find simple relations be
tween moments of the radiation field and the scattering 
coefficients, it would be premature to claim practical 
applicability. Neither Eq. (6) nor (10) to (13) can be re
lated directly to experiments, since extended plane 
sources are not available. However, the isotropic plane 
source considered by Case can be substituted by an 
isotropic point source, if the point-to-plane transfor
mation7 is applied. Likewise, the monodirectional plane 
source and discrete directional detector implied in 
Sec. 2 may be replaced by a directional point source 
and a plane distribution of detectors. With proper nor
malization the responses in both cases are equal, ac
cording to the reciprocity principle. 9 
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Even with such a modification experiments would not 
appear worth the effort. One would have to place a di
rectional source (a searchlight) and a strategically dis
tributed set of directional detectors (sensors with little 
telescopes) inside the medium, say in terrestrial fog, 
many mean free paths away from boundaries. Such a 
clumsy method could not be expected to compete with 
singlE'-scattering experiments carried out with a laser 
beam. 

Clearly spatial integrals of the type derived here are 
of little use in remote sensing of the terrestrial and 
planetary atmospheres, where one would need relations 
between the scattering coefficients and the reflected 
radiation field. There seems to be little hope for finding 
exact relations of this kind, so that indirect methods 
are called for. These are either based upon models with 
a few adjustable parameters, 10 or upon iterative pro
cedures. 2 Perhaps such procedures can be improved 
with correction techniques based upon Eq. (6) or 
(10)-(13). 
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On the geometrization of neutrino fields. 1* 
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Necessary and sufficient algebraic and differential conditions are obtained for a geometry to have as 
its source a neutrino field whose energy density relative to any observer is positive or negative 
definite. 

1. INTRODUCTION 

Using what turned out to be a refinement of the Ple
banski classification l of the Ricci tensor we have pre
viously considered the geometrization of nonnull as well 
as null electromagnetic fields2 and of massless3,4 and 
massive5 real and complex scalar fields. In this paper 
we shall employ similar techniques and geometrize those 
neutrino fields whose energy density is either strictly 
positive or strictly negative relative to any observer. 
Partial results to this problem have recently appeared 
in the literature. 6, 7 

In the Appendix we show the relation between our 
classification3 of the Ricci tensor Ras and the Pleban
ski one. l We also exhibit canonical forms for Ras for 
the various classes. In Sec. 2 we review the neutrino 
field conditions. We discover that if the Ricci tensor be
longs to class A 2 , B 5 , C l , D ia or Du the geometry can
not have a neutrino field as source, and if it belongs to 
classB2,B3,B6,Dlc,Dld,D2,D3a,D3c or D4 the energy 
density of any field for which the trace of the energy
momentum tensor vanishes is positive for some obser
vers and negative for others. The remaining classes 
(Al'A3' Bv B 4, C 2, C3 , D3 b) permit neutrino fields with 
positive (or negative) energy denSity, which we pro-
ceed to study in some detail. Finally, in Sec. 3, we 
derive the geometrization conditions for such neutrino 
fields. 

The notation used is the same as in previous 
papers2,3; however, the null tetrad corresponding to the 
spinor dyad {kA,mA} is now called {k""na,maomJ. The 
Newman-Penrose8 ,9 and the spinor9 formalisms are 
assumed known. The transformation laws for the N ew
man- Penrose scalars under a change of spinor dyad 
are used extenSively in the remainder of the paper. For 
the reader's convenience, they are listed in the Appen
dix. 

2. THE NEUTRINO FIELD 
A two-component neutrino field k A satisfies the equa
tion lO 

VAXk A = 0 (2.1) 

and has an energy-momentum tensor 

Tjlv = i[UjlAX(kAkX;v _k~A;v) + uVAx(kAkX;1' _k~A;/l) 
(2.2) 

whose trace vanishes because of Eq. (2.1). According 
to the Einstein equations the Ricci scalar must also 
vanish and 

(2.3) 

If we choose a spinor m A satisfying kAmA = 1 (but 
otherwise arbitrary for the moment) the dyad {kA> mA} 
is defined by the neutrino field only up to the null 
rotation 

(2.4) 
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From Eqs. (2.2) and (2.3) we find that in such a dyad 
R all has components 

¢OO = 0, 

¢ 11 = (i/2) (E - E), 

¢22 = i(y - y), 

¢02 = - iu, 

¢12 = (i/2) (O! - T - 13), 

and Eq. (2.1) reduces to 

P = E, T = 13. 

(2.5) 

(2.6) 

It is not surprising to find that the field equations, Eqs. 
(2. 5) and (2. 6), are invariant with respect to the transfor
mation given by Eq. (2.4). 

Since in Eq. (2. 5) ¢oo vanishes it follows that a geom
etry which does not possess a null vector field k a such 
that Ra/lkak tl vanishes cannot admit a neutrino field as 
its source. An easy calculation using the canonical 
forms given in Table II of the Appendix shows that this 
is the case for geometries whose Ricci tensor is in 
class A 2p B 5a ,5b' Cl±' or Dla,lb' 

The energy density of a field at any point P with re
spect to an observer whose world line contains P is 
defined by E(u) = TaauauS, where Ta is the energy-mom
entum tensor of the field and u a is t~e velocity of the 
observer at P. The flow of energy in the field with re
spect to this observer is defined by Q a (u) = TasuS. 
According to Wainwrightll a field satisfies the strong 
energy condition if E(u) > 0 and Q a (u)Q a (u) 2: 0, the 
weak energy condition E2 if Q (u)Qa (u) 2: 0, and the 
weak energy condition El if E(u) "" 0 (in each case for 
all time-like vectors u and at each point P for which 
T as "" 0). 

Again using the canonical forms given in the Appen
dix we easily derive that any field for which T, i.e., 
Ta a' vanishes and for which R aB (= - Tall) belongs to 
class A 2_, A 3_, Bl b' B4 b' B 5 b, Cl a-' C 1 b- or ])1 a- satis
fies the strong energy condition (Le., QaQa 2: 0, E > 0). 
If the field is such that Ras is in class A 2+,A 3+, B la , 
B 4a,B5a , C la+, C lb+ or D la+ it satisfies only the weak 
energy condition E2 (QaQa > 0, E < 0). The field 
satisfies only the weakest energy condition E 1 with 
E > 0 if R aft belongs to class A 1 _, C 1 c-' C 2-' C 3-' Dl b-
or D 3b - and with E < 0 if Ras is in A 1+, C 1c+C 2+, C 3+, 
Dlb or D3b+' The remaining classes do not allow even 
the weakest energy condition to be fulfilled. In all cases 
where Q a Q a is strictly nonnegative it is strictly posi
tive except for classes A3± when Q a (u)Qa (u) == 0 for 
all time-like vectors u. Therefore, if the field is a pure 
radiation field the Ricci tensor must belong to A3± . 

In the remainder of the paper we shall consider only 
neutrino fields satisfying at least the weak energy con
dition E 1 • The Ricci tensor is then in class AI., A 3 ., 

Bla,b,B4a.b' C 2±, C 3±, or D 3b• and may be written 

Ras =Ckaks +2Ak(a n s)-AlVa V S -A2 T a T s 

- ~ (AI + A2 + 2i\)gas' (2.7) 

Copyright © 1974 by the American Institute of Physics. 928 
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The signs of the coefficients C, A, AI' and A2 are given 
in Table I below for each class. The vectors To. (if 
A2 "'" 0) and Va (if Al "'" 0) are normalized space-like 
eigenvectors of Ra~ corresponding to nonrepeated eigen
values, nO. (if A "'" OJ is a future-pointing null vector 
orthogonal to the spac e -like eigenplane of R as' and 
k a (C "'" 0 or A "'" 0) is the neutrino flux vector. 

The neutrino flux vector ka' by definition the future
pointing null vector corresponding to the neutrino spinor 
k A' is an eigenvector of Ras in all cases under considera
tion and is, of course, orthogonal to To. (when A2 "'" 0) 
and Va (when Al "'" 0). For example, if Ras belongs to 
class B then, apart from a multiple of gas' we can write 3 

RaB = R(aSs), Since RaBkak B = 0 the neutrino flux vector 
ka is orthogonal to either Ra or So.' .For class Bla,b,R a 
and So. are null eigenvectors and therefore k a must 
coincide with one of these. We proceed ina similar 
fashion in all other cases. 

We now tie the dyad {k A' m.J more closely to the 
geometry by choosing m A in such a way that the corres
ponding null vector n a is the one appearing in Eqn. (2. 7) 
(if A "'" 0) or is orthogonal to To. (if A2 "'" 0) and Va (if 
Al "'" 0). The dyad is now uniquely defined except when 
A = Al = O. For A.2 "'" 0 let us define an angle e in terms 
of the complex null vector m a corresponding to the 
dyad by To. m a = - 2- 1 / 2 e i6. For classes A 3±, A l ±, and 
C 2± the dyad may be transformed according to Eq. (2.4) 
provided that for Al± and C 2± the transformation para
meter c is restricted by c = - ce2 ie. 

The components of R as with respect to the dyad just 
specified are given by 

A = ¢OO = ¢Ol = ¢12 = 0, 

¢u = t (AI + A2 - 2A), 

¢22 =-C/2, 

(2.8) 

and the field equations, Eqs. (2. 5) and (2.6), specialize to 

P = E, T = (3, K = 0, a = 2(3, 

¢iJ2 = - ia, ¢u = w, ¢22 = i(y - y), 

where W, the imaginary part of p, is the twist of the 
geodesic null congruence associated with k a • 

(2.9) 

Eqs. (2. 9) are invariant with respect to the freedom 
of dyad (if any) described above as well as with respect 
to rotations through a constant angle ¢ 0 in the plane 

th I t k d . k i¢ok - i¢o or ogona 0 a an nO., l.e., A -? e A,m A -? e mA' 
provided, of course, we let e -? e + 2¢o (when A.2 "'" 0). 

We exhibit the signs of various relevant quantities in 
Table I. A blank in the last column indicates that Q Q a 

is positive for some observers and negative for oth~rs. 

TABLE 1. 

Class C A Al A2 lal w "'22 E Q"Qa 

A l + 0 0 0 + 0 
A l _ 0 0 0 + + + 0 + 
A3+ + 0 0 0 0 0 0 
A 3_ 0 0 0 0 0 + + 0 
B la 0 + 0 0 0 0 + 
Bib 0 0 0 0 + 0 + + 
B 4a + + 0 0 0 + 
B4b 0 0 0 + + + + 
C2+ + 0 0 + 
C 2_ 0 0 + + + + + 
C 3+ 0 0 + 0 
C 3_ 0 0 + + + + 0 + 
D 3b+ + 0 + 
D 3b _ 0 + + + + + + 
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Results obtained previously 11, 12 can now readily be 
deduced from Table I and Eqs. (2.8) and (2.9): The null 
congruence defined by the neutrino flux vector is geodesic. 
It is shearfree if and only if the energy condition E2 
is satisfied. If it is twistfree it is also shearfree and 
the class is A 3±, Le., the field is a pure radiation field. 
In all other cases sign W = sign E. In all cases 
au ~ 4w 2 and ¢22w ?: 0, but if the strong energy con
dition is obeyed, then ¢22 ?: 0, w?: 0 (but not both zero). 

3. GEOMETRIZATION 

A geometry whose source is a null electromagnetic 
field has a Ricci tensor belonging to class A 3 _. If the 
electromagnetic field is nonnull the class is BIb' If 
the source is a real scalar field, R as is in class A_ , if 
it is a complex scalar field, R as is in class C _ or B lb' 

As we have seen, neutrino fields may belong to a large 
number of classes. Collinson and Shaw6 have geometriz
ed neutrino fields in Bl b' B4 b' C 2_, C 3_, and D3 b-' whereas 
Griffiths and Newing7 dealt with those neutrino fields in 
A3,B2b,c,B3d, .,B4a ,b' C 2, and D3 whoseflux vector 
corresponds to a geodesic congruence. Here we shall 
geometrize all neutrino fields satisfying (at least) the 
weakest energy condition E l , namely those in A l ±, A3±' 
Bl a,b' B4 a, b' C 2±, C 3±, and D3 b±' 

Let us consider a geometry with Ricci tensor belong
ing to any of these classes except A3±' (The latter case 
will be dealt with separately). If we assume that 

R = 0, (3.1) 

then R as may be written as in Eq. (2.7), where the signs 
of C, A, AI' and A2 are as in Table I, To. (if A2 "'" 0) and 
Va (if Al "'" 0) are normalized space-like eigenvectors 
of R all corresponding to nonrepeated eigenvalues, k a 

(if C "'" 0 or A "'" 0) is a future-pointing null eigenvector 
of R aB , and nO. (if A "'" 0) is a future-pointing null vector 
orthogonal to the space -like eigenplane of R as' chosen 
so that kana = 1. 

We define two future-pointing null vectors ka and nO. 
(such that kana = 1) for the remaining cases as follows. 
For class C 3± we take k Cl orthogonal to To. and Va' For 
class Al± there are at most four directions orthogonal 
to To. for which the corresponding null congruence may 
be geodesic. This can be seen as follows. Adopting a 
dyad satisfying k a TO. = n a TO. = 0 and mOo - mOo = 
21/2iTa we have, as seen from the Appendix, the freedom 
to make null rotations about m A with real parameters 
b. Again using the Appendix we find that under such a 
dyad change the imaginary part of K,Im K, transforms 
according to 

1m K' = 1m K + b 1m (a + p + 2E) + b2 Im(T + 7f + 2a + 2{:l) 

+ b 3 Im(/-L + A + 2y) + b4 1m 1'. 

Therefore, there are at most four real values b for which 
1m K' = O. We assume there is at least one and choose 
ka in the corresponding direction. Finally, we choose 
nO. orthogonal to To. (if A2 "'" 0) and Va (if Al "'" 0). Note 
that in classes B 1 a band C 3± there is a choice of two 
directions for k a' tn all cases where there is a choice 
we assume that the conditions below are satisfied for 
at least one such choice. 

Let lz A and m A be spinors corresponding to k a and nO., 
respectively. The dyad {k A' m A} corresponds to a null 
tetrad {k a' nO., mOo' mo.}' The components of R all with 
respect to this tetrad are given by Eq. (2. 8), where the 
angle e is defined (for A2 "'" 0) by Ta ma = - 2- 1/ 2 e iS • 



                                                                                                                                    

Garry Ludwig: Geometrization of neutrino fields 

We now assume that the null congruence associated with 
k", is geodesic and that its twist has the same sign as 
Al + A2 - 2A, Le., that 

K = 0, W/¢l1 > 0, (3.2) 

and use the freedom 

m A -7 a- 1m A (a > 0) (3.3) 

with a = (¢11/w)I/2 to make ¢11 = w. Our dyad is still 
not uniquely determined by the geometry but permits the 
freedom 

(3.4) 

[accompanied by e -7 e + 2¢ when A = 0], and, when 
A = Al = 0, a null rotation [Eq. (2.4)] with c restricted by 
C = - ce2ie . 

Using the Appendix it is straightforward to verify that 
the conditions 

¢02 = - ia (3.5) 

and 

p + P - E - E = 0 = ill + (3 - 3T (3.6) 

hold with respect to any such dyad if they hold with 
respect to one. They are, therefore, conditions on the 
geometry, which we assume satisfied. 

Consider next the equations 

D¢ = i(E - p), 

o¢ = i({3 - T), 

o¢ = i(T - M, 
i ( -) ¢22 

t.¢ = 2" y - y + -2-' 

Le., ¢,,,, = S"" where 

(3.7) 

S'" = i(E - p)n", - i({3 - T) m", - i( l' - i3)m", 

+ Hi(y -y) + ¢22]k",. 

One can easily verify using the Appendix that two such 
vectors S "" obtained in two different permissible tetrads, 
differ at most by the gradient of a scalar function. 
~herefore, S["'; 8] is a geometric quantity. The assump
hon 

S["';81 = 0 (3.8) 

permits us to solve Eq. (3. 7) for ¢, the solution being 
unique up to a constant. If we perform a phase change 
using this function ¢ in Eq. (3.4) we arrive at a spinor 
k A which satisfies the field equations (2.9). 

When the direction k", is not uniquely defined by the 
geometry the above assumptions must be valid for at 
least one of the (at most four) possible directions. Apart 
from this difficulty the neutrino spinor is then deter
mined uniquely up to a constant phase. That the con
ditions we have found above are also necessary is easily 
seen. 

In summary, necessary and sufficient conditions that 
a geometry of class Al±,Bla,b,B4a,b' C 2 ±, C 3 ! or D3b! 
have as its source a neutrino field are given by Eqs. 
(3.1), (3. 2), (3. 5), (3.6), and (3.8). 

The geometrization procedure for neutrino fields in 
class A3! is slightly different. Given a geometry of 
class A 3 • with vanishing Ricci scalar we can write 
R"'B = Ck",k8 with C > 0 for A3+ and C < 0 for A 3 _. 

J. Math. Phys., Vol. 15, No.7, July 1974 

930 

The geometry defines only the direction of k", which 
we take to be future-pointing. Let k A be any spinor cor
responding to k", and let m A be such that k A m A = 1. 
In such a dyad the only nonzero component of R "'S is 
¢22 = - C/2. Let us assume that the null congruence 
determined by k", is geodesic, shearfree and twistfree, 
Le., 

t( = a = w = O. (3.9) 

Note that this implies 1/10 = O. If we further impose the 
geometric conditions 

(3.10) 

the compatibility conditions for the equations 

Dl/I = p + P - E - E, 

01/1 = 3T - ill - (3, 

51/1 = 31' - a - fj 

are identically satisfied and a real solution 1/1 of these 
equations exists. Transforming to a new dyad using Eq. 
(3.3) with a = el/i/2 yields 

p + P - E - E = 0 = 3T - ill - (3. 

The dyad may still be subjected to the transformations 
given by Eqs. (2.4) and (3.4) as well as Eq. (3.3) for 
parameters a satisfying 

Da = oa = O. (3.11) 

With S'" as defined above one finds that, in general, Eq, 
(3.8) is not invariant under allowed scale changes [cf. 
Eqs, (3.3) and (3.11)]. 

However, if we define H", by 

H", =S'" -~¢22k", 

we find that H["';B1 is a geometric quantity. 

We now distinguish two cases. In the ordinary case, 

(¢22 k [",) ;81 '" O. (3.12) 

It is straightforward to verify that ~ L, given by 

L == 2(¢22 k "');8n ["'m B1 = 0¢22 + 2T¢22' 

is the only nonzero component of (¢22k[",) ;B]" If we let 

M == 4H"';lIn["'mB1 

and assume the geometric conditions 

M/L < 0, D(ML-l) = o(ML-l) = 0 (3.13) 

hold, we can, by means of an allowed scale change, satisfy 
the equation M + L = 0, Le., 

If we further assume the geometriC conditions 

(3.14) 

then Eqs. (3.7) are compatible and have a solution ¢ 
that is unique up to an additive constant. Using Eq. (3.4) 
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with this ¢ we arrive at a spinor k A which satisfies the 
field equations (2.9). Moreover, this spinor is unique up 
to a constant phase change. The sufficient conditions we 
have found are also necessary, as is easily verified. 

Therefore, necessary and sufficient conditions that a 
geometry of class A3> have as its source a neutrino 
field satisfying Eq. (3.12) are given by Eqs. (3.1), (3.9), 
(3.10), (3.13), and (3.14). 

In the exceptional case that 

(3. 15) 

the tensors S[""81 and H[a;8] coincide. Equation (3.8) is 
once more a geometric condition which we can require 
the given geometry to satisfy. We can use the solution 
¢ of Eq. (3.7) in Eq. (3.4) and obtain a spinor k A which 
satisfies the field equations (2.9). Again, the sufficient 
conditions we have found are also necessary. 

Therefore, necessary and sufficient conditions that a 
geometry of class A3± has as its source a neutrino field 
satisfying Eq. (3.15) are given by Eqs. (3.1), (3.8), (3.9), 
and (3.10). 

In the exceptional case the neutrino spinor is far from 
unique. For each solution "a" of Eqs. (3.11) we can find 

TABLE ll. 
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a function ¢ (unique up to an additive constant) so that 
ak Aei'i> is also a neutrino spinoi' if k A is. This situation, 
analogous to the exceptional case for the null electro
magnetic field, 2, 13,14 has been discussed previously by 
Griffiths and Newing. 15 

In conclusion, it should be remarked that it has not 
been possible to express the geometrization conditions 
directly in terms of R B as one can do for a nonnull 
electromagnetic field fiiut not, to the author's knowledge, 
for a null electromagnetic field 2 ,13). The conditions 
given here involve R aB only implicitly. Nevertheless, 
they are geometric in the sense that they prescribe an 
algorithm for determining whether or not a given 
geometry has as its source a neutrino field with posi
tive (or negative) definite energy. It seems clear that 
even if these conditions could be written explicitly in 
terms of the Ricci tensor they would be so cumbersome 
as to be of little or no practical value. 

APPENDIX 
The relationship between our classification 3 of the 

trace-free Ricci tensor and that of Plebanskil is given 
in Table II. Classes C 1> D1> and D3 have been sub
classified further for purposes of this paper. 

It should be recalled that Z represents a complex 

Ref. 3 Plebanski Canonical form for Rcxs 

[4Th 0 

Al> [3T - 5jz 5~T -AyYcxYS Ay ~ 0 

A 2• [T- 35h T~5 A,tats At ~ 0 

A 3• [4Nh C ~ 0 Ckaks C ~ 0 

B 1a . b [2T - 25b T~5 2A,k(cx n s) At ~ 0 

B 2a [4N13 k(cxY s ) 

B 2b . c [2N - 25) (2-lJ N ~SJ C ~ 0 (2A./A)k(a z s) An ~ 0 

[= 2A.k("nS) - (A./A2)k"kS1 

B 3a , b,c [2T-51 -52b 51 < T < 52 -AxX"XS - AyYaYs Ax < 0 < Ay 

51 + 52 ~ 2T Ax + Ay ~ 0 

B 3d , e [3N - 5b S ~N, C ;;:: 0 CkakS -A,Y"Y S Ay ~ 0, C ~ 0 

B 3/,g [T - 251 - 52b 52 ~ T ~ 51 -A,ZaZS + A,t"tB Az~At~O 

B 4a , b [2N - 251 (2-1) N ~ 5, C ~ 0 (2A./ A)k(a t s) An ~ 0 

[= 2A.k(ans) + (A./A2)k a k S1 

B Sa , b [T-251 -52b T ~ 52 ~ 51 -A,ZaZs + A,tatS At ~ Az ~ 0 

BSa,b,c [Z-Z -2513 D"i 0 BZ(a t s ) + Dta ts B2 _D2 > 0, D~O 

CIa! [T -"251 - 52b 82 :§ 51 :§ T -A,Z"ZS + A,tats Az:§O::fA t 

52 + T - 251 ~ 0 Ax + A, ~ 0 
C lla [T-251 -52b 82 "§ 81 ~ T -A,z"zs + A,tats ).. z :;; 0 §" At 

52 + T - 251 = 0 Ax =-71, 
C1Ci [T - 251 - 5213 52 ~ 51 '" T -A,Z"ZS + A,t"ls Az:§O~At 

52 + T - 251 § 0 Az+At:sO 

C 2• [3N - 5b S :§ N, C ~ 0 CkakS-AyY"Y s Ay :§ 0, C ~ 0 

C 3• [2T - 51 - 52b 51,52 § T -AxXaXS -AyY"Y S Ax'>"Y:§ 0 
D1a:l: [T - 51 - 52 - 5314 S3 ::; 52 ;f 51 :5 T -AxXaXe, - AyYaYa - AzZaZe i\z:;;;Ay~Ax:;;O 

51 + 52 -53 ~ T Ax + Ay - A, ; 0 

D 1b• [T - 51 - 52 - 5314 53 ;:g; S2 ~ S1 ;r T -AxXaXe - AyYaYe - AzZaZB i\z ~ Ay :§ Ax ~ 0 

51 + 52 - 53 ~ T Ax+Ay-AZ~O 

D1c ,d [T - Sl - 52 - 5314 S1 '§ T ~ S2 ~ S3 -A.XaXS - AyYaYS - AzZ"ZS Ax §;O ~i\y §: Az 
D2 [Z - Z - 51 - 5214 -'-.x"Xs + DI"ts + BZ("tS) B2 - D2 > 0 

D3at [2N - 51 - 5214 Sl' S2 ~ N, C ~ 0 -A.X"XS - '-yY"Ys + Ck"kS Ax' Ali ~ 0, C ~ 0 

D3b• [2N - 51 - 5214 Sl' S2 :§ N, C ~ 0 -AxX"XS - AyY"YS + Ck"ka A~, Ay ~ 0, C ~ 0 

D3ct [2N - 51 - 5214 51 < N < 52' C ~ 0 -AxX"XS - AyYaYs + Ck"ks AX < 0 < Ay ' C ~ 0 

D4 [3N - 514 -A.X"XS + By (aks) B '" 0 
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eigenvalue whereas T;N or S represent a real eigen
value with which is associated, respectively, a time
like eigenvector, no time-like eigenvector but a null 
eigenvector, only space-like eigenvectors. The number 
of times an eigenvalue occurs (if more than once) is 
placed before the symbol T,N or S. 

Adding a multiple of gaB to R aB leaves the eigen
vectors unchanged but increases all eigenvalues by 
that multiple. We choose, in each case, a convenient 
multiple and exhibit a canonical form for R a8 • 

{l a' X a' y ~, Z a} stands for an orthonormal tetrad 
adapted to the eigenvectors, and, where appropriate, 
ka =A(la -za}, na = (1/2A}(ta +za)' ApAX,Ay,A z, 
and An denote corresponding eigenvalues. The quantities 
C and D are defined to be Rasnan8 and R a8 ta l B, respec
tively. The symbol ~ means that the inequalities :s and 
2: apply for class D1 a+ and D1 a-' respectively. 

Finally, we exhibit the transformation laws for the null 
tetrad, the spin-coefficients and the components of the 
Weyl and Ricci tensors under changes of dyad. 

For a phase and scale change 

k~ = aei<l>k A , 

the tetrad and the Newman-Penrose scalars transform 
as 

E' = a2(E + D lna + iD</>}, {3' = e2i <l> ({3 + I) ln a + il)</>}, 

./ = a-2(y + 6 lna + i6</>}, a' = e-2i<l>(a + 6 lna + io</», 

</>00 = a4</>00' </>01 = a 2e2i <l></>0l> </>02 = e4i
<l> </>02' 

</>~1 = </>11' </>~2 = a-2e2i <l> </>12' 

whereas for a null rotation about k A> given by Eq. (2. 4), 
they transform as 

n~ = c(5k a + cma + cma + n a , 

m~=cka+ma' 
, 

K = I{, p'=CK+P, a' = CK + a, 

r' = CCI{ + ca + cp + r, 

E' = CK + €, a' = C 2 K + c(€ + p} + a, 

{3' = CCK + ca + C€ + (3, 

')I' = C2CI{ + c2a + cc(p + E) + c(r + (3) + ca + y, 

1f' =C2K +2c€ +1f +Dc, 

jJ' = C2CK + c2a + 2cc€ + 2c{3 + CTf + jJ + cDc + I)c, 

A' = C31{ + c2(p + 2€} + 2ca + CTf + A + cDc + 6c, 
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II' = C3CI{ + c3a + c2c(p + 2€) + c2(r + 2(3) + cc (2a + 1f) 

+ c(2y + jJ} + CA + " + ccDc + cl)c + COC + 6c, 

1/1~ = 1/10' 1/1~ = c1/l0 + 1/11' 1/1~ = c 21/1 0 + 2c1/l1 + 1/12' 

1/1 ~ = C 31/1 0 + 3c 21/1 1 + 3c1/l21/13' 

1/1~ = c 41/1 0 + 4c 31/11 + 6c 21/1 2 + 4c1/l3 + 1/14' 

</>00 = </>00' </>01 = (5</>00 + </>01' 

</>02 = (52</>00 + 2c</>01 + </>02' 

</>~1 = CC</>OO + C</>Ol + C</>10 + </>11' 

</>12 = c2c</>00 + 2CC</>01 + (52</>10 + c</>02 + 2(5</>11 + </>12' 

</>22 = c2c2</>00 + 2c 2c</>01 + 2c2c</>10 + C2</>02 + c2</>20 

+ 4CC</>11 + 2C</>12 + 2c</>21 + </>22' 

The transformation laws for a null rotation about m A 

can now be derived quite easily from the above if we 
use the fact that for the change 

k~ = im A , 

we get the interchanges16 ,17 

ma~ma' D~6, 

K~-II, 

a~ - A, 

p~-jJ, r ~ -1f, €~-y, 

Thus, for example, under the null rotation 

m~ = mA' 

the spin-coefficient K transforms as 

- -
K' = b3bll + b 3 A + b2b(jJ + 2y) + b2(Tf + 2a} 

+ bb(r + 2(3) + b(p + 2€} + ba + K - bb6b 

- Db - b I)b - bob. 
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In a previous paper neutrino fields with positive (or negative) energy density were geometrized in the 
sense of Rainich, Misner, and Wheeler. The present paper deals with the geometrization of neutrino 
fields which do not satisfy such an energy condition. 

1. INTRODUCTION 

Recently1 necessary. and sufficient conditions were 
derived in order that a Riemannian geometry admit as 
source a neutrino field whose energy denSity is positive 
(or negative) relative to any observer. Extensive use 
was made of a certain classificationz of the Ricci tensor 
Rae. The various classes may, for convenience, be 
grouped as follows: 

I: A 2 , B s' C l , DlG,b' 

n: A l , A 3, B 1, B 4, Cz, C3, D3b, 0, 

IV: B 3f", Bs, D 1e,d' Dz. 

A geometry does not admit a neutrino field as source if 
Rae belongs to a class of group 1. For geometries in 
group n the neutrino field has an energy density which 
is of the same sign for all observers. Neutrino fields 
in group ill or IV do not obey such an energy condition. 
We have seen that for neutrino fields in group II the 
neutrino flux is an eigenvector of Rote and generates a 
geodesic null congruence. Neutrino fields in group III 
may but in general do not; neutrino fields in group IV 
definitely do not possess this property. 

In the previous paper1 we geometrized all neutrino 
fields in group II with the exception of those in vacuum 
(class 0). In Sec. 2 we shall geometrize all remaining 
neutrino fields for which the flux is an eigenvector of 
Rae, and in Sec. 3 those for which it is not. 

The notation is the same as in previous papers. 1,2 

K, a, p, etc. are the spin coeffiCients, 3 cf>Oo. cf>01> etc. the 
components of Rae, and 'Ito, 'It 1> etc. the components of 
the Weyl tensor relative to some dyad {kA' mA}' The 
null tetrad corresponding to such a dyad (which we al
ways normalize by kAmA = 1) is denoted by {ka, na, mOl, 
rna}. Ta and Vol will be unit spacelike vectors which 
are determined by the given geometry up to a sign and 
which are mutually orthogonal when they both occur in 
Rae. The angle 8 will be defined by 

(1. 1) 

and the vector Sol by 

Sol =i(€ -p)na -i({3 -r)ma -i(T - ~)ma+t[i('Y -Y) + cf>zzlka 

(1. 2) 

relative to a given dyad. w stands for Imp, the imagi
nary part of the spin coefficient p, and Eq. (13.2), for 
example, refers to Eq. (3.2) of Ref. 1. 

We recall that in any dyad {kA' mA} in which kA is the 
neutrino spinor the neutrino field equations are 
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p = £, r = {3, (1. 3) 

and the gravitational field equations become 

R=O • (1. 4) 

and 

cf>00=0, 2cf>01=-iK, cf>02=-ia, 2cf>u=i("€-€), 
(1. 5) 

2cf>12=i(a-r-(3), cf>zz=iCY-")). 

Our geometrization procedure consists of gradually 
adapting a dyad to the given geometry until Eqs. (1. 3)
(1. 5) are satisfied. In the process we make various 
necessary assumptions that are independent of the re
maining freedom of choice in dyad and are, therefore, 
conditions on the geometry. In proving such indepen
dence and in other straightforward calculations (such 
as deriving compatibility conditions on certain differen
tial equations) of which we give no detailS, we have 
made free use of the Ricci and Bianchi identities. 4 

2. NEUTRINO FLUX AN EIGENVECTOR OF Ra {3 

In this section we shall derive necessary and suffi
dent conditions that a geometry belonging to class 0 or 
group ill admit as its source a neutrino field whose flux 
is an eigenvector of the Ricci tensor. The null congru
ence associated with this flux will turn out to be geode
sic. The procedure for all classes but B20. and 0 will 
follow closely that given in Ref. 1 for fields in group n 
other than A3 and 0 and will be carried through in sub
section (i). Subsections (ii) and (iii) will deal with 
neutrino fields in B20. and 0, respetively. 

(i) A trace-free Ricci tensor belonging to class D4 
may be written1 

The null eigenvector ka is orthogonal to TOland Vol' The 
second null vector orthogonal to T" and V" will be 
called na' 

A trace -free Ricci tensor that belongs to one of the 
other classes under consideration here can be written 
as in Eq. (12.7). The vectors k", n", T", and Vol are as 
desc ribed in the paragraph following Eq. (I 3. 1) but 
with the signs of C, A, A1> and Az as given in Table I 
(which also gives the signs of cf>u and 1cf>021 relative to 
any of the dyads defined below). For classes BSa,b,e 

we define k" to be a null vector orthogonal to TOland 
Vol and assume the conditions derived below to be valid 

for at least one of the two choices. Where n", does not 
occur in Rae we define it to be a null vector orthogonal 
to T '" (for AZ* 0) and V", (for A1 * 0). 

'Copyright © 1974 American Institute of Physics 933 
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TABLE I. 

C 

B2b 
B2c + 

B3a 0 
BSb 0 

BSc 0 
B3a + 

BSe 
DSa+ + 
DSa_ 
Dsc+ + 
Dac_ 

A 

+ 

0 
0 
0 
0 
0 
0 
0 
0 
0 

o 
o 

o 
o 
+ 

~ AI+~ I <P02 I <P11 
0 0 0 
0 0 0 + 
+ 0 + 0 
+ + + + 
+ + 
+ + + + 

+ 
+ + + + 

+ 
+ + 
+ + 

Let kA and mA be spinors corresponding, respective 
ly, to the null vectors ka and n", which have been de
fined for all geometries considered here. The nonzero 
components of ROlli relative to such a dyad {kA' mAl are 
given by 

<P02= - (,\/4)eZi8
, <P12= (B/4{2;}ei8 

[with 9 defined by Eq. (1. 1)] for class D4 and by Eq. 
(12.8) for the others. The dyad is so far fixed only up 
to scale changes 

kA -akA, m A -a-lmA (a> 0), 

phase changes 

(2.1) 

(2.2) 

(accompanied, where applicable, by ()- 9 + 2<p), and, 
for class B sa,.' a restricted null rotation about kA' i. e., 

(2.3) 

subject to 

c= -ceZI8
• (2.4) 

Let us now suppose that the null congruence generated 
by ka is geodesic, i. e., 

K=O. 

In addition we assume 

a= 0, w<pit > 0 

when <P02 vanishes (i. e., for Bzb,c), 

w = 0, Im(ia<p~) = 0, Re( - ia<P(i) > 0 

when <Pu vanishes, or 

1m (ia<p (i) = 0, Re( - ia<p(i) = w<pil > 0 

(2.5) 

(2.6a) 

(2.6b) 

(2.6c) 

when neither <Pu nor <P02 vanish. We can now use the 
freedom in the choice of dyad given by Eq. (2.1) to 
satisfy the necessary conditions 

<P02= -ia, <Pu = w. 

Next we assume that the (geometric)conditions 

p + p - € - €= 0, a+ i3 - 31' + 2i<P12 = 0 

and 

(2.7) 

(2.8) 

S["III)=O (2.9) 

hold, where Sol is defined by Eq. (1. 2). Due to Eq. 
(2. 9) the equations 
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<P,,, =501 (2. 10) 

have a solution <P which is unique up to an additive con-
stant. If we make a phase change [Eq. (2.2)] with this 
<P we arrive at a spinor kA satisfying the field equations 
(1. 3) -(1. 5). Apart from the ambiguity in the direction 
of k" for class B 3a, b, C1 this spinor is unique up to a con-
stant phase. 

It is easily verified that the geometric assumptions 
given by Eqs. (1. 4), (2.5), (2.6), (2.8), and (2.9) are 
not only sufficient but also necessary ones for a geom-
etry of class BZb,c, B 3a ,b,C,a,g, D3a , D3C1 or D4 to have as 
its source a neutrino field whose flux is an eigenvector 
of the Ricci tensor. We see from Eq. (2. 5) that the null 
congruence associated with this flux is geodesic. 

(ii) We consider next neutrino fields in class Baa whose 
flux is an eigenvector of R"II' An example of such a 
field has been given by Griffiths. 5 

If kA is the neutrino spinor and k" the flux, then the 
Ricci tensor may be writtenl 

(2. 11) 

where'ka and T" are orthogonal. If mA is any spinor 
such that the associated null direction is orthogonal to 
T", then in the dyad {kA' mAl 

(2.12) 

is the only nonzero component of ROlli' Note that the dyad 
is determined up to restricted null rotations about kA 
[cf. Eqs. (2.3) and (2.4)] and constant phase changes. 
From the field equations [Eqs. (1. 3)-(1. 5)] and the 
Ricci identities3 we see that the null congruence generat
ed by the flux ka is geodesic, shear-free, and twist
free and that k" is a repeated prinCipal null vector of 
the Weyl tensor, i. e., 

K=a=w=O (2. 13) 

and 

(2.14) 

Let us now investigate the uniqueness of the field. If 
we look for another neutrino spinor of the form aeiq,kA , 

we have to try and solve the equations 

Dlna=O, 

(2. 15) 

and 

D<p = A<P = 0, 

o<p= -<P12(1-1/aZ
). (2. 16) 

The compatibility conditions are 

(1 -l/az)[ (1T + r)<p12 + (iT +T)<PZl] = 0, (2. 17) 

=0, (2. 18) 

(1 - 1/az)[A<P12 + (J.L - Y + y)<p12 + X<PZl] - 2a-z<plzAlna = O. 

(2.19) 
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If we Jet (11" + 'f)cf>12. + (ii'+ 1')cf>zl = 0 (2.25) 

(2.20) 

and 

N = iQr",;Blm"'mB= M ocf>zl - 5cf>12. + (a - :B)cf>12. + (/3 - a)cf>21], 

(2.21) 

Eqs. (2 17)-(2.19) become, respectively, 

(1-l/aZ)Q[",;Blk"'nB= 0, 

- i(1 - 1/aZ)(N - 2a-z l cf>.ta IZ) = 0, 

(1-1/aZ)Q["';Bln"'mB -a-zcf>12~lna= O. 

Also, if we define 

S = cf>12 + %i(1' - a + (3), (2.22) 

evaluate 6S + OS and set S equal to zero due to Eq. (1. 5), 
we find that necessarily 

(2.23) 

It follows that if Im>lt Z * 0 or if Im>lt Z = 0 and N S 0, then 
Eqs. (2.15) and (2.16) are satisfied only by a= 1, cf> 
= const, and the neutrino spinor is unique up to a con
stant phase. This is, in general, also the case if Im>ltz 
= 0 and N> 0 unless a = (21 cf>lzIZN-l)11 2 satisfies Eqs. 
(2.15) and (2 19), in which case there are two neutrino 
spinors. 

Conversely, a trace-free Ricci tensor belonging to 
class B2a may be written as in Eq. (2.11), where k", is 
the null eigenvector of R",B and T '" is a unit spacelike 
vector orthogonal to k",. Adopting a dyad for which kA 
corresponds to k", and mA to another null direction 
orthogonal to To" we find that cf>lz as given by Eq. (2.12) 
is the only nonzero component of R",B' The dyad may 
be subjected to scale changes, phase changes, and re
stricted null rotations about k A' We assume that Eqs. 
(2.13) and (2.14) are valid and distinguish between the 
two cases Im>lt Z * 0 and Im>lt Z = O. 

In the first case we define 

A = - (Im>ltztl[ cf>lZ(1I" + 7') + cf>zl(ir + 1")], 

assume 

A> 0, (2.24) 

and make a scale change with a=A1/Z. In the new dyad, 
which may still be subjected to phase changes and re
stricted null rotations about kA' the necessary condition 
(2.23) is satisfied. With the further assumptions (2.8) 
and (2.9) we can, as in subsection (i), determine a 
spinor k A which satisfies the field equations and which 
is unique apart from a constant phase. 

The geometric conditions given by Eqs. (1.4), (2.13), 
(2. 14), (2.24), (2.8), and (2. 9) are obviously necessary 
as well. Note, however, that Eq. (2.9) may be relaxed 
to 

since the other independent components of S["';Bl already 
vanish due to earlier assumptions. 

If Im>ltz vanishes Eq. (2.23) becomes the geometric 
condition 

J. Math. Phys., Vol. 15, No.7, July 1974 

which we assume to hold. The equations 

2Dlna=p+p-€-'E:, (2.26) 
201na = 31' - fJ - a - 2ia-zcf> 12 

are then compatible. Using a solution of Eq. (2.26) in 
Eq. (2.1), we can transform to a dyad in which Eqs. 
(2.8) are valid. Any further scale change must be re
stricted by Eq. (2.15). We use Eq. (2.2) to make € 

real; phase changes must now be restricted by Dcf> = O. 

We now define quantities N and M, respectively, by 
Eq. (2.21) and 

-2iM= 2Ur",;Blm"'mB= oS - 6s + (a - ~)S+ (13 - il)S 

+2iN, 

where Q"" S, and U", are given by Eqs. (2.20), (2.22) 
and 

U",= (S -cf>12)m", + (S -cf>zl)m"" 

respectively. In order to satisfy the necessary condition 

M+N=O (2.27) 

by means of an appropriate scale change we must solve 
the equation 

a4M+ aZ(N+ 21cf>12IZ) -21cf>12l z= O. (2.28) 

The solution A (for aZ
) is 

A= 21cf>12I Z[N+ 2 1cf>12 IZ]-l 

for M= 0 and 

.A= (- 2Mt1{N + 21 cf>12l z± [(N+ 2 lcf>lZIZ)Z + 8M 1cf>12IZ]l/Z} 

for M* O. We note that M and the Sign of N+ 21 cf>12lz are 
geometric quantities, i. e., they are independent of the 
freedom in the choice of dyad that we still have. For 
positive M there are two solutions, only one of which is 
positive. For negative M there are two real and positive 
solutions provided the discriminant of the quadratic 
occurring in Eq. (2.28) is positive. (In this case we 
must assume that the conditions described below hold 
for at least one of the two solutions). 

Hence for M S 0 we assume that 

N+21cf>12I Z>(-8M)1/ZIcf>12I. (2.29) 

Assuming further that A 1/z satisfies Eq. (2.15), i. e., 
that 

D1nA=0, 

olnA= 2icf>lZ(1 -1/A), (2.30) 

we can make a scale transformation with a = All Z and 
satisfy Eq. (2.27). Equation (2.9), with S'" as in Eq. 
(1. 2) but with €= p, is now a geometriC condition which 
we assume satisfied. Making a phase change with the 
solution cf> of Eq. (2.10), we arrive at a dyad which is 
fixed apart from constant phase changes and restricted 
null rotations about kA and in which kA obeys the field 
Eqs. (1.3)-(1.5). 

Apart from constant phase changes and the ambiguity 
in the solution of Eq. (2.28) for negative M the neutrino 
spinor was determined uniquely from the geometry. 
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The necessary and sufficient conditions were Eqs. (1. 4), 
(2.13), (2.14), (2.25), (2.29), (2.30), and (2.9). Con
dition (2. 9) may be replaced by the weaker one 

8[a;BlnamB = 0 

since the other independent components of 8[";Bl all 
vanish due to earlier assumptions. 

(iii) It has been shown by Griffiths6 that there exist 
neutrino fields with zero energy-momentum tensor. 
We shall now find necessary and sufficient conditions 
for a geometry with vanishing Ricci tensor to admit 
such a field. 

Since all the components of R"B vanish, it is evident 
from Eq. (1. 5) that the null congruence associated with 
the neutrino flux is geodeSiC, shear-free, and twist
free. From the RiCCi identities (2. 14) and the equation 

(2.31) 

follow. As far as uniqueness is concerned, it is easy to 
check that if kA is a neutrino spinor, so is aeil/JokA pro
vided cf>o is a constant and the function a satisfies Eq. 
(2.15) (with cf>l2=0, of course). 

Conversely, if the Ricci tensor vanishes, we assume 
that the Weyl tensor is algebraically special and let 
{kA' mA} be any (normalized) dyad for which kA corre
sponds to a repeated principal null vector k" (of which 
there are at most two) of the Weyl tensor. According 
to the Goldberg":"Sachs theorems,7 the aSSOCiated null 
congruence is geodesic and shear-free and we assume 
it to be twist-free as well. If we also assume the valid
ity of Eq. (2.31), we can solve Eq. (2.26) and use the 
solution to transform, by means of Eq. (2.1), to a dyad 
in which Eqs. (2.8) hold. The additional assumption 
(2.9) allows us to find a spinor kA satisfying the field 
equation as we did in subsection (i). 

The fact that the final dyad is defined only up to null 
rotations about kA' constant phase changes and scale 
changes restricted by Eq. (2. 15) shows once again that 
if kA is a neutrino spinor, so is aeil/JokA provided cf>o is a 
constant and a satisfies Eq. (2.15). In summary, the 
necessary and sufficient conditions for such a spinor to 
exist are given by Eqs. (2.13), (2.31), and (2.9). 

3. NEUTRINO FLUX NOT AN EIGENVECTOR OF Rcx/3 

The geometrization of neutrino fields for which the 
flux is not an eigenvector of the Ricci tensor is more 
difficult since it is less obvious how to pick a possible 
direction for the flux in the given geometry. We over
come this problem by choosing the null vector n" con
veniently and satisfying the necessary conditions 

¢OO=O (3.1) 

and 

Im(iKcf>(jD= ° (3.2) 

by means of a null rotation about n". (K itself cannot 
vanish, i. e., the null congruence associated with the 
neutrino flux is not geodesic.) Once this is accomplished 
we proceed in the usual manner. 

The geometries under consideration in this section 
belong to group III or IV. In subsection (i) we deal with 
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classes B&J. and BSa,b,c,d,e, and in subsection (ii) we deal 
with the rest. 

(0 A trace -free Ricci tensor belonging to class B&J. or 
BSa,b,c,d,e may be writtenl

,2 

R"B = T (,,[ATB) + BnB) + CVB)] + tAg"B' 

where, for B * 0, n" is a null eigenvector orthogonal to 
T". For B= ° we define n", to be one of the two null 
eigenvectors orthogonal to T" and Va' For B&J.' A= C 
=0, andB*Oi forBSa,b,c, A~O, B=O, andC*Oi for 
B Sd ,9' A; 0, C= 0, and B* 0. Without loss of generality 
we may assume that the neutrino flux is to be orthogonal 
to T" but not to V a (when C * 0). Clearly it cannot be in 
the direction of na since n" is an eigenvector of R",s' 

Therefore, we choose a dyad such that mA corre
sponds to n", and kA to a null vector orthogonal to T a 

(but not to V" when C* 0). Relative to such a dyad the 
nonzero components of R"B are 

cf>Ol = (e i8/4v'2)[B + C(k" V"')], 

cf>02 = te2lS
[ - A + iC(V", W")], 

cf>11= -tA, 
cf>12 = [C(n" V"')/4v'2)e I9

, 

where W" is given by 2l/2m" = (T", + i W",)e19. The dyad 
is defined only up to scale and phase changes, restricted 
null rotations about mA, i. e., 

kA-kA+bmA, mA-mA (3.3) 

with the parameter b restricted by 

b = - be-218 , (3.4) 

and, when C * 0, the ambiguity in the chOice of n" and 
the requirement ka va * 0. 

We use the transformation given by Eqs. (3.3) and 
(3.4) to try and determine a null direction k", which is 
not orthogonal to V" (when C* 0) and for which Eqs. 
(3. 1) and (3. 2) are valid. The existence of such a k di
recti on is a necessary condition in order that the source 
of the given geometry be a neutrino field. We shall show 
that this condition together with the necessary conditions 
given by Eqs. (1. 4), (3.5), (2.7), (2.8), and (2.9) are 
also sufficient. 

However, we must restate the condition at hand in a 
way which allows us to actually determine whether or 
not in a given geometry such a null direction exists. If 
for convenience we take e = 0, then b is pure imaginary, 
i. e., b = ib b and, with the aid of the Appendix of Ref. 
1, Eq. (3.2) reduces to a quartic equation in bl with 
real coefficients. If this equation has no real solutions, 
then the given geometry cannot have a neutrino field as 
source. Hence we must assume as one of our geome
trization conditions that at least one of the at most four 
solutions be real and that for at least one of the at most 
four k directions which correspond to these real solu
tions Eq. (3.1) as well as the assumptions below are 
satisfied. 

If we assume that 

-hKcf>(j~>O, (3.5) 

we can make a change of scale with a= [2i¢OlK-1J1 /2. 
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With the further assumptions (2.7), (2.8), and (2.9) 
we can, in the usual fashion, determine a dyad for 
which Eqs. (1. 3)-(1. 5) are satisfied. The neutrino 
spinor kA is uniquely determined up to a constant phase 
and up to the possible ambiguity in the direction of the 
flux. 

(ii) The procedure for the remaining geometries 
(Bllb,." B3f", Bfla,b,'" D ic,d' DIl, Dsa" Dsc ., and D4) is only 
slightly different. We shall be content with illustrating 
the method on classes Bllb, c' 

A trace-free Ricci tensor in Bllb,c may be writteni 

R"s=2~k("ns)+Cn"nB-~~g"s, ~~O, C~O, 

where n" is the null eigenvector of R"s and the direction 
of the null vector ka is also determined by the given 
geometry. If kA and mA are spinors corresponding, re
spectively, to ka and n", the nonzero components of Ras 
relative to the dyad {kA' mA} are cf>oo= -~C and cf>u 
= -h. More generally, relative to a dyad obtained from 
the present one by a null rotation about mA [cf. Eq. 
(3.3)] they are 

«Poo=-~C-~(b~+b~), «Poi=-~~b, «Pll=-t~, 

where b = bo + ib i • The necessary condition (3. 2) reduces 
after a considerable amount of algebra to a fifth degree 
polynomial equation in bo and b i which can be combined 
with the necessary condition given by Eq. (3.1), i. e., 
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c + 2~(b~ + bf) = 0, 

to yield a quartic polynomial in b. 

Therefore, there are at most four candidates for the 
direction of k a and we can verify whether or not for at 
least one of them Eqs. (3.5), (2.7), (2.8), and (2.9) 
are satisfied. If so, we can in the now familiar manner 
determine a dyad in which Eqs. (1. 3)-(1. 5) hold. The 
spiilor kA of this dyad is then a neutrino spinor which 
has been determined uniquely from the given geometry 
except for a constant phase and the ambiguity in the 
choice of the direction ka . Again, the sufficient condi
tions we have just found are obviously necessary as 
well. 
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The applicability of infinite order perturbation theory to linear systems is exhibited, The technique 
involves a generalization of the method developed by Wu and Taylor and can be used to study 
systems described by the equations of the following form V n nUn + V n ,n + 1 U n + 1 + V n ,n _ 1 X 

Un -1 = E Un' where the coupling coefficients V~ n's depend on n, The wide range of application of 
the generalized method is demonstrated by using it to study systems as different as the plane rotator 
in an external field on the one hand and the dynamics of a disordered chain on the other. 

I. INTRODUCTION 

When perturbation theory is used to study problems 
in physics, in many cases it has been sufficient to carry 
the expansions to only the first few orders. There are 
other problems, however, where no meaningful results 
can be obtained in any finite order of perturbation, but 
which yield useful results when certain infinite sets of 
terms are summed. The method commonly used to 
evaluate the contributions from the infinite sets ofterms 
is Dyson's equation. 1 It has been applied to problems 
which arise in various branches of physics. 2 For exam
ple, the methods of infinite order perturbation theory 
based on the multiple scattering theory of Lax and 
others have been applied to study the excitations in an 
alloy containing a small concentration c of substitutional 
defects.3 - 7 In these theories, attempts were made to 
develop a systematic approach which could lead to a 
sequence of improving approximations, e.g., proper 
accounting of single- site approximations, pair effects, 
etc. On the whole, the existing perturbational calcula
tions appear to reproduce fairly accurately spectra 
which are known to be reasonably smooth, but fail to 
obtain any detailed structure which is known to exist. 8 
This is especially the case for one-dimensional 
alloys.6,8 

In this work, we shall be concerned with the applica
tion of the infinite order perturbation theory to study 
systems which can be described by equations of the 
following form: 

(1) 

where the Un's are the amplitudes for the eigenstate 
with eigenvalue E and the coupling coefficients V n, n.' s 
depend on n. Our approach is based on the method used 
by Wu and Taylor. 9 Their method started with setting 
up a series expansion for the Green's Junction. They 
then found that the perturbation series can be summed 
exactly to infinite order in the case of periodic chains. 
Here we shall generalize their technique so that it can 
be applied to Eq. (1). There are many interesting physi
cal systems which are described by this equation. We 
shall first illustrate the generalized method with appli
cation to a familiar physical model, the plane rigid 
rotator in an external field. Then we shall discuss an 
application of the method to study the dynamics of a 
linear isotopically disordered chain. Our present 
interest is twofold: (i) to demonstrate the wide range of 
applicability of the method and (it) to demonstrate that 
the property of periodicity is not an essential require
ment for the use of these techniques. 

As it will be seen later (See Sec. IV), the method, when 
applied to a disordered chain of finite length, can lead 
to the exact summation of the infinite series of the 
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Green's function. The calculation of the frequency spec
trum of the finite chain will depend on the particular 
configuration of the chain. However, the formulation of 
the method [Eq. (11) through Eq. (13) in Sec. III is parti
cularly suitable for the calculation of the ensemble 
average of the Green's function. Thus the method can 
be extended to study the dynamics of a very long dis
ordered chain, specifically to recover the fine structure 
of the localized modes. This latter work will be dis
cussed in a future publication. 

II. INFINITE ORDER PERTURBATION THEORY 

For a system described by Eq. (1), it is more con
venient to rewrite it in the form 

where 

(2) 

D;.~, = (E- Vnn)onn,-Vn,n+1on+1,n,-Vn,n-1<\-l,n" 

(3) 
The Green's function D n n' can then be introduced by 

the equation 

L; D~~,Dn'n" == 6nn ,,· 
n' 

From Eq. (4), we obtain 

Dnn' =DO(n)onn' + 1]DO(n)T nn "D n"n" 
n" 

where 

DO(n) = 1/(E- V n,) 
and 

(4) 

(5) 

(6) 

(7) 

By iteration [using Eq. (5)], we obtain a series expansion 
for D n n " namely 

D nn' ::: DO(n)onn' + DO (n)T nn,DO(n') 

+ DO(n) 1] Tnn"DO(n")Tn"n,DO(n') + .... (8) 
n" 

If now we limit ourselves to diagonal elements, Eq. (8) 
reduces to 

Dnn = DO(n) + DO(n) If T nn,DO(n')T n'nDO(n) + . ", (9) 
n 

where we have made use of the fact that T nn = O. 

In order to sum the series of Eq. (9), we use a dia
gramatic method. For this purpose, let us represent 
DO(n) by a cross, Tn n + 1 by a directed line joining the 
nth and (n + l)th sites, and Tn ,n-1 by a directed line 
joining the nth and (n - l)th sites. Then a term like 

DO(n)T n ,n+1DO(n + 1)Tn+l,n+2DO(n + 2)T n+2,n+1 

x DO(n + I)Tn+1,nDO(n) T n,n_lDO(n - l)T n,n_1DO(n) 

Copyright © 1974 by the American Institute of Physics 938 
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~ 
f)-I n+1 n+2 

FIG. I. Typical diagram In the 
series expansion (9) 

may be represented by Fig. 1. Any term on the right of 
Eq. (9) may be interpreted as a journey starting from 
the "home" site, going via the transits T n.n±l to all 
possible sites and finally returning to the home site. 
The series is thus a sum of all possible journeys. We 
can then rearrange the series in the following way: 

D nn = DO(n)+(the sum of all those journeys, starting 
from n and ending at n, which never returns 
to the home site on the way) + (the sum of all 
those journeys, starting from n and ending at 
n, which returns once to the home site on the 
way) + .... 

If DO(n)Z n is the sum of all the journeys that never pass 
the home site n on the way, then 

Dnn =DO(n) + DO(n)(Zn + Z~ + Z~ + ... ) 

= DO(n)/ (1 - Zn)' (10) 

We now define DO (n)Z n n + 1 as the sum of all those 
journeys, starting from n' and ending at n, but going in 
the direction defined by an increase of n, which never 
return to the home site on the way. Similarly,DO(n)Zn ... _1 
defines the sum for journeys going in a direction given 
by a decrease in n. Since Zn = Zn.n+1 + Zn.n-1, Eq. (10) 
becomes 

In a similar manner, we sum the series representing 
Zn.n+1' We obtain 

(11) 

Zn.n+1 = V n .n +1DO(n + 1)[1+ Zn+1.n+2+· ··]Vn+1•IIDO(n) 

= Vn.n+1Vn+1.nDO(n)D°(n + 1)/(1- Zn+1.n+2)' 
Likewise (12) 

Zn.n-1 = V n.n-1 V n_1.nDO(n)D°(n - 1)/(1- Zn-1.n-2)' (13) 

We shall have use, in addition, for the off-diagonal 
element D n n" We consider first the simple case D". n + l' 
Following the same argument as before, we can inter
pret D n. n + 1 as the sum of all those journeys starting 
from the home site n, but ending at site n + 1. As shown 
in Fig. 2, the dot at n represents D nn; the directed line 
from the nth site to the (n + 1)th site, V n. n + 1; and A~ + 1 
at the (n + l)th site, the sum of all those journeys, start
ing from n + 1 and ending at n + 1, but going only in the 
direction of increasing (or decreasing) n. In the present 
case, 

(14) 

Equation (14) implies the following. First we make all 
possible journeys starting from the home site n and 
ending at n. Then we go to the site n + 1 and there make 
those journeys going away only in one direction. Since 

A~+1 =DO(n + 1) + DO(n + I)(Zn+1.n+2 + Z~+1.n+2 + ... ) 

=DO(n + 1)(I-Zn +1.n+2)' (15) 

it follows that 

(16) 

~ ... ~ 
n'-I 

FIG.2. Diagra:ms representing D. ,n" 
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For the general case Dnn" as shown in Fig. 2, we must 
consider .6 n +1' An +2' ••• , Ii'n" that is, 

D nn , = Dnn V n.n+1Ll.~+1 Vn+1,n+2A~+2'" V n'-l.n,A~, 

for n' > n. (17) 

Similarly 

Dnn' = Dnn V n.n- 1A;'-1 V .. - 1.n-2A;'-2··· V n·+ l ,n'Ll.;" 

for n' < n. (18) 

III. EXAMPLE: A PLANE RIGID ROTATOR IN AN 
EXTERNAL FIELD 

The Schrodinger equation for a plane rotator in an 
external field can be written as follows: 

d
2
l/; + 811

2
[ (W + pFcoscp)1J.I = 0, (19) 

dcp2 h2 

where JJ. is the electric moment, [ the moment of inertia, 
and F the electric field intensity. If we let 

E == (811 2[/ h2)W, G == (411 2[/ h 2 )pF, 

Eq. (19) becomes 

d 2"J 
=--.:t:.. + (E - 2G coscp) 1J.I = O. 
dcp 2 

(20) 

Equation (20) is a special case of the Mathieu's equa
tion. 1D However, it is our purpose here to illustrate the 
applicability of infinite perturbation theory to determine 
the eigenenergies. For this purpose, we note that, in the 
unperturbed state, the eigenfunctions are 

./,0 ___ 1_ e ;n¢ n = 0, ±1, ...• 
'l'n - (211)1/2 ' 

(21) 

When 1J.I~ is operated on by d2/dcp2 + (E - 2G coscp), we 
obtain 

(E - n2)1J.I~ - G1J.I~+1 - G1J.I~_l = O. 

We can now express Eq. (22) in the form 

where 

D;,~, = (E - n 2)onn' - Go n+1•n, - GO n_1,n" 

By comparing Eq. (24) with Eq. (13), we see that 

DO(n) = 1/ (E - n 2) 
and 

We now show that 

From Eqs. (11), (12), and (13), it is seen that 

D_n._n = DO(- n)/(1- Z-n.-n+1 - Z-n.-n-l) 

==DO(- n)/(I- Z-n.-(n-1)- Z-n.-(n+1» 

== DO(n)/(I- Zn.n-1 - Zn.Tl+1) = Dn,n 

Since the quantities depend on n through DO(n) which 
depends on n2 • 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 



                                                                                                                                    

940 Wu, Tung, and Schwartz: Infinite order perturbation theory 

By substituting Eq. (26) into Eqs. (17) and (18), we 
obtain 

DO(n - 1) = G(n-n')D 
nn 1-Z,,_1.,,_2 

DO(n') 
x-----

1- Zn',n'-l 
(n' < n). (28) 

By arguments similar to those given to prove Eq. (27), 
it follows that 

(29) 

In order to compute the energy eigenvalues, we deter
mine the poles of the diagonal elements of the Green's 
function (see, for example, Kumar 11 ). Since D n = D -n -n' 
therefore, to determine the perturbed energies for the' 
rigid rotator, we need to diagonalize the submatrix 

(30) 

G2DO(n)DO(n - 1) 
1----------

From Eqs. (27) and (29), it follows that the matrix is 
symmetric and its diagonalized form is 

The perturbed energies are then the poles of the dia
gonal elements or the zeros of (D"n ± Dn ._,,)-l. 

Equation (28) yields for Dnn ± Dn,-n 

~ 
DO(n - 1) 

D ± D =D 1 ±G2n----_ 
nn n.-n n.. 1 _ Z 1 Z 

.. -1,n-2 - n-2, n-3 

(31) 

X 
DO(O) DO(1) DO(n) J 

(32) 
1- ZO.l 1- Zl,2 1- Zn.n+l 

Dn ± D _ "" D",,[1 ± G2nDO(n)DO(n- 1)2DO(n- 2)2 ••• 
DO{'1)2DO(O)j to the (2n)th order in G. The zeros of 
(D" .. ± Dn,_n)-l are 

D;~[l Of G2nDO(n)DO(n - 1)2DO(n - 2)2 •• 'DO(1)2DO(0)] = 0, 
(33) 

where the approximation (1- r)-l "" 1 + r for r « 1 is 
used here and also later. From Eq. (11), we obtain 

D;; = DO(n)-l[l- Zn,n-l - Zn,n+1]' (34) 

Application of Eqs. (12) and (13) to Eq. (34) yields 

1 - G2DO(n - l)DO(n - 2) 1 - G2DO(n + l)DO(n + 2) 

1 - G2DO(1)DO(0) 

From Eqs. (33) and (35), we obtain 

DO(n)-l ::::: 

1- G2DO(2n - 1)DO(2n) 

(35) 

(36. 

1- G2DO(1)DO(0) 1- G2DO(2n - 1)DO(2n) 

Since DO(n)-l :::: E - n 2, it is evident that the removal of 
the degeneracy for E~ depends on the last term con
taining G 2 n • 

We shall now consider special solutions of Eq. (36) 
for the cases n == 1 and 2. For n ::::: 1, we have 

E - 1 "" G2[DO(0) + DO(2) ± DO(O)]. 

Since DO(O) ::::: E-1 and DO(2) ;::; (E - 4)-1, we put E ;: 1 in 
these expressions on the right and obtain 

E+ ::::: 1 + ~ G2 and E- ::::: 1- G2/3 
3 

in accordance with the values determined by Schwartz 
and Martin.12 

For n ::= 2, Eq. (36) reduces to 

E-4 
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Using the approximation (1 - r)-l "" 1 + r, we obtain in 
this case 

E - 4 ::= G2DO(1)[1 + G2DO(1)DO(0)] 

+ G2DO(3)[1 + G2DO(3)DO(4)] ± G4DO(1)2DO(0). 

This expression can be written so 

J 
2DO(1)2D"(0) + DO(3)2D"(4) t 

E%== 4+G2[DO(1)+DO(3)]+G4 , 
D"(3)2DO(4) 

We consider first E+. We have 

E+ ::= 4 + G2(_1_ + _1_) 
E-1 E-9 

+ G4 [2 1 .!.. + 1 1 ] 
(E- 1)2 E (E- 9)2 (E- 16) 
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Up to G2, putting E == 4, we obtain E "'" 4 + {5G2 which 
must be inserted into the first bracket on the right for 
E to be correct to G4. Hence 

E+ == 4 + G2 ( 1 + 1 \ 
4+~G2_1 4+fsG2_9) 

+ G4(_2__ 1 \ 
9 x 4 25 x 12) 

Likewise for E- we obtain 

These examples indicate the pattern of reduction of 
the fractions to the required order in G and the method 
of evaluation of the respective energy levels. While the 
procedures remain the same, the reductions for higher 
orders become more tedious. Nevertheless, by carry
ing the analysis to the computational level, we have 
demonstrated the applicability of infinite order pertur
bation theory to the solution of the problem of the rigid 
rotator in an electric field. Furthermore, we have shown 
that the removal of degeneracy can be immediately detected 
by examination of Eq. (36). Specifically, from Eq. (36), it 
is obvious that, for E~, the lifting of the degeneracy can 
only be accomplished if the perturbation is carried to 
the (2n)th power in G, a conclusion which is not readily 
apparent from the conventional method (See Appendix A). 

IV. DYNAMICS OF A LINEAR ISOTOPICALLY 
DISORDERED CHAIN 

Lattice dynamics of disordered systems has been a 
field of research interest since about two decades ago. 13 

The problem involves two distinct physical Situations, 
the glasslike disordered systems and alloys. The main 
difficulty of the problem is the absence of periodicity 
either in the geometriC structure or in the atomic com
position, so that methods derived for the crystalline 
solids are no longer appropriate. In recent years, much 
thought has been given in searching for a method that 
could generally be applied to the disordered sys
tems.4 - 7,14,15 Because of the complexity of the mathe
matics, although a variety of new methods have been 
devised and used, extremely effective methods have not 
yet been found. 

Even though it is still desirable to continue the re
search for a general th.eory for the more realistic 
models, it has become apparent that an exact or near 
exact treatment of simple models can provide a quali
tative understanding of the effects of disorder. A study 
of a one- dimensional disordered system is just such a 
case. The one-dimensional problem can be treated by 
both numerical and analytical methods. In recent years, 
there were several different approaches which had yield
ed good results.1 6 One of the most successful methods 
in terms of actual results is the direct numerical cal
culation devised by Dean17 for the vibrational spectra 
of disordered systems. Dean's results have provided 
us with an insight into the vibrational properties of 
disordered systems. For example, the frequency spec
trum has a fine structure with many distinct peaks and 
valleys, and some normal modes of vibrations are 
strongly localized. 

On the analytical Side, progress has been relatively 
slow. The approach usually started with setting up a 
series for the Green's function. Then various schemes 
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were designed to obtain the ensemble average of the 
"Greenian," from which the frequency spectrum was 
calculated. 14 Because of the approximation involved, 
most applications were confined to special systems. 
The results, in most cases, were not entirely satisfac
tory.16 

In this section we wish to discuss the application of 
the method developed in Sec. II to study the dynamics 
of a linear isotopically disordered system. The tech
nique can lead to the exact summation of the infinite 
series of the Green's functions for a chain of finite 
length, which in turn leads to the exact calculation of 
the frequency spectrum. Our main interest in this case 
is to learn, through the study of the finite chain, how the 
limit of the frequency spectrum corresponding to an 
infinite disordered chain is reached when the number 
of atoms in the chain is increased. 

The time independent equation of motion for an iso
topically disordered chain can be written as 

(37) 

where U I is the displacement of the lth atom, m I the 
mass of the lth atom, w 2 the angular frequency, and y 
the nearest neighbor force constant. 

Equation (37) can also be rewritten as 

~ Dl{.u l , == 0, 
/' 

where 
D~-l == 2y/m 1- w 2 

and 
T Zl ' == (y/m Z)oZ+1,I' + (y/ml)ol_l,Z" 

Thus from Eq. (12) we obtain 

from Eq. (13) we have 

( y) ( Y) D~D~_l 
Zl,l-l == - -- , 

m z m l- 1 1- ZI-1,1-2 

ZI-l,I-2 == (-y ) (~\ 
m l - 1 m l - 2 ) 

and from Eq. (11) we have 

DO 

D~_1D~_2 

1- ZI-l,I-2 ' 

D~ I 
Du == ---

1- Zl 1 - Z 1,1+1 - ZI,I-1 

(38) 

(39) 

(40a) 

(40b) 

(41a) 

(41b) 

(42) 

We shall discuss two different boundary conditions 
for the system. 

A. Fixed-ends boundary condition 

For a chain with N atoms, we connect the first and the 
last atoms on each side to rigid walls. The boundary con
ditions are then U o == 0 and U N + 1 == O. The equations of 
motion for the two side atoms are 

- m 1w 2u 1 ==- 2yu 1 +")'U2 
and 

- m Nw2uN == - 2yuN + ")'UN-I. 

(43) 

(44) 
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With these boundary conditions, Til' becomes 

Til' = ('Y!m l )(1- 01,N)ii l +1,1' + L (1- ° 1,1)° 1- 1,1' 
m l 

so that we obtain 

TN, N +1 = 0 and T 1, 0 = O. 

By applying Eq. (46), Eqs. (40) and (41) become 

( 
'Y ) ( 'Y) D']D'2 Z1,2 = - - , 

m 1 m 2 1- Z2,3 

( 
'Y ) ('Y) D~3. Z2,3 = - - , 

m 2 m3 1- Z3,4 
.. -, 

( )( ) 

DO DO 
Z - _'Y_ _'Y_ N-2 N-1 

N-2,N-1 - , 
m N-2 m N- 1 1- ZN-1,N 

ZN-1,N =(_'Y )(~)D"t,_1D"t" 
m N-1 mN 

Z N,N+1 = 0 

and 

( 
'Y ) ~ 'Y) D"z.P"t,-1 ZN,N-l = - -- , 

mN m N- 1 1- ZN-l,N-2 
.. -, 

(45) 

(46) 

(47a) 

(47b) 

(47c) 

(47d) 

(47e) 

(48a) 

(48b) 

(48c) 

(48d) 

From Eqs. (47) and (48), we obtain the terms ZI,I+1 
and ZI,I-1 (l = 1,'" ,N) simply by substituting the equa
tions in reverse order. The diagonal elements of the 
Green's function D II can then be obtained from Eq. (42). 

The eigenfrequencies of the system can be calculated 
by determining the poles of the diagonal elements of the 
Green's function. From Eq. (42), the problem then re
duces to finding the zeros of the following equation: 

(49) 

From Eqs. (38), (47) and (48), it is seen that Eq. (49) can 
be converted into a polynomial of w 2 of Nth degree. The 
N solutions of Eq. (49) are the N eigenfrequencies of the 
system. Thus for a chain with N atoms, there are al
together N normal modes of vibration. From these 
eigenfrequencies, the histogram of the frequency spec
trum can also be obtained. 

B. Cyclic boundary condition 

For an isotopically disordered chain of N atoms, the 
cyclic boundary condition is expressed as 

(50) 

Equations (40) and (41) then become 

(51a) 
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ZN-1,N= -- - , 
( 

'Y ) ( Y) D'N_1
D

'N 
m N- 1 mN 1- ZN,N+1 

Z -Z = 2......!.. N""'l 
( ) ( ) 

DO no 

N,N+1- N,1 mN m
1

1-Z
1

,2 

and 

( 
'Y ) ( 'Y) D"z.P'lv-1 

Z N,N-1 = mN m N- 1 1- ZN-1,N-2 ' 

Z1,N = (;J (~J -1-_-D-=~'---:-~N-_-1 
By setting 

we obtain the following two equations 

1 

1 
Y1 = ------~1-------

AN ------=------
A N - 1 -A'--------

N-2 
1 

A 2 -----
A1 -Y1 
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(51b) 

(51c) 

(52a) 

(52b) 

(52c) 

(53) 

(54) 

(55) 

(56) 

(57) 

By rearranging terms, Eq, (56) or Eq. (57) can be trans
formed into a simple quadratic equation in x N (or Y1)' 
i.e., 

Px~ + QXN + R = 0, (58) 

where P, Q, and R are functions of w 2 (see Appendix B), 
The solutions to these equations then lead to the deter
mination of all the Zt s and Dilts, The frequency spec
trum of the system can be obtained from the trace of 
the matrix D by 

G(w2) = - .!. lim .!. 1m TrD(w 2 + iE). (59) 
1T L->oo L 

<""0 

Since, in arriving at Eq. (58), no approximation has been 
used, the frequency spectrum computed by using Eqs. 
(51), (52), (56), (57), and (59) is then an exact calculation. 

V. CALCULATIONS AND DISCUSSION 

A. The dynamics of a chain of 22 light atoms and 
28 heavy atoms 

When the fixed- ends boundary condition is applied 
to a finite chain of N atoms, the system can be con-
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FIG.3. Part of the frequency spectrum of a disordered chain of 22 
heavy and 28 light atoms of mass ratio 3 : 1. 

sidered as an isolated giant N-atomic "molecule," and 
there exist N discrete eigenfrequencies [see Eq. (49)]. 
By introducing the cyclic boundary condition, however, 
the system can now be construed as a one- dimensional 
periodic chain composed of identical giant N-atomic 
"molecules." In the presence of the other" molecules," 
the eigenfrequencies of the isolated N- atomic" mole
cule" are expected to be perturbed. In order to explore 
the relationship between these two cases, we studied 
a diatomic linear chain of 22 heavy (H) and 28 light (L) 
atoms with mass ratio 3 : 1. This model chain was first 
investigated by Dean.18 Using his direct numerical 
method, Dean determined the histogram of the vibra
tional frequency spectrum of the system. He had also 
computed the configurations of the normal modes of 
vibration. The most interesting conclusions drawn from 
Dean's calculation were: 

(a) At low frequencies the modes of vibration are wave
like in character and similar to the waves in the periodic 
systems and (b) at high frequencies the modes are 
strongly localized; the transition from extended modes 
to localized modes occurs at the 26th mode. 

The configuration of the chain was given as follows: 

HLLLHLLHHHHHLLLLLLLLHLHHLHHLHLHHLLLLL 

HHLHLLLHHHLHL. 

In our calculation, the fixed- ends boundary condition 
was first used and the 50 squared eigenfrequencies were 
determined by using Eq. (49) (Table I). Next the cyclic 
boundary condition was applied. The exact frequency 
spectrum for the system was computed using Eqs. (51), 

, 
G(Wl 

80 

60 

40 

20 

" '" , , 
I I I, 

V U 
.2..5 2.7 3.1 3.3 

FIG.4. Part of the frequency spectrum of a disordered chain of 22 
heavy and 28 light atoms of mass ratio 3 : 1. 
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TABLE 1. Squared eigenfrequencies for a chain of 22 heavy and 
28 light atoms of mass ratio 3: 1. 

Squared eigenfrequency Squared eigenfrequency 
Mode w2 Mode w2 

1 0.006101949 26 3.346300031 
2 0.024889029 27 3.372 251421 
3 0.048228798 28 3.699945229 
4 0.099726 283 29 3. 848 558 904 
5 0.159512345 30 4.360856203 
6 0.206974269 31 5.289087201 
7 0.292219039 32 6.278387662 
8 0.418084996 33 6.410838541 
9 0.502648743 34 6.483558854 

10 0.601347093 35 6. 646 408 020 
11 0.734620530 36 6.670861626 
12 0.823075912 37 6.966198211 
13 0.973679948 38 7.209902844 
14 1. 062 765 390 39 7.340066012 
15 1. 235 319 026 40 7.454625914 
16 1. 387 323 322 41 7.480533131 
17 1.453 236970 42 7.627088 953 
18 1. 834 712 859 43 9.161587033 
19 2.009506014 44 9.220072 076 
20 2.195096297 45 9.404731858 
21 2.449245280 46 10.434452225 
22 2.510155887 47 10.441714382 
23 2.653679749 48 10.667368679 
24 2.765475376 49 11. 253 562390 
25 2.827320596 50 11. 656 096 880 

(52), (56), (57), and (59). The result (Fig. 3) showed that 
the frequency spectrum was composed of 50 bands, each 
identifiable with one of the discrete eigenfrequencies 
obtained by the fixed- ends boundary condition. As point
ed out before, the system can be considered as a chain 
of identical N-atomic "molecules" with the introduction 
of the cyclic boundary condition. The interactions be
tween the "molecules" then lead to the spreading of 
the N eigenfrequencies of the isolated" molecule" (cor
responding to the fixed- end boundary condition) into N 
frequency bands.1 9 Since the area under each band 
cOrresponds to the number of "molecules" in the sys
tem, the area covered by each band should be the same. 
Therefore, the "height" of each band should be roughly 
inversely proportional to the width of the band. How
ever, the band width, which arises as a result of per
turbations of eigenfrequencies of a molecule due to the 
presence of the other molecules, depends on the degree 
of overlapping of the normal modes of vibration between 
neighboring molecules. For extended (wavelike) modes, 
these overlappings are large, so that the band widths 
should be wide. Consequently, the bands will be "low." 
On the other hand, overlappings are small in the case of 
localized modes and the bands become narrow and high. 
This is indeed substantiated by the results of our cal
culations. The frequency bands from the 1st up to the 
25th are comparatively wide and low, indicating that the 
vibration modes for the·se frequency bands are extended 
modes, while the bands from the 26th on are narrow and 
high corresponding to localized modes. The distinction 
between the 25th and the 26th modes (see Fig. 4) of the 
chain is indeed very outstanding, signifying the transi
tion from the extended modes to the localized modes. 
It should be noted here that this picture is in agreement 
with Dean's numerical calculation. 

B. The frequency spectrum of a chain of 40 atoms 
with a 5% concentration of light atoms 

The dynamics of all the different configurations of a 
simple diatomic chain of 40 atoms with a 5% concentra
tion of light atoms was studied using the cyclic boundary 
conditions. The models consist of two light atoms ran
domly distributed among 38 heavy atoms. Under cyclic 
boundary conditions, there are altogether 20 possible 
distinct configurations. For convenience, we shall use 
a pair of numbers in parentheses to indicate the positions 
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FIG, 5. (a) & (b) Frequency spectrum for the configuration (1, 14) of a chain of 38 heavy and two light atoms with mass ratio 2: 1 (arrows indi
cating the locations of the narrow bands). 

of the two light atoms along the chain. Thus, the twenty 
different configurations are (1,2), (1, 3), .. " (1, 21). 

It is because of the limited number of distinct con
figurations that this model was chosen for study. In 
order to investigate the dependence of the vibrational 
properties of the chain on the configurations, the exact 
frequency spectra of all the twenty different configura
tions were computed, using Eqs. (51), (52), (56), (57), and 
(59). Figure 5 is a typical result of the frequency spec
trum for the configuration (1,14). In this case, the fre
quency spectrum is formed by 40 distinct bands with 
forbidden gaps between them (two isolated narrow bands 
at the high frequency end are not shown in Fig. 5). 

Since as the number of atoms in the "molecule" tends 
to infinity, the envelope obtained by connecting the mini
ma of the bands will approach a limiting curve corres
ponding to the real frequency spectrum of an infinite 
disordered chain with the same concentration of light 
atoms. Thus, to understand the realistic situations of 
very long chains, it is therefore helpful to study the 
envelopes of the minima of the bands for all the con
figurations of our model. It turns out that for most 
parts these envelopes are smooth curves although for 
some configurations there are fine structures at the 
high frequency end. Figures 6 and 7 are the examples 
of the envelopes of the exact frequency spectra for con
figurations (1,2), (1, 4), (1, 6), and (1,17). From these 
figures, it is seen that, at the very low frequency end, the 
envelopes of the spectra are essentially the same. How
ever, they begin to show fluctuations at the intermediate 
frequencies and the fluctuations are dependent upon 
configurations. Apparently, these fluctuations are 
caused by the statistics of the finite number of atoms 
in the chain. Realizing that a finite chain of 40 atoms 
with two light atoms can only provide very limited 
samples to the real situation of a one- dimensional ran
dom binary alloy with 5% light impurities, we therefore 
averaged the envelopes of all the 20 different configura
tions. The result (Fig. 8) is indeed similar in form to 
the frequency spectrum of Dean's numerical calcula
tion. 20 

VI. CONCLUSIONS 

In this work we have generalized the method of Wu 
and Taylor to study systems which can be described by 
Eq. (1). We have also demonstrated the wide range of 
applicability of these techniques by the successful appli
cation of the generalized method to study systems as 
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w 2 = 0.0 to w 2 = 4.0) for all possible configurations of a chain of 38 
heavy and two light atoms with mass ratio 2: 1. (The histogram is 
the frequency spectrum from Dean's mass ratio 1 : 2 impurity con
centration. 

different as the plane rotator in an external field on the 
one hand and the dynamics of a disordered chain on the 
other. In the former case, the application of this method 
showed that the lifting of the degeneracy for the state E: can only be accomplished if the perturbation is 
carried to the (2n)th power in G, a conclusion not readily 
apparent from the conventional method. In the latter 
case, the method provides a means to calculate exactly 
the frequency spectrum of a polyatomic chain regard
less of its complexity (See Sec. IVB). By analyzing the 
results obtained for a disordered diatomic chain, it is 
learned that the frequency spectrum is fairly stable at 
low frequencies, but depends on the configuration at the 
high frequency end. Our selection of 40 atoms is of 
course too" short" to provide enough statistics for the 
limiting curve of the spectrum of the infinite disordered 
chain. However, the conclusions drawn from the study 
of short chains indicate that as the number of atoms in 
the "molecule" of the chain increases, the envelope to 
the frequency spectrum will approach the frequency 
spectrum of an infinite disordered chain with the same 
concentration of impurities. Mathematically, there is no 
difficulty in extending the calculation to treat long 
chains. Work is currently in progress. 

When the method is applied to a disordered chain, the 
calculation will necessarily depend on the particular 
configuration of the chain. However, the formulation of 
the method, in particular Eqs. (11)- (13), provides a 
framework through which the ensemble average of the 
Green's function can be calculated in a systematic way. 
Work is also in progress along this line. 
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APPENDIX A 
The problem of the plane rigid rotator in an external 

electric field can also be approached by using solutions 
of the form cosn¢ and sinncp as described below. Since 
the operator d 2/dcp2 + (E - 2G coSCP) is an even function 
of cp, it follows that if tJ;(CP) is a solution of Eq. (20), then 
so is tJ;(- CP). This means tJ;(CP) ± tJ;(- CP) are solutions of 
Eq. (20). We may conclude that Eq. (20) has both even 
and odd solutions. 

To obtain the eigenvalues for the even solutions, we 
assume 

00 

tJ; = 6 A cosncp. (AI) 
n=l 
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Substitution of Eq. (AI) into Eq. (20) leads to the eigen
value solutions in continued fraction form 

2G2 
E = ------------

E-l G2 
(A2) 

E-4··· 

Similarly, to obtain the corresponding equation for the 
odd solutions, we assume 

00 

tJ; = 6 Bn sinncp 
n=l 

which leads to the equation 

G2 
E = 1 + ---'-----

E _ 4 _ _ ..::G;.....2_ 
E- 9··· 

(A3) 

(A4) 

The eigenvalues for the perturbed states associate 
with the original degenerate state E~ are to be deter
mined from Eqs. (A2) and (A4). 

APPENDIX B: FORMULA FOR xN AND Yl OF A 
CONTINUED FRACTIONAL FUNCTION 

Define a continued fractional function x; (A l' A 2' ••• , 
Ai) by 

1 x ;(AI' A 2 , ••• ,A i) = ---------:1;--------
Al - --------=::-1------

A ---~-----
2 A 

3 

i > 2, 

and 
x 1(A I ) = I/A I • 

The following relations can be found: 

1 



                                                                                                                                    

946 Wu, Tung, and Schwartz: Infinite order perturbation theory 

It can be shown that 

By writing Eq. (56) as 

1 
XN = ----------1---------

Al - -----------

A2 - ---------
A3 - ••• 

1 
A --N-l A' 

whereAH =AN - x N' 

we obtain 

PH = (AN- x N)P N-1 - PN-2, 

so that 
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P~ 

q;' 
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and the equation can be written as a quadratic form as 

By appropriate programming, P N' q N' P N-l' and q N-l can 
be calculated and the solution x N determined. 

By the same procedure, y 1 in Eq. (57) can be obtained. 
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Application of infinite order perturbation theory in linear 
systems. II. The frequency spectrum of disordered chains 
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A formulation is presented such that the ensemble average of the diagonal elements of the Green's 
function for a one-dimensional disordered system can be calculated to arbitrary accuracy. The method 
is illustrated with an application to an isotopically disordered chain. An approximate solution to the 
frequency spectrum of a disordered binary chain is also discussed. 

The study of dynamical properties of disordered sys
tems has been a field of interest since about two decades 
ago. 1 In recent years, there were several different ap
proaches which had yielded good results. 2 Among them 
are the direct numerical calculation devised by Dean 
and Green's function approach first applied by Langer. 3 

The numerical results have provided us with an insight 
into the vibrational properties of the disordered sys
tems. For example, the frequency spectrum has a fine 
structure with many distinct peaks and some normal 
modes of vibration are strongly localized. The Green's 
function approach usually starts with expanding the 
elements of the inverse dynamical matrix, the Green's 
function or "Greenian." Then various schemes are de
signed to obtain the ensemble average of the "Greenian, " 
from which the frequency spectrum is computed. 4-7 On 
the whole, the existing Green's function calculations ap
pear to reproduce fairly accurately spectra which are 
known to be reasonably smooth but fail in obtaining any 
detailed structure which is known to exist. 8 This is es
pecially the case for the one-dimensional disordered 
systems. 5. 8 Thus the study of disordered chains pro-

I vides a testing ground for the analytical theory. 

Recently, Wu, Tung, and Schwartz9 (referred to as 
I) developed an infinite order perturbation theory for 
linear systems. Their method, when applied to a dis
ordered chain of finite length, can lead to the exact 
summation of the infinite series of the Green's func
tion. However, their calculation still depends on the 
particular configuration of the disordered chain. For 
the purpose of understanding the properties of a very 
long disordered chain, in this work we present a method 
which will lead to an exact calculation of the ensemble 
average of the Green's function, where the average is 
taken over an ensemble of chains of all possible con
figurations. We shall also discuss an approximation 
scheme for this method. 

I. THE FORMULATION 

To illustrate the method, we consider an isotopically 
disordered chain. The equation of motion can be written 
as 

(1) 

where m, is the mass of the atom at the lth site, u, is 
the displacement of the lth atom from its equilibrium 
position, and y is the force constant. Note that in writ
ing down Eq. (1) only the nearest-neighbor interaction 
is considered. Following Wu et al. ,9 the Green's func
tion D(w2

) is defined as the inverse of the dynamical 
matrix D-1(W2) such that 
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where 

(
2Y ) Y Y Di~' = - - w

2 
Ii II' - -1i'+1,,' - -li'_l,," m, m, m, 

The formal solution to Eq, (2) has been obtained by 
Wu et al. 9 and can be written as 

DII =B/(A, - Z,) 

where 

A,=2- ~ w2
, 

y 

with 

m, 
B,=-, 

y 

Zi = 1/ (A'''l - Zi"l)' 

and Z, =Z; +Zi 

The ensemble average of the Green's function can 
then be obtained as10 

D= (DII ) = L( ci (AI~Z) , 
where ci is the concentration of the ith specie of the 
atoms in the chain, AI =2 - (m/y)w2 and Bi =m/y. 

(2) 

(3) 

(4) 

(5) 

Since the Zi satisfy the recurrence relation given by 
Eq. (4), they must be independent. One can then set up 
a functional equation for the distribution function P(Z) 
such that P(Z) dZ gives the probability that Zi will be 
in the interval between Z and Z + dZ. Following 
Schmidt ,11 the functional equation can be written as 

p(Z) = Y c i (All_ Z)2 P (AI ~ Z) . 

The average (B/ (AI - Z) is then written as 

/ -.!!L.) =B f p(Z+)P(Z-)dZ+dZ-
\ AI - Z i AI - Z+ - Z- . 

The frequency spectrum of the infinite chain with 
species concentration cl's can now be computed using 

where D is to be calculated from Eqs. (5) and (7). It 
should be noted that, in deriving Eqs. (5) and (7), no 
approximation is involved. 

(6) 

(7) 

The distribution function P(Z) can be determined by 
solving a system of simultaneous equations either di
rectly12 or in a self-consistent manner, 13 The analysis 
of Gubernatis and Taylor13 indicated that the numerical 
accuracy can be achieved to an absolute error as low as 
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one part in 1010. The calculation of the frequency spec
trum depends entirely on P(Z) , and hence the accuracy 
of the calculation can be expected to arbitrary accura
cy. However, the computation is usually tedious and 
time-consuming. Thus we shall next discuss an approx
imation scheme which, on the one hand, is easy for 
computation and, on the other hand, leads to the correct 
features of the frequency spectrum. 

II. THE APPROXIMATION 

In Dean's numerical works2 on the frequency spectra 
of binary disordered chains, the impurity bands were 
identified as due to islands of one, two, or three light 
impurities in the sea of heavy host atoms. The struc
tures of these bands persist even for large impurity 
concentrations. These features could not be obtained 
from the calculations of the existing perturbation meth
ods. However, these highly localized impurity modes 
have been investigated through the study of the dynamics 
of short chains. Rosenstock and McGill14 computed the 
frequency spectrum (using a convenient histogram in
terval) of binary chains of short lengths, say 10 or 12 
atoms, and then averaged over all possible structural 
configurations. They found that the high frequency re
gion of the resulting average spectrum reproduces the 
correct features for a very long chain. At low frequen
cies, the method was not fruitful. Wu et al., 9 using the 
method of Green's function, computed the average spec
trum for chains of 40 atoms with 5% light impurity. At 
low frequencies, they obtained good agreement with the 
frequency spectrum of a long chain _ They also obtained 
the correct isolated impurity modes, but the intensities 
of those modes compared to the continuous part ap
peared to be too large. The above consideration then 
suggests that an analytic theory will be successful if it 
can account for both the properties of the average lat
tice and the dynamics of the local configurations _ The 
formulation of our method [Eq. (5») is suitable for these 
purposes. 

To illustrate this point, let us consider the case of a 
binary chain with concentration cl and c2 • Equation (5) 
can then be written as 

D=cl (Al ~lZ)+C2 \A2~2Z) • (8) 

The ensemble average (B/(Al - Z,» can be calculated 
step by step, using Eq. (4). Thus 

\Bl ~lZ,) = (B/( Al - A'+l ~Z~+l - A'_l ~Zi_l)) 
=c~ (B1/(A1- A ~Z+ - A ~z: )) 

1 '+1 1 '-1 

This sequential averaging process can be carried out 
continously so that in principle D can be calculated in 
this tedious manner. A possible approximate scheme is 
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to truncate the sequential averaging at, say, the rth 
step by replacing Zi,.1' by an "effective" parameter ~ 
which reflects the average properties of the system. 
This parameter ~ can be determined self-consistently 
by again making use of Eq. (4). In this scheme, the en
semble-averaged Green's function D is given by 

D _2r+1 B1 + ....21' ( B2 
0< CJ: A _ 2Z CJ: c2 .4 2Z 

1 ~ .~- 1 ... 1 
l' --;:--

where a typical term such as Z121 ... 12 is defined as 

1 
Z121 .. . 12 =A -:::--------1:-----

1 - -;-____ ---::--__ _ 

A2 - -:-___ 1 ___ _ 

A 1 - • 

1 
A 1 - 1 

A2-~ . 

(9) 

(10) 

The parameter ~ is to be determined self-consistently 
by 

We note that Eqs. (9)-(11) can be reduced to the proper 
equations for a monatomic chain if either c1 or c2 is 
zero. This can be seen as follows. For c1 = 1 and c2 = 0, 
Eq. (11) becomes 

~ =1/(A1 -~), 

and from Eqs. (9) and (10), we obtain 

D=B1 (A1 - 2~). 

(11 ,) 

(9') 

As an example of applying this method to disordered 
chains, we have computed the frequency spectrum for 
a random binary chain with 5% light impurity (c1 = 95%, 
c2 =5%, and m/m1 =0;5). The truncation15 was made 
at r=4. In the calculation, a reduced unit was chosen 
such that "lm1 = 1. The calculated frequency spectrum 
from w2 =4.0 to w2=8.0 reproduced the impurity bands 
at w2 =4.83, 5.18, 5.33, 5.45, 5.65, and 6.46 (Fig. 1). 
Figure 1 shows that our frequency spectrum exhibits 
more fine structure in comparison to that obtained by 
Dean. We believe that this arises from the fact that 
Dean's histogram was constructed with an interval of 
Aw2 = 0 .125. To confirm this point, we have computed 
the frequency spectrum using Dean's method of negative 
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FIG. 1. The frequency spectrum (from w2 =4. 6 to w2 =6. 6) of a 
binary chain of mass ratio m2/ml = O. 5 and 5% impurity (m2) 
concentration. The histogram is Dean's numerical calculation. 

mode counting at intervals of ~W2 = 0.01. The result 
is shown in Fig. 2. The agreement between the positions 
of the impurity bands based on our analytic method and 
those obtained by the new numerical calculation using 
Dean's method is certainly heartening. 

In this calculation, we are mainly concerned with 
the demonstration of the feasibility of the approxima
tion scheme. Hence the truncation was made as a re
sult of an educated guess based on the work of Rosen-

. stock and McGill.15 However, a justifiable truncation, 
say at the rth step, can be established if the results 
based on it and those obtained by making the truncation 
at the (r+l)th step converge. Work is now in progress 
along this line. It is expected that, with proper trunca
tion established, even better agreement can be achieved 
between the results based on our method and those ob
tained by numerical calculation, especially for the mag
nitude of the frequency spectrum in the region of im
purity bands. 

Thus our method, on the one hand, leads to a formu
lation for an exact calculation of the ensemble average 
of the Green's function [Eqs. (5)-(7)] which as a rule 
would be time-consuming but, on the other hand, pro
vides a readily accessible scheme for approximate cal
culation which gives all the correct features of the fre
quency spectrum. We also note that, in our approxima
tion scheme, the impurity concentration has not been 
used as a perturbation parameter. 

APPENDIX 

Equation (5) can be derived as follows: 

Since 

and 
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FIG. 2. The computed impurity bands (dotted line) as compared 
to those obtained by negative mode counting method with ~w2 
= O. 01. 

any term of the structure {(B/A7+1
) Z, n> can be factored 

into 

Therefore D can be expressed as 

D=DII =6ci (A ~Z)' 
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The far field solution for the scattering of plane longitudinal elastic wave by a large convex rigid object with a 
statistically corrugated surface is obtained and the effective reflection and diffraction coefficients are deduced. 

INTRODUCTION 

In Paper P the geometrical theory of diffraction,2,3,4 
has been extended to include the scattering of time har
monic plane longitudinal elastic wave by a large convex 
rigid object with statistical surface irregularities. 
There the asymptotic expansion of the first-order per
turbation solution is expressed in terms of surface in
tegrals of the equivalent source function S1 andhence it 
is not explicit enough for the purpose of physical inter
pretation. In this paper, the aforementioned integrals 
are first evaluated asymptotically for far field and then 
the effective reflection and diffraction coefficients are 
deduced. Finally, the expression of the mean value of 
U s1 for far field is given. 

I. WAVES IN FAR FIELD 

A. Geometric optics wave in far field 

Since the zeroth-order diffracted wave is asymptotically 
small in comparison with the geometriC optics wave,for 
simplicity, we ignore the zeroth -order diffracted wave 
in calculating the asymptotic expanSion of the equiva
lent source function S1' 

From (I. 5. 30), we have that for 0 = 0' 

(aU i au~o~ -+--ar ar r=a 

~ ik1 cose'(- cose'lr' + sine'la') exp(ik1a cose') 

'k e' cost 0' + ~') (B'l ' e'l ) 
- Z 1 cos cos(O' _ ~') cos r' + sm a' 

x exp(ik1a cose') 

'k ' 2 cose' sine' ( '~"1 "1 ) 
- Z 2 cos~ cos(O' _ ~') Sl1", r' - cos" a' 

X exp(ik1a cose') for e' < !1T 
~ 0 for 0' > ! 11' , 

where 

(1.1) 

A' = sin-1 [(I/N) sine']. (1. 2) 

Hence from (I. 4,18), we obtain the asymptotic expansion 
of S1 as 

S ~ 'k 2 cosO' cos~' f( D' ') ('k e') 1 r' ~ Z 1 a cost e' _ ~') '" ,cp ,q exp z 1 a cos 

for 0' < !1T 
~ 0 for O' > t 11' (1. 3) 

and 

S ~ 'k sin20' flO' ') ('k D') ul' ~ -1 2 a cos(O' _~') ,cp ,q exp z 1a cos", 

for O' < tlT 
~ 0 for e' > ilT. (1.4) 

We will then evaluate the integral (I. 6. 66) for far field, 
r »a. Upon utilizing the saddle point method for double 
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integrals,5 we find that the saddle point equations are 

jSin(cp - cp') ::::: 0, (1. 5) 

'D' , ~ 0 (1 6) sm", + Sllry ae' = , . 

for the first integral of (I. 6. 66) and 

~Sin(cp - cp') ::::: 0, 

l sinO' + N siny ~ = 0, 

(1. 7) 

(1.8) 

for the second and third integrals of (1.6.66). 

It can be shown that equations (1.5) and (1.6) have the 
real solution 

0' = 0/2, cp' = cp, for 0' < rr/2 (1. 9) 

and equations (1.7) and (1.8) have the real solution 

0' = tan-1 [N sinO/(1 + N cosO)], cp' = cp, for 0' < 11'/2. 

(1.10) 
Finally, the saddle-point contribution of the first integral 
of (I. 6.66) gives the first-order reflected P wave, 

U~1p(r,q) ~ i k:;2 f(;,CP,q) cos~ (N2 COS2~ - sin2~) 
x [cos~ ~2 _ sin2;) 1/2 + sin;r

2 

x expl-ik1~-2acos:)~lr (1.11) 

and the saddle-point contribution of the seoond and third 
integrals of (I. 6. 66) gives the first-order reflected 
S wave, 

2k1a2 ".. ".. ~ 1'0. 
U~1s(r,q) ~ -i --'-Of (B,cp,q) sinO cos 0 cos(O - OJ r sm 

x cos-3(20 - 0)[(1 - N2) sinO cos(O - ~ cos20 

-N sinO cosO cos(O - 8) -N2 sine sin28] 

x exp{-ik2[r - a cos(O - 8) - aN-1 cos8]}la, 
(1.12) 

where 

0= tan- 1 [N sinO/(1 + N cos e)]. (1. 13) 

From (1.11) we observe that the main contribution of the 
far field of the first-order reflected P wave comes from 
the equivalent source in the neighborhood of QJ!. the'point 
of reflection of the zeroth-order P wave. Similarly, it 
is true for the first-order reflected S wave (Fig. 1) . 

Upon combining (I. 5. 28) and (1. 11), we obtain the far 
field expression of the scattered geometric optics P wave, 

U~p ~ lr(a/2r)R p-ejj exp{-ik1(r - 2a cost e)} + 0(£2) 

in the lit region, 

~ 0(£2) in the shadow region, (1.14) 
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FIELD 
POINT 

SHADOW 
REGION 

FIG.1. The first order reflected geometric rays are shown. 

where the effective reflection coefficient of P wave 

(N2 - sin21.e)1/2 cos.!.e - sin2.!e 
R = 2 2 2 

p-ejj (N2 - sin2te)1/2 coste + sin2te 

+ Ei2k 1aj(te,cp,q) 

(N2 cos2~e - sin2te) cosie 
x . 

[(N2 - sin2ie)1/2 cosie + sinie]2 
(1.15) 

Similarly, from (I. 5. 28) and (1.12), we have the far 
field expression of the scattered geometric optics S 
wave, 

UG ~ 1 ~ ~ N2 cos(e - 8) sine fl/2 
ss 9 [ ~/ ~] r 1 + cose N cos(e - e sine 

x Rs-ejjexp{-ik2[r-acos(e- 9)-aN-ICOSe]} + 0(£2) 

for e < (1T/2) + sin- 1(I/N) or e < (1T/2) 

for e> (1T/2) + sin- 1(I/N) or {f > (11/2), 

(1.16) 

where the effective reflection coefficient of S wave, 

-2 cosB sine . (~ ) 
R s-ejj = ~ ~ 2~ - Et2k 1af e,cp,q 

N cos(e - e) cose + sin e 

~ (N sinB)1/2 ~ ~ 
x cose, Sine [cose +N cos(e- e)]1/2 

x cos-3 (2 e - e)[(1 - N2) sine cos2 eN cos( e - 0) 

- N2 sine cose cos(e - e) - N3 sine sin2e]. 

(1. 17) 

From (1.14) and (1.16) we observe that in the far field 
region the reflected waves, both P and S, are essentially 
spherical waves. Furthermore,from (1.15) and (1.17) 
we find that up to and including terms of O(E) the reflec
ted waves depend on kl aEf. Hence, in this case we be
lieve that our boundary-perturbation technique is reason
ably good for k aE I f I < 1 (E: Ifi small in comparison 
with wavelength). This restriction is stronger than the 
restriction, Elf I < 1, posed in Sec. 3 of Paper I. How
ever, there is no restriction here on the derivatives of 
f as those are posed in Sec. 3 of Paper I. 
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B. Diffracted wave in far field 

Upon following the same procedure as that in evaluating 
the surface integrals of the geometric optics wave, we 
find that, contrary to the geometric optics wave, Ui and 
U~o components of SI give no contribution to the far 
field first-order diffracted wave. From (I. 4.18) and 
(I. 5.43), the asymptotic expansions of S 1r' and SI9' due 
to Ufo component are 

SIr' ~ iklaf(e',cp',qm~s(1/a sine,)1/2 

x (1 - I/N2)1/4(1 + e-t21rVxfl{exP[-illx(h + e')] 

+ exp[-illx(~w - e') - ih]} for e' < h, 
~ iklaf(e',cp,q)~~s(1/a sine,)1/2(1 _N2)1/4 

-i21rv )-1 { 1 x (1 + e x exp[-ill A(e' - 2"W) + iw] 

for e' > iw, (1.18) 

and 

S19' ~ ik2af(e',cp,q)~~s(1/a sine,)1/2 

x (1 - I/N2)3/\1 + e-i2.-vAfl{exp[-iIlA(~1T + e')] 

- exp[-iIlA(h - e') - ii1T]} for e' < h, 
~ ik2af(e',cp',q)~~s(1/a sine')1/2 

x (1 - I/N2)3/\1 +e-i2.vxfl{exp[-illte'- h) + i1T] 

- exp[-illx(~1T - e') + i~1T]} for e' > i1T. (1.19) 

In evaluating the double integral (I. 6. 89) by the saddle
point method, it is found that the saddle point is indepen
dent of e', hence we can evaluate the integrals with res
pect to cp' only. 

The saddle point equation is 

sin(cp' - cp) = 0, 

which has two solutions 

cp' = cp 
and 

, ~ {CP + 1T 
cp =cp= 

cp - 1T 

for cp < 1T 

for cp > 1T 

(1.20) 

(1. 21) 

(1.22) 

Finally, the saddle point evaluation leads to the asymp
totic expressions for the far field first-order diffracted 
wave, 

(1. 23) 

where the pressure wave 

],
1r/2 

UflP(r, q):::::I"ECslp [(exp[-iIlA(21T+e)+ih] 0 f(9', cp, q)de' 
VA 

+ exp[-ill A e - ii 1T] 1:;2 f( e', cp, q)de' 

],
(1r/2)-6 ~ 

+ exp[-iIl A(2w + e)] 0 f(e',cp,q)de' 

+ exp[-ill A e - iw] 1(:/2)-6 f( e',;P, q)de') 

I. (w2) +6 
+ \exp[-iIl A(2W - e)] 10 f(e',cp,q)de' 

+ exp[ill A e - iw] 1(;/2)+6 f( e', cp, q)de' 

1 f,,/2 ~ + exp[-ill x(21T - (J) + i2"1T] 0 f(e',cp,q)de' 

+ exp[ill A (J - ii1T] 1:;2 f( e',;P, q)de')] 1 y 

for e < h, (1. 24) 
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~ L; CSlpr(exp[-iIlA9-ih] l
o
e

-("'2) f(9',cp,q)d9' 
1\ L' "'2 

+ exp[-iIl A(21T + 9) + ii1T] Ia_("'2)f(9',cp,q)d8' 

+ exp[-iIlA 9 - ih] ~;2 f (9', cp,q)d9' 

+ exp[-ill A 9 - i1T] 10" f( 8',;P, q)d8) 

+ (exp[-iV A(21T- 9)] 1
0

• f(9',cp,q)d9' 

1 rfl/ 2 
A + exp[-ivA(21T - 9) + i"21T] Jo f(9',cp,q)d9' 

1 1(3/2h-e ,... 
+ exp[iv A 9 - i"21T] fI/2 f( 9', cp, q)d9' 

+ exp[-iv A(21T - 8) + ii1T] ~:/2)!r-e f(8,,;p,q)d9)] ly 

for 9> !1T 
with 

2 2 . 1/2( / )2/3 C slP = (a/r)21T(N -1) (21T/a sm8) k l a 6 

r -2( -i2"v )-2 ['k . . 5 ] xlA(t A)] l+e A exp-z lr-z1TVA-Z"i21T 

(1. 25) 
and the shear wave 

Ufls(r, q)~~Cs1s [~XP[-iV~(21T+8) +ih] 10"'/(8', cp,q)d9' 

+ exp[-iIl A 9 - i!1T] ~/2 f( 9', cp, q)d9' 

("'2)-e ,... 
+ exp[-iv A(21T + 9) + i1T] 10 f(8',cp,q)d9' 

+ exp[-ivA9] ~1f~2)-e f(9',;p,q)d9) 

( r("'2)+f)" + ,exp[-iv A(21T - 9) + i1T] Jo f(9,cp,q)d9 

+ exp[iv A 9] ~"~2)+e f( 9', cp, q)d9' 

r"'2 ,... + exp[-ivA(21T - 8) + ih] Jo f(9',cp,q)d9' 

+ exp[iv A 9 - ih] ~;2 f(9', ;p,q)d8')] Ie 

for 8 < h, (1. 26) 

[( 

1 l e- (1f/2) , 
~ ~ C sls exp[-iIl A8 - i"21T] f(9', cp,q)d9 

+ exp[-iIl A(21T + 9) + ii1T] Ia~("/2J(9',cp,q)d9' 

+ exp[-ill A 8 - i! 1T] fw;2 f( 9', cp, q)d9' 

+ exp[-iv A9] 10" f(9,,;p,q)d9') 

+ (exP[-iIl A(21T - 9) + i1T] 10" f(9',cp,q)d9' 

r1ll2 A 

+ exp[-iv A(21T - 9) + i!1T] Jo f(9',cp,q)d9' 

1 1(3/2).-e ,"" , 
+ exp[iIl A9-i"2 1T ] ,,/2 f(8,cp,q)d9 

+ exp[-iIl A(21T - 9) + ih] ~:/2),,-f) f(8,,;p,q)d9)J 1e 

for 8> i 11" 

with 
C _~211"N4(1_~)7/4{1+ 1 \(1I"k la)I/2 

sIs - r N2 \ ..JN2 - 1) a sin8 

[ ( 
1 )1/2 

X exp -ik2r + ik 2a 1 - N2 

-Z1I"V -zv cos --z-. • . -1 1 . 1I"J 
A A N 3 

(1. 27) 
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Upon examining (1. 24) and (1. 26) ,it is found that the 
contribution of SI to U~1 comes from every pOint on the 
circle formed by the intersection of the plane, defined 
by r,Q and O,and the sphere of radius a (Fig. 2). Hence 
the total contribution is obtained by integrating the 
source distribution along the entire circumference of 
the circle. The first four terms of (1. 24) and (1. 26) 
represent the total contribution of SI on the circule to 
the first-order diffracted rays traveling clockwise on 
the surface of the sphere and the last four terms of 
(1.24) and (1.26) represent the first-order diffracted 
rays traveling counterclockwise. Note that there are 
only phase factors outside of integrals which means 
that the phase factors being independent of 9' in various 
ranges of integration. This is because every point in
side the particular range of integration has exactly the 
same phase distance from the point on the Circle, where 
the incident wave hits the sphere tangentially, to the 
point, where the first-order diffracted wave leaves the 
surface tangentially towards the field pOint. 

Upon combining (1. 5.43) and (1.24), we obtain the far 
field expreSSion of the diffracted P -wave, 

U D ~ 1 1 (~\1/2e-iklrL; (1 + e-i2"vAfl 
sp Yr sm9) VA 

x D~~p + EAl [(ie -i2"vA 10,,/2 f(8', cp,q)d9' 

1" -"2 v r(,,12)-e A 

-i f(9',cp,q)d9' + e ' "A J,o f(9',cp,q)d9' 
n/2 

- ~;2)-e f(8', ;p,q)d9JH(t - 8) 
+ (-i l

o
e

-(,,/2) f(9',cp,q)d8' + ie- i2 • vA 

x 11112 f(9',cp,q)d8' -i 1/"2 f (9',CP,q)d8' 
e- (,,/2) n 

- 10" f(9', ;p,q)d9) H (8 - t)]~ e -ivA(If+e) 

+ ~~~p+ €Al[(e-i2nvA 1
0
("/2)+e f(8',cp,q)d8' 

- in f(9',cp,q)d9' + ie- i2"vA lon/2 f(9',;P,q)d9' 
(,,/2)+e 

- i fw;2 f(9', ;P,q)d9)H(~ - 9) 
+ (e- i2 "VA l

o
n
f(8',cp,q)d9' + ie-i2nvA fo"/2 f (8',;p,q)d9' 

- . 1(3/2)n-e f (",,... )d9' 
Z n/2 v,cp,q 

+ ie-i2nvA J" f(9' cp~ q)d8~ H 
(3/2)n-e " ) 

X (8 - t)] ~ e -iVA( .. -e)] + O(€2) 

in the lit region, (1.28) 
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r.:s 1 1. ( .a 011/2 e-ik1T ~ (1 + e -i2l!"A fl 
r r sm jj v"A 

X l[:o~p + '::Al(-i f:-(1[/2) f(B',cp,q)dB' 

-'2 (11/2 J" 
+ ie ' .v"A Je-(1I/2) f(8',cp,q)dB' -i 1[/2 f (B',cp,q)dB' 

- f; f(B,,;p,q)dB)]e-iV"A(w+e> 

+ [:D~p + €Al(e-i21lV"A fa" f(8',cp,q)dB' 

-'2 ("f2 ~ J(3/2).-e ~ 
+ie' "V"A Jo f(B',cp,q)d8'-i 11/2 f(8',cp,q)dB' 

+ ie-i21fv"A ~;/2)1!-6 f(8 1 ,;p,q)d8)] e-iV"A(,,-e)f + 0(.::2) 

in the shadow region, 
where 

Al = (2'IT)3/2(N2 - 1)2 (krY/3 

X [A(t "A)r 2(1 + e -i2nv"Ar1e -iS/12,. (1. 29) 

Similarly from (I. 5.43) and t1. 26), we obtain the far 
field expression of the diffracted S wave, 

D 1 f- a \ 1/2 1/2 
Uss ~ Ie r\sinBj exp{-ik 2r + ik 2a[1 - (I/N2)] } 

X ~ (1 + e-i2"V"Af1D:D~s + .::A2 

x [(ie-ihV>. fo"/2 f(8',cp,q)dB' -i (2 f (8',CP,q)dB' 

_e- i2 "v"A 1:,,/2)-e f(8',;P,q)d8' 

+ ~1f~2)-e f(O,,;p,q)dB)n(1- B) 

( 
(9-(1f/2) 

+ -i Jo f(8',cp,q)dB' 

+ ie - t21fv "A (,,/2 f(8' £f' q)dB' 
Je-{lf/2) ''t'', 

- i (2 f(8', cp,q)d8' + 10" f(8', ;p,q)d8)n (8 - t)] 
xexp{-ill)J7T + 8 + cos-l(l/N)]} 

+ l:D~s + .::A2[(_e-i21lV"A 1
0
<n/2)+6 f(8',cp,q)dB' 

11\' -/2 v ( .. /2 ~ 
+ (1f/2)+e f (8',cp,q)d8'+ie ""A Jo f(8',cp,q)dB' 

-i ~;2f(8',;P,q)d8)n(t- B) 

+ (_e- i211V"A (" f(8' )dB' + 'e- i21fv"A Jo ,cp,q z 

x 101112 f(O',;P,q)dB' -i 1,~~2)W-9 f{8',;P,q)d8' 

+ie- i211u"A 1" f(8' ;p q)d8')n(8-!!....)~t 
(3/2)1I-e " \' 2 ~ \ 

x exp{ill"A[7T - 8 + COS-\I/N)])] + 0(.::2) 

in the lit region, (1.30) 
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x ~ (1 + e -i2"V"Af1 

v"A 

~ r. 2 ( (6-(11/2) -;2"" x IL:Dos+€A2,i Jo f(8',cp,q)d8'+ie A 

1112 J" 
X ie_<1I/2)f(8', cp,q)dB' - i 11/2 f(B', cp,q)d8' 

+ fo" f(8 1 ,;p,q}d81
)] exp{-ill>.['IT + B + cos-l(l/N)]} 

-12" (11/2 ~ + ie 11 A Jo f(8',cp,q)d8' 

X ~:/2)1l-6 f( 8',;P, q)dO-)] 

x exp[-iv"A[1T - 8 + COS-1(1/N)]l + 0(.::2) 

in the shadow region, 

where 

A2 = 2'IT~(1-1/~)7/4[1 + (N2 _lfl/2] 

x(1Tk1 a)1/2(k1 a/6)1/3fA(t "An- l (l + e -i21r" "Afl e-11!/3. 

(1. 31) 

From (1. 28) and (1. 30) we observe that in the far field 
region the diffracted waves are essentially spherical 
waves and their expressions break down at e == 0 and 1T. 
Again it seems that our boundary-perturbation technique 
is reasonably good for (k1a) 5/6.:: I fl < 1. Due to the 
appearance of the integrals of f, the effective diffrac
tion coefficients are complicated and different for r in 
different regions. 

Since (1.14),(1.16),(1.28) and (1.30) containf linearly, 
the mean values of U~ and U~ can be simply obtained by 
replacing f by {f}. The generalization to large convex 
rigid objects can be made by following the recipe in 
Sec. 7 of Paper I. 

lW. Fan and Y. M. Chen, J. Math. Phys. 14, AlP p. no for Paper I (1973). 
2J. B. Keller, "A. Geometrical Theory of Diffraction", Symp. Microwave Optics, 
Eaton Electronics Res. Lab, McGill Univ., Montreal, Canada, 1953. 

3J. B. Keller, J. Opt. Soc. Am. 52, 116 (1962). 
4F. Gilbert, 1. Acoust. Soc. Am. 32,841 (1960). 
SO. S. Jones and M. Kline, Research Report No. EM-lOO, Division of 
Electromagnetic Research, Institute of Mathmatical Sciences, New York 
University (1956). 



                                                                                                                                    

Thermodynamics of a mixture of fermions and bosons in 
one dimension with a repulsive a-function potential 

c. K. Lai 

Department of Physics, University of Utah, Salt Lake City, Utah 84112 
(Received 19 October 1973) 

The thermOdynamics of a mixture of fermions and bosons is derived on the basis of two ansiitze 
about the roots of a set of algebraic equations. 

I. INTRODUCTION 

In a previous paper 1 (to be called I), the ground state 
energy of a mixture of fermions and bosons in one 
dimension with repulsive o-function potential was ob
tained. In this paper, we would like to show that the 
thermodynamics could alternatively be derived on the 
basis of two ansatze about the roots of the set of alge
braic equations. 

The Hamiltonian of the system to be considered is 

N 0 2 
H = -'}] -- + 2e '}] O(Xi -x), 

1 ox2i i<j 
c>O (1) 

for Ml fermions of species 1, M2 fermions of species 2, 
and Mb bosons. The energy levels of the system are de
termined by the algebraic equations (1. 11a, 1. llb, 1. 11g) 

II. THERMODYNAMICS 

We substitute Eq. (5) into Eqs. (2)-(4) to obtain 

eipL= n (-P +~' -in7]\ 
C(l.',n) -P +~' + in7])' 

(
-P' + ~ - imT/\ 

J) - P' + ~ + im T/ J = 
(_ 1)m n (~ - A' + imTl) 

A' ~ -A' - im7] 

x n exp ftamnl e(~ - e)], 
nl [ n -1 

n (A - ~' - inTI) = 1, 
C(t',n) A - ~' + inTI 

where 

for 1 = ± m, 1 '" n, 

(6) 

(7) 

(8) 

eiPL - n(iP - iA' - e') 
- A' iP - iN + e' ' 

number of P = N; (2) 
for 1 = - (m - 2), - (m - 4)"", (m - 2), 

n ( iA - iP' + e') __ n (iA - iN + e) n (iA - iA' - e') 
p' iA - iP' - c' A' iA - iN - e A' iA - iA' + e ' 

n (iA - iA' + e') - 1 
A' iA - iA' - e' - , 

number of A = M; 

number of A = M b ; 

whereN = Ml + M2 + M b , M = M? + M b , and e' = ie. 
Concerning the solutions of (2)-(4), we propose the 
following ansatze: 

(3) 

(4) 

Ansatz 1: When L is very large, the A's in the 
complex plane are located in strings, which are fermion
like: That is, a string C(~, m) is of the form 

Ansatz 2: The A's in Eqs. (3) and (4) are real 
numbers. 

( 5) 

Ansatz 1 is precisely the one we used to obtain the 
thermodynamics of the fermion problem2 (we will refer 
to this work as II). As for ansatz 2, it is not obvious 
from the structure of Eqs. (3) and (4) that the A's should 
be real. But if one considers that these variables might 
serve as a kind of pseudomomenta of the bosons, then 
ansatz 2 is a plausible one. 

In the following section, we will obtain the integral 
equations on the basis of the above ansatze. In Sec. In, 
the integral equations are solved exactly in special cases 
[c --> 0 and e --> 00]. In Sec . IV, the second vi rial coeffi
cient in the fugacity expanSion is computed. Both the 
special cases and the second vi rial coefficient give cor
rect results, and thus help to confirm the ansatze pro
posed. 
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otherwise; 

e(x) = 2 tan-1 (X/T/) , 1/ = e/2. 

Taking the logarithm, one has 

PL = 2rrlp + '}] e -- , ( ~' -P) 
C(t'.n) n 

'E e (~ - P ') = 2rrJf + '}] 'E 
P' m C(f',m) I 

Xa e (t - f) - 'E e(t -mA'), 
mnl n-1 A' 

'E e ---- = 2rr KA , (
A e) 

C(f ',n) n 

where Ip ' J" KA are integers or half-integers coming 
from the multiples of 2rr in logarithm. As L --> 00, the 
above become integral equations: 

(9) 

(10) 

(11) 

(12) 

r(A) dA, 

(14) 

where un' unh, etc. are the "particle" density and the 
"hole" density of the strings C(~, m), etc. Taking the 
Fourier transform of Eqs. (13)-(15), one obtains 

Copyright © 1974 by the American Institute of Physics 
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Equation (16) can be converted into 

(17) 

(18) 

(am + (7mh) 2 cosh1]w = am+ 1 •h + am- 10k , (19) 

where aolo ==P + T. Then (17) becomes 

5(w)/21T = P + Pk - i cosh 1]w (e-~Iwl aOh - alh)· (20) 

Now it is straightforward to obtain the thermodynamics 
following the method of Yang and Yang. 3 By the use 
of Eqs. (18)-(20) one writes 

Pk/P = exp[€(p)/T], ank/ak = exp[CPn(p)/T], 

Tk/T = exp[X(P)T]; 

and minimizes the free energy F = E - TS with the 
constraints: 

N - = const, (M1 - M2)/L = const, MiL = const. 
L 

One then obtains integral equations for the €(P) etc., as 
in (II. 23): 

a =p2 - € - iT to G1 1n(1 + e-€/T)dk 
-00 

- iT Joo G1 In(1 + e-I/I/T) dk 
-00 

- iT 1: Go In [1 + exp(CP; )] dk, (21a) 

C = -1J; + a - p2 + €, (21b) 

CP1 = iT 1: Go~ln[1 + exp(~)] -In(1 + e- dT ) 

- In(1 + e-I/I/T)~ dk, (21c) 

CP" = iT 1: Go~ In [1 + eXPe~l )] 
+ In [1 + exp(CPn;l)] \ dk, n'?: 2, (21d) 

with the asymptotic condition 

(22) 

The G's are kernels defined as in (II.ll). Once the € and 
CP's are obtained, it can easily be shown that from Eqs. 
(13)-(15), p, etc. are given by the following as in (n. 24): 

P = - (21T)-1(1 + e€/T)-I~, T = - (21T)-1 (1 + el/l/T)-1 o1J; , 
oa oa 

and 

an •k = - (21T)-1 [1 + exp(CPn/T)]-l :~; (23) 

E Joo N_ = (M1 + M2 + M b) __ Joo pdrp, - = P2p(P)dP, 
L -00 L L -00 

Mb 100 

-= TdP, L -00 
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Finally, the free energy is given by 

F N M b T 100 (Ml - M2) -=a-+C--- In(l+e-dT )dk-B . 
L L L 21T -00 L 

(24) 

III. SPECIAL CASES 

Equation (21) can be solved exactly in the cases c -> 0 
and c -> CXJ. 

A. c"" 0 

The solution in this case should give the results of a 
mixture of free bosons and free fermions. As c -> 0 , the 
kernels become delta functions and Eq. (21d) yields 

exp(2CPv) = [1 + exp(CPv+l)][1 + exp(cpv-l)]' 

Equation (25) has solutions 

1 + exp(cp) = sinh2(n.\. + 1-I)/sinh2.\., 

(25) 

(26) 

with .\.T == B, and I-! is to be determined from Eqs. (21a)
(21c). This leads to 

[1 + exp(- €)] [1 + exp(-1J;)] = sinh2Ajsinh21-!, 
(27) 

exp(- E + p2 - a) = exp(- 1/.1 - C) = sinh(.\. + I-!)/sinh. 

After some algebraic manipulation, one readily obtains 

th cosh.\. + expC + 2(cosh.\. + coshC) co Il = -
sinhA exp(p2 - a - C) - 1 

and 

21TT = [exp(p2 - a - C) - 1]-1, 

21TP = 21TT + [exp(p 2 - a - B) + 1]-1 

(28) 

(29) 

+ [exp(p 2 - a + B) + 1]-1, (30) 

N - 2M = 1... ~ exp(p 2 _ a _ B) + 1]-1 
L 21T 

- [exp(p 2 - a - B) + 1]-1}. (31) 

Equation (29) is just the distribution function for free 
bosons and Eqs. (30)-(31) are the distribution function 
for a mixture of free bosons and fermions in a magne
tic field B. 

B. c -+ ex> 

In this case, one would expect that all particles be
have like identical free fermions. This is because as the 
interaction strength c --7 CXJ, the exchange force due to the 
symmetry of the wavefunction becomes unimportant. 
As c -> CXJ, the integrals JG1 In(1 + e-€/T) do not contri
bute, allowing the 1J; and the CP' s to be constants: 

1 + eXPCPn = sinh2(n.\. + 1l)/sinh2,\, 

1 + exp(-1J;) = sinh2,\/sinh21l. 

I-! is to be determined from Eqs. (21a)-(21b): 

expC = sinh(.\. - Il)/ sinhI-!. 

Finally Eq. (21a) gives 

p2 - E - T In(expC + 2coshA) = a, 

21TP = (1 + e€/T)-l. 

(32) 

(33) 

(34) 

(35) 

Equation (35) with Eq. (34) gives simply the distribution 
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function for free fermions with each energy level being 
occupied by only one particle. 

IV. THE FUGACITY EXPANSION 

One can obtain the fugacity expansion as follows: Let 
00 

Substituting the above into Eq. (21), to zeroth order in 
z, one obtains 

p2 + ln~ = HGl lnwl + Go lnbl ], 

C = In(wl - 1) - HGl Inwl + Go lnbl ], 

In(bv - 1) = HGo InbV+ l + Go lnbv_d; 

bo == 1/wl , II ~ 1. 

To the first order of z, one obtains 

~ = !. [G IL + G (W2) + G (Cl)] 
n... 2 l-~ 1 W 0 b ' 
-.l 1 1 

Co "'2 -==-a,.--, 
bo wl 

(37a) 

(37b) 

(37c) 

(38a) 

(38b) 

II ~ 1. (38c) 

Equation (38c) has solutions 

bn =ln2 = sinh2(n>. + /L)/sinh2>., (39) 

where /L can be expressed in terms of C from Eqs. (38b) 
and (38c), Equation (38c) has solutions 

Cv = 1/21T jcv(w) exp(iwk)dw, 

cv(w) = A(w) {Ivlv-l exp[- I (II + 2)7]w I] (40) 

-Ivlv+l exp(- IIIW7]I)}, 
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where A(w) can be expressed in terms of the a's and 
W 's from the initial condition of colbo in Eq. (38c). After 
some algebraic manipulation, one can readily obtain 

expC = sinh(>. - /L)/sinh/L, 

~ = (expC + 2coshA) exp(- P2), 
(41) 

~ = [(expC + coshA)2 - sinh2>.] exp(-p2/T) j1<2 

. exp(-p2/T)dP. 

For simplicity, let B = 0 (>. = 0), then the pressure is 
given by 

p =.I... j dk[~z + (a 2 -l2:t 2/2)z2 + ... ] 
21T 

= (1TT)1I2 ~ (2 + expC)z + [(1 + expC)2 jK exp(- 2JJ2)dfJ 
211' I -./2 1 T 

_ (2 + eXPC)2]Z2 + ... t • 
22/3 \ 

This agrees with the result obtained by standard 
methods. For higher orders in z, the procedure is more 
tedious and will not be presented here. 

V. CONCLUSION 

We have obtained the thermodynamics of a mixture of 
fermions and bosons on the basis of two ansatze. Ansatz 
1 has been used successfully in the pure fermion prob
lem. Ansatz 2 is new. These ansatze are likely to be 
the correct ones as demonstrated by the correct solu
tions given in the special cases of the integral equations. 
The E(P), IPn(P)'s, and 1/I(P) in the equations can be inter
preted as excitation energies in the excitation spectrum 
at finite temperature. The excitation .spectrum has 
been computed in the pure fermion problem,4 and thus 
will not be repeated here. 

'c. K. Lai and C. N. Yang, Phys. Rev. A 3, 393 (1971). 
'c. K. Lai, Phys. Rev. Letters 26,1472 (1971). 
3c. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969). 
'c. K. Lai (to be published). 



                                                                                                                                    

Elastic scaHering in the Kerr metric 
s. K. Bose and M. Y. Wang 

Department of Physics. University of Notre Dame. Notre Dame. Indiana 46556 

The differential cross section for scattering from a source whose gravitational field is described by 
the Kerr metric is evaluated. 

I. INTRODUCTION 

Recently the problem of elastic scattering in general 
relativity has been treated by Collins, Delbourgo, and 
Williams'! These authors have studied the differential 
scattering cross section from a Schwarzschild source 
and obtained the relativistic correction term to the clas
sical Rutherford formula. In this paper the result of 
Ref. 1 is generalized to take account of the rotation of 
the source. The relevant geometry now is that described 
by the Kerr metric. 2 In view of the fact that black holes 
are believed to be described by the Kerr metric,3 our 
exercise may not be entirely devoid of physical interest. 

Several features of the present problem should be 
mentioned. Two of these, viz., (1) the existence of a 
critical angular momentum below which capture occurs 
and (2) multi spiral scattering, which contributes to a 
given final scattering angle and divides the impact para
meters into various zones, are general relativistic effects 
which are also present in the corresponding Schwarzs
child problem, as has been already noted in Ref. 1. Addi
tionally, it is known that in the Kerr metric the only 
planar motion possible is that in the equitorial plane. 
Throughout this paper we will confine our attention to 
this plane. 

II. GEODESICS AND SCATTERING IN THE 
KERR METRIC 

In the Boyer-Lindquist4 coordinate the Kerr metric is 
given by 

ds 2 = dr2 + 2a sin2edrdcp + (r2 + a2) sin2ed¢2 

+ 2mr (dr + a sin2edcp + at)2, (1) 
r2 + a2 cos2e 

where m is the mass of the scattering center and a its 
angular momentum per unit mass. IT the motion of the 
test particle is confined to the equitorial plane (e = 7T/2), 
then the timelike geodesic equation, according to Boyer 
and Lindquist,is 

d_cp = _a_ ± _....:.A:.=-(~u.!...-)----:-_ 
du D(u) D(u)[B(u)P/2' 

where u = l/r andA(u),B(u),and LJ(u) are given by 

1 2m ( ) A(u) = - - - 1 + yao u, o 0 

D(u) = 1 - 2mu + a2u2, 

1 
+ 2mu + - (a 20 2(y2 - 1) - l)u2 

0 2 
B(u) = y2 - 1 

+ 2m (1 +yao)2u3. 
0 2 

(2) 

(3a) 

(3b) 

(3c) 

The constants of motion 0 and y occurring above are re
lated to the mass /.I of the scattered particle, its energy 
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E and its angular momentum 1 at asymptotic radial dist
ances as 

o = /.I/l, y = E//.I. (4) 

The total deflection llcp is obtained from Eq. (2) by inte
grating the right-hand side over a contour from u = 0 
to the branch point u = 1/ d at pericenter and back to u = 
o again: 

ll.CP - 2 J 11 d A_(_u) _du"'----:--
- 0 D(u) [B(u)]1/2' 

To bring the above to a standard form write 

m ± (m 2 - a2)1/2 
u = 

• a
2 

(5) 

(6) 

and split the rational portion of the integrand into partial 
fraction: 

A(u) 

D(u) 
A = ±1 

• 20(m2 - a2)1/2 

[ - 1 + 2m(1 + yao)u.]. (7) 

Now write the cubic B(u) as 

(8) 

where by definition u 2 = l/d and introduces further the 
notation 

(9) 

Equation (5) now reduces to 

(1 - 0_ y2)[(1 ~Y2)(1 - k2y 2)]1Ii) . 

(10) 

The integrals occurring above can be expressed as 

Copyright © 1974 by the American Institute of PhYSics 957 
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when the two terms on the right-hand side of the above 
are, respectively, the complete and incomplete elliptic 
functions of the third type. With appropriate (and minor) 
modifications the above is the result given by Boyer and 
Lindquist4 in their treatment of the deflection of light 
in the Kerr metric. 

The expression for scattering cross section is to be 
calculated from Eq. (10). First, the total angle of devia
tion X of the test particle is 

X == t>.cp - 7T (12) 

and the measured scattering angle B is 

B == I X - 2n7T I (13) 

when n is the number of loops around the scattering 
center that the test particle traverses before escaping 
to infinity. The impact parameter b is 11 p == a-1(1'2-
1)-1/2 and as explained in Ref. 1, the differential scatter
ing cross section is given by the formula 

da __ 1 _ 6 --L I da n I 
dO - 1'2 - 1 n a~ d cosB ' 

where a n connotes the range of a values which result 
in an n-spiral scattering having B = ± (X - 2n7T). 

If we consider a situation in which the test particle 

(14) 

is initially at an infinite distance from the scattering 
center then two possibilities arise: (i) scattering of the 
particle, occurring when, u 3 ::::; 0 < u 2 < u 1; (ii) capture 
of the particle taking place when u 3 ::::; 0 < u2 = u1' The 
critical value of a for which particle capture takes place 
is denoted by a c' In the next section we shall derive 
asymptotic expressions for the cross section in the 
limit of large and critical angular momentum. 

III. ASYMPTOTIC RESULTS 

We shall obtain asymptotic expansions about two 
limits, a = 0 and a = a c' First consider the limit 
around a = O. We expand the roots of the cubic B(u) 
and obtain: 

u 1 = 2m - m a + 2m a2 - 2m1'2 a 2 + O(a 3
), 

1 1'a (21'2 + 1 ) 

(15a) 
u2 = (1'2 _1)1/20: + 1'2m0: 2 + (1'2 _1)1/2[21'am(1'2 _1)112 

+X]0:3, (15b) 

U3 = - (1'2 -1)1/2 a + 1'2ma 2 + (1'2 _1)1/2[21'am(1'2 

_1)1/2 -X]a 3 , (15c) 

with 

(15d) 
and 

+ 2916m 41'4 + 864m 4 + 15181'2a2m 2 - 38881'2m 4 • 

(15e) 
The reason for keeping 0: 3 terms in u 2 and u3 is that 
we need these terms to calculate (see below) sin2>IJ o to 
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within a 2 order. From Eqs. (15a)-{15c) and (9) we get: 

k 2 == 4mO:{1'2 _1)1/2{1 - 2[m{1'2 _1)1/2 -1'u]o:}, (16) 

Using the above expressions (16)-(18'), we can carry 
out an expansion of the integrand in (11) and then evaluate 
the integral after performing a series of elementary 
operations. Alternatively, we can calculate the first 
three terms of the appropriate expansion of the elliptiC 
functions of the third kind 5 

00 /l 
n{>lJo,-o:.,k) == ~ (a.)/lJ2 (>lt~) 6 

/l~O /l u~o 

n{-a.,k) = n(>lto ==~, -o:.,k) 

with 

(19) 

21L - 1 1 
J 2 (>lt~) == -2- J2 (>lt~) --2 sin2/l- 1 >IJocos>lto, 

/l J.I /l-2 IL 

Both the above mentioned procedures, of course, yield 
the same result; which is 

_!!... + (1'2
m + 

I. - 4 2{1'2 _1)1/2 

{1'2 - 1)1/2 1 
2 (1 + 7T/2) -

u± 

(20) 

(1'2 - 1)1/2 ) ( + 2 (I + w/2)m 0: + 21'am{1'2 - 1)1/2(1 

2 m(1'2-1) ~ 
+ ~ (1'2 -1)(1 + 7T/8) + u. (1 + 37T/8)ja 2 . 

(21) 
We also note the follOwing expansion derived from Eqs. 
(6), (7), and (15c): 

A. = ± 1 [1 _ 2mu + (2m{1'2 _1)1/2 
u 3 - U. 2u. (m2 _ a2)1/2 i 

( 
1'2 - 1 (2 - 1'2)m 

+ 2m1'a{1'2 - 1)1/2 + --- + ----'---
u~ u. 

- 2m 21'2) a 2]. (22) 

Inserting Eqs. (21) and (22) into Eq. (10) we obtain, after 
carrying out appropriate expansions of the remaining 
factors, 

(21'2 - l)m (51'2 - 1 
A¢ = 'IT + 2 a + 37T 4 m 2 

(1'2 - 1)1/2 
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Thus in this case there is very little deviation of the 
trajectory from a straight line and there is no spiraling 
effect. The connection between the scattering angle 8 
and inverse angular momentum O! is given by (23): 

(2,,2- l)m (~ - 1 ) 
8 = 2 O! + 31T---m 2 + 4m"a(,,2-1)1/2 0!2. 

(y2 _ 1)1/2 4 
(24) 

Substituting Eq. (24) into Eq. (14) we obtain the small
angle differential cross section, 

da (2m(2,,2- 1))2 31Tm 2(5y2 -1) 4m"a 

dn = 82(,,2-1) -; + 483(,,2 -1) + 83(,,2 -1)1/2 + .... 
(25} 

The first term in Eq. (25) corresponds to the Rutherford 
formula and the second term the general relativistic 
correction to it, as has been already noted in Ref. 1. The 
last term in Eq. (25) displays the general relativistic 
effect due to the rotation of the source. 

Now consider the other limit O! = O! c' Evaluation of 
O! c will be taken up separately in the next section. Here 
we will express the cross section in terms of O! c' When 
O! = O! c' the corresponding critical values of the roots 
u i of the cubic B (u) are the following: 

+ [(1 - ra20! 2 c)2 - 12m 20! 2 c(l + "aO! c)2] 1/2}, (26) 

u - 1 {1 - ra20!2 - 2[(1 - ra20!2 )2 
3c - 6m(1 + "aO!c)2 c c 

-12m 20!2c(1 + "aO!c)2]1/2}, 

r =,,2-1 (26') 

and k 2 = 1. Thus suitable expansion parameter is 1 -
k 2 • We first note that the integrals I± now contain 
logarithmically growing parts which diverge at k 2 = 1. 
So this (leading) behavior has to be first isolated. The 
technique for dOing this for the elliptic functions of the 
third type, or the final result, does not seem to be given 
in the standard mathematical literature, so that it may 
be worthwhile for us to report some details. Consider 
first the integral 

1 dy 
n( -O!±, k) = 10 ------------/~ 

(1-0!,y2)[(1-y2)(1-k2y2)]1 2 

which is seen, by inspection, to diverge logarithmically 
at k 2 = 1. A change of variables 

t _ 1 
- (1 - k 2y 2)1/2' 

k' = (1 - k 2)1/2 (27) 

casts the integral into the form: 

n(- O! k) = t lk
' k

2 t2 

., 1 [O!± + (k 2 - 0!±)t2][(t2 -1)(1 - k'2t2)]1/2 

_ ~ , (2n -1)!!jl/k' t2n+2dt - LJ k 2k 2n ___ _ 
n~O 2n!! 1 [0!±+(k2-0!,)t2](t2-1)1/2 

(28) 

Let us evaluate the above with an accuracy to within 
(1 - k 2 ). The first two terms of the series have logarith-
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mic behavior, so that it is useful to isolate these terms. 
Evaluating the desired integrals by elementary means 
we rewrite (28) as follows: 

)_ 2( 1 l+k 
n( -O!" k - k ) log 1 _ k 

2(k2 - O!± 

- ' log , 
(O! )1/2 1 + (O! )1/2) 

2k 1 - (O!, )1/2 

+ 1- k2k '2( 1 10 1 + k 
2 4(k2 -0!,) gl-k 

+ __ --'-'k __ _ 
2k'2(k2 - O!,) 

+ t log ± 
(O! )3/2 1 + (O! ) 1/2) 

2k(k2 - O!, 1 - (O!,) 1/2 

00 (2n - 1)!! 
+ k 2 "6 k'2n ----

n=2 2n!! 
11k' t2 n+ 2dt 

X J (29) 
1 [O!, + (k2 - O!, )t2](t2 - 1)1/2 . 

Consider now a typical integral occurring in the sum
mation in (29), 

11k' t2n+2dt 
12 n + 2 = II -( ----''-----'::.:.....---/:

O!, +,,± t2 )(t2 - 1)1 2 

", = k 2 
- o!,' n ~ 2. 

Split the rational factor in the integrand above as 

t
2n

+
2 1 ( O! t

2n 
) ---- - - t2n - --=±'----

O!t +",t2 ", O!± +",t2 

= - - - t 2n-2 - = and so on, t2,. O!t ( t2n -2 ) 

"±,,; 0!,+"tt2 

(30) 

(31) 

thus generating an infinite series for I 2n+2. Each term 
of this latter series has essentially the same structure 
and can be written as 

11k' t2n 11k' r. dt = r. t 2 n-2 (/2 - 1) 1/2dt 
°1 (t2-1)1/2 °1 

11k' 
+ J t 2n -4(t2 - 1)1/2 + ... 1 . (31') 

The individual terms on the right-hand side of Eq. (31') 
are now subjected to (repeated) partial integration thus 
generating a series in powers of k'2(= 1 - k 2). Thus to 
the desired degree of accuracy 

J
l/k' 1 k 3 

t2n -2(t2 - 1)1 /2dt = - --
I 2n k'2n 

+ --+0--(2n - 3) k 3 (1) 
2n(2n - 2) k'2n-2 k'2n-4 

(32) 

and hence 

J
l/k' t2/C 1 k 3 

1 (t2 _ 1)1/2
dt = 2n k'2n 

+ 2n - 3 k 3 

2n(2n - 2) k'2n-2 

+ 1 ~ + 0 (_1_\ . 
2(n -1) k'2n-2 \k'2n-4) 

(32') 
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Substituting (32') and (31) into (30), we get finally 

I _1...( k 3 + (2n - 3)k3 + _----=..:..k3 ___ ) 
2,,+2 - y. {2n)k'2n 2n{2n - 2)k'2,,-2 2{n -1)k'2n-2 

-;; (2n _k;)k'2n_2 + 0 (k,L-4) . (33) 

Inserting (33) into (28) we get II{ - Ct., k) to the desired 
accuracy. Retaining, henceforth, terms only up to order 
1 - k2, we get, after some manipulations: 

1 1 
II{ - O!., k) == -1 -- log2 - ---"'----

- Ct. 2{1 - O!.) 

1 {O! )112 1 + {0!.)V2 
log k'2 - -' log ---=----;--

2 1-{0!.)1/2 

1 1 00 (2n - 1) !! 1 
+ + 'E - + 0{1 - k 2 ) 

4{1-0!.) (1-Ct.)n 0 2 2n!! 2n 

== _2_ log2 _ 1 logk'2 
1 - o!. 2{1 - O!.) 

(0!.)1/2 1 + (0!.)1/2 
2 log + 0{1 - k 2 ). 

1 - (O!. )1/2 
(34) 

Using (9) we rewrite (34) as 

II(-O!.,k) == 2(U' -U3C)IOg2_}(U' :=U3C)IOg(1_k2) 
u. -U2c U. U2c 

1 (U 2C - U3C) 1/2 
-2 U. -U3c 

(u -U )1/2+ (U -U )1/2 
X log' 3c 2c 3c + 0(1- k2) 

(u -U3 )1/2- (U 2 -U 3 )1/2 
• C C C (35) 

which is our final result for II( - Ct., k). 

The other integral in (11) causes no trouble as this is 
well-behaved at k 2 == 1. Evaluating py straightforward 

960 

means we have 

+ '" 0{1 - k 2). (36) 

From (36), (35), and (10)-(12) we get, after some algebra, 

with 

x [~+ - U + 0(1 - k 2 ) (37) 

[ (
u -u ) 2 • _ 3c log 2 
U. u 2c 

1 ~
u -U )1/2 {U -U )1/2 + {U -U )1/2 

_ _ 2 c 3 C log' 3 C 2 C 3 C 
2 U. -u3c (u -U )1/2 - (u -U )1/2 • 3c 2c 3c 

+ [(u. -U3c )(U2c -U3c )]1/2 tanh-1 ( U3c )1/
2J 

U.-U 2c u 3c -u. 

(37') 

To get the scattering angle e we must subtract off from 
X the appropriate number of 21Tn. Thus as k 2 ~ 1 
(O! ~Ctc) the term log{l-k2 )[""log{0! -O!c)1/2] dom
inates and controls the number of spirals. It therefore 
follows from (37) and (37') that 

dX 1-2m{l +yaO!c)u2c 

dO!n == [2m{u 2c -u3c)]1/2(l + yaCt c)(l - 2mu2c + a 2u 22c)(O!c - O!n) + ... 

(38) 

From (38) and (14) we finally write down the differential cross section: 

da == (da) + z[2m(u2c - u 3c )]1/2 ~ exp{ -[2m{u2 c - u 3 c])1/2z (2n1T + e)} + exp{ -[2m(u2c - u 3c )]1/2z (2n7T - e)} 
dO dO n~O sine(y2 - 1) n~ 1 0!3" 

(39) 
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In the above, we have used the abreviation 

z= 
(1 + yaa c)(1 - 2mu2c + a 2u 2

2c 

1 - 2m(1 + yaa)u2c 
(40) 

and the expression for the zero spiral cross section 
(da/dO)n=o is quite evident from (37). The above result 
Eq. (39) reduces to that of Ref. 1 when a ~ 0 (z ~ 1). 
The factor z in (39), as also the explicit expressions for 
u 2 c and u 3 c [Eq. (25 n, contain the effect of rotation of the 
source. 

In the above we have expressed the cross section in 
terms of a c' which should now be determined in order 
to complete the discussion of this section. Unlike the 
case with Schwarzschild metriC, it is not pOSSible, in 
the present instance to closely evaluate Q1 c in terms of 
the parameters y, m, and a of the scattering problem 
and one is led to take recourse to numerical calculations. 

This is done in the next section. 

IV. EVALUATION OFac 

We recall that a c is the inverse of the critical angular 
momentum per unit mass of the test particle for which 
gravitational capture takes place. Evaluation of this 
quantity in the Kerr metric is of intrinsic interest. 
From the standard condition for the equality of two roots 
of a cubic equation we derive the equation for a c: 

r - -- (ra 2a 2 - 1)(1 + yaa c)2a 2c 
24m 2 c 

r 1 + -- (ra 2a 2 - 1)3--- (ra 2a 2 - 1)2a2 = 0 
432m 4 c 432m 2 c c' 

(41) 

In the limiting case a = 0, the above collapses essentially 
to a quadratic equation, whose solution gives the known 
Schwarz schild metric value of a c' 

(
y(9y 2 - 8)3 / 2 - 27y 4 + 36y2 _8)1/2 

G: (a = 0) = 
c 32m 2 

(42) 

In the general case a = 0 it is obviously not possible in 
general, to obtain analytic solution of the sixth order 
Eq. (41). 

However, in the special case y = 1, which corresponds 
to the test particle having nonrelativistic velocity 
initially (asymptotic radial distance from the source), 
Eq. (41) can again be solved and one finds 

G: c(y =:: 1) = [ - 1 + (1 ± a/m)1/2]/2a. (43) 

The above generalizes the corresponding result in 
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FIG.1. Plot of lelm versus y, for selected values of a. y is the energy 
per unit mass of the test particle at asymptotic radial distances, and 
a the angular momentum per unit mass of the source. Ie is the critical 
angular momentum of the best particle for which graVitational capture 
takes place. 

Schwarzschild metriC, G: c(Y = 1, a = 0) = ±1/4m. In the 
general case the Eq. (41) is solved numerically and the 
conclusions summarized in Fig.1. 

The dimensionless quantity I c/ m (l c = G: ~ 1 ) is plotted 
against y. Graphs with positive values of a correspond 
to the case when the angular momentum of the source 
is parallel to that of the test particle and those with 
negative a the case when it is antiparallel. One feature 
of the graph for a = - m needs mention: When y lies in 
the range 3.2:5 Y :5 4.0, the corresponding impact para
meter falls within the event horizon, Le., lc(y2 _1)-1/2 < 
m. Hence nontrivial gravitational capture does not take 
place at these energies. 

N 

E ... 

blCl 
""c""c 

10\. 

10 b 

Tr 

"6 
Tr 

"3 
Tr 

"2 
)( 

0= m 
0=0 
a =-m 

-

FIG.2. Differential cross section for a test particle with y2 = 5 and 
a mass of the scattering center equal to 1 em in gravitational units. 
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V. INTERMEDIATE RESULTS 

In the above we have obtained asymptotic expressions 
for the cross section in the limit of large and the critical 
angular momentum. For general values of the angular 
momentum lying between these two limiting cases, the 
differential cross section can be evaluated numerically. 
This has been done on a computer for the case when the 
mass of the scattering center is one centimeter in 
gravitational units and 1'2 ::::: 5. The result is shown in 
Fig.2. The following features of Fig. 2 should be noted: 
(1) In the range of angles considered the angle of devia
tion X equals the scattering angle e and there is no 
spiraling effect. The latter begins to show up as one 
approaches the backward direction e = 1T. 

(2) The differential cross section diverges in the back
ward direction. The divergence, however, is of kinematic 
origin (and hence integrable) coming from the presence 
of the sine term in the denominator of the expression 
for the cross section in Eq. (14). For the Schwarzschild 
metric the appearance of the divergent differential cross 
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section in the backward direction was found already in 
Ref. 1. 
(3) Fig. 2 shows that the rotation of the source has a 
very small effect on the differential cross section. In
deed, even for the maximum allowed value of angular 
momentum of the source, a ::::: m, the effect is quite in
significant. 
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inequalities* 

Susumu Okubo 

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 
(Received 4 September 1973) 

The theory of the self-reproducing kernel by Aronszajn has been investigated for a Hilbert space 
with norm 

IVll2 = (1I27T)50
2''d9lf(e; 9)12 + (lhT)5~ldx A(x)lf(xt, 

where f(z) is a H2 function and A(X) is a nonnegative summable function. The self-reproducing 
kernel of this space satisfies an integral equation. The dispersion inequalities for various problems in 
the high energy physics can be treated in unified and generalized manner by this theory. 

1. SUMMARY OF THE PROBLEM 

As we shall show in Sec. 4, there are many problems 
in high energy physics which can be reduced to the 
following mathematical question. Let /(z) be a holo
morphic function of a complex variable z inside the unit 
disk Iz I < 1. Assume that /(z) belongs to the class H2 
with the norm 1 

(1. 1) 

Let A(X) be a non negative measurable function defined 
on the real interval - 1 :S X :S 1, and define a new norm 
II/II by 

11/112 =.1. t~ del/(e iG )12 + 1. 11 dxA(x)iJ(x)12. 
21T 0 1T - 1 (1. 2) 

We then ask the following question. Suppose that an 
upper bound A of 11/112 is given, Le., 

11/112 :s A. (1. 3) 

Moreover, a value or values of /(z) at n interior point 
z = zj' IZjl < 1 (j = 1, 2,-,n) are known to be 

/(zj)=a j , (j=1,2, ..• ,n). (1.4) 

Then, is there any H2 function /(z) satisfying these 
conditions? If the answer is yes, then can we give an 
optimal bound for absolute values of /(z) and its deri
vatives inside the unit disk I Z I < 1 in terms of these 
constants A and aj ? If we have a solution to the pro
blem, then values of aj must satisfy a constraint in
equality. EspeCially, the case A(X) == 0 essentially re
duces the problem to the so-called minimum inter
polating problem2 of the H2-space, where the explicit 
solution can be readily found. However, the general 
case with A(X) '" 0 is more complicated and we shall 
solve it by means of the theory of self-reproducing 
ke rnel. 3 

Since A(X) is assumed to be nonnegative we find 

(1. 5) 

We shall denote by H2(},) a set consisting of all H2 
functions /(z) with finite new norm II/II . Obviously, 
H2(A) is a subspace of H2. As we shall prove in Sec. 3, 
it is a Hilbert space with self-reproducing kernel 
K(z, O. Following the notation of Aronszajn, 3 we shall 
often write the inner product in H2(A) by 

(f,g) = (f(z),g(z)). 

so as to indicate that z is the integration variable. 
Then, we have 

(1. 6) 

/(~) = (f(z),K(z, m. (1. 7) 
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for all H2(A)-functions /(z) and for all complex values 
~ with I ~ 1< 1. As we shall show in Sec. 3,K(z, ~) must 
satisfy an integral equation 

_1 __ = K(z, 0 + 2. t dx ~ K(x, 0 (1. 8) 
l-z~ 1T -1 l-xz 

if A(X) is a function belonging to L1(1, - 1). 

In order to solve the original problem, let us set 

gj(z) = K(z, z j) (j == 1,2, ... , n). (1. 9) 

Then, the condition (1. 4) and the equation (1. 7) are 
rewritten as 

(f,gj)=a j (j= 1,2, ... ,n). (1. 10) 

As we see from (1. 8), the n-functions g/z) 
(j = 1,2, ... , n) defined by (1. 9) are linearly indepen
dent, if n-points Z1' z2' .•. , zn are all distinct. Then, 
by Schmidt's orthonormalization procedure, we can 
construct n orthornormal functions h/z) (j = 1,2, ... , n) 
as linear combinations of g/z): 

n 

h/z) = L; Cj~g~(z), 
~~1 

(1. 11) 

(hi,h)=Oij (i,j=I,2, ... ,n). (1. 12) 

The numerical coefficients Cj~ in (1. 11) are deter
mined from (1. 12) by 

n n 

L; ~ Cj~(\vK(zv,z~) = 0jk' 
~~1 v~1 

(1. 13) 

where we have used (1.7) for /(z) == g~(z) = K(z,z~). 
Therefore, C~v depend only upon z l' Z2' ••• , zn' Now, 
the Bessel inequality 

n 

A 2: II / II 2 2: ~ I (f, h /l) I 2 
~=1 

gives the desired bound4 

(1. 14) 

for a)J (Jl = 1, 2, ... , n). An inequality involving /(~) can 
be obtained by letting n ~ n + 1 in (1. 14) with g n +1 (z) = 
K(z, ;), since we have 

(f,gn+l~ == /(0. 

Similarly, a bound involving the derivative I'(~) can be 
also derived by choosing 

a 
gn+1(z) == ag K(z, ~) 
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Since then we have (see Sec. 2) 

d a 
d~fm == (f(z),~K(Z, m

z 
(1. 15) 

These bounds are optimal in a sense that we cannot 
improve them4 without additional informations. 

For our applications to the high energy physics (see 
the Sec. 4), X(x) is in general bounded in the interval 
- 1:5: x:5: 1, 

O:5:X(x):5:M. (1. 16) 

In that case, the space H2(X) is the same set as H2. To 
illustrate this, we have only to note the Hilbert-Fejer
Riesz inequality1.5 

!tdxlf(x)12:5:.J:. J27T delf(e i8 )12== Ilfll~ 
11 -1 211 0 

(1. 17) 

for! E H2. Hence, we have 

IIfll~ :5: IIfll2 :5: (1 + M)lIfll~. (1.18) 

We shall also discuss in the Sec. 3 conditions under 
which iterative solution of the integral equation (1. 8) 
converges to and gives the correct answer. One suf
ficient condition is that we have M < 1. 

Applications to high energy physics will be discussed 
in Sec. 4. 

2. SELF-REPRODUCING KERNEL 

Let JC be a Hilbert space consisting of complex
valued functions f(x) defined in a set D. Following 
Aronszajn, 3 we shall denote the inner product in JC 
as 

(f,g) == (f(x),g(x))x (2.1) 

when we wish to emphasize the fact that the integration 
variable is x. A sum of two functions and a multiplica
tion of a function by a complex number in JC are defined 
in a natural fashion. Then a function K( x, y) defined in 
D x D will be called3 a self-reproducing kernel of JC, 
if it satisfies the following two conc!itions: 

(i) For any fixed value y E D,K(x,y) regarded as a 
function of the variable x is an element of JC. 
(ii) For all f E JC, we have 

(f(x),K(x, Y))x == f(y) 

for all y ED. 

We shall prove the following theorems3 for later 
purposes. 

(2.2) 

Theorem I: A necessary and sufficient condition 
that JC has a self-reproducing kernel is that a linear 
functional defined by 

x(f) = f(x), f E JC, 

is continuous for any fixed value xED. 

The necessary part follows from the definition (2.2) 
since by the Schwarz inequality we have 

If(y)l:5: IIfIIIlK(x,y)llx == Ilfll[K(y,y)]l/2. 

The sufficiency of the condition results from the 
theorem of F. Riesz. 
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Theorem II: 

(K(x, z), K(x, Y»x = K(y, z), 

K(x,y} = K(y,x). 

(2.3) 

(2.4) 

Also for arbitrary n points x l' x 2' •• " xn ED and for 
n complex numbers C l , C 2 , ••• , C n we have 

n n 

L; L; C"K(x",xvYc v 2: O. (2.5) 
,,=1 v=1 

Equation (2.3) follows immediately from (2.2) by 
setting f( x) == K(x, z). Then, (2.4) is an immediate 
consequence of (2.3). Also, if we set 

n 

f(x) == 2) CvK(x,xv) 
v=1 

and if we use (2.3), we compute 
n n 

o =:; IIfll2 == 2) 2) C"K(x",xv)C v' 
,,=1 "=1 

This proves (2.5). Hereafter, we shall deSignate the 
inequality (2.5) simply as 

K 2: O. (2.6) 

The special cases n == 1 and n == 2 in (2.5) give us 

K(x,x) 2: 0, K(x,x)K(y,y) 2: IK(x,y)12. (2.7) 

The self-reproducing kernel is unique if it exists. 

Suppose that we have another self-reproducing kernel 
L(x, y). 

Then from (2. 2) we must have 

(K(x,y),L(x,z»x ==K(z,y), 

(L(x,z),K(x,y))x == L(y,z). 

However, the hermiticity condition (2.4) demands then 
L(y, z) == K(y, z) which proves the uniqueness. 

Theorem Ill: If a sequence {f 1'f 2' ••• } weakly 
converges to f, it then converges point-wise in D, Le., 

lim f n(x) == f(x), xED. 
n-+OO 

This follows from (2.2) and the definition of the weak 
limit. 

Theorem IV: Suppose that JC is a separable 
Hilbert space with the self-reproducing kernel K(x, y). 
We can then expand 

K(x, y) == L; ¢n(x)¢n(y) 

" 
for any complete orthonormal set ¢n (x)(n == 1,2, ' .. ). 

To prove this, we expand K(x, y) E JC for a fixed y 
into a Fourier series 

K(x,y) == L; an¢n(x). 
n 

Then, the coefficient an is computed by 

an == (K(x, y), ¢n(x))x == ¢n(Y)' 

Combining this fact with the Theorem III, we prove the 
desired result. This theorem is sometimes useful to 
compute K(x, y). 
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For example, the H2 space has a complete orthonor
mal set cf>n(z) = zn (n = 0, 1,2, .•. ). Therefore, its 
self-reproducing kernel Ko(z, ~) is given by 

Ko(z, ~) = 1/(1 - zh (2.8) 

since the space H2 is known to have self-reproducing 
kernel. This fact has been utilized4 to derive disper
sion inequalities for the case A(X) = O. 

For our physical applications,j(x) is a holomor
phic functionf(z) in the unit disk Izl < 1. We can then 
define the derivative d/dz f(z). More generally, sup
pose that the derivative 

~K(X,y) = lim ...!..[K(X,y + ~y) - K(x,y)] 
oy AY-+() ~y 

is somehow defined as a weak limit in X. Then the 
following theorem is an immediate consequence of (2_ 2). 

Theorem V: If %y K(x,y) exists as a weak limit 
in X for some values of y, then the derivative d/ dy f(y) 
also exists and we have 

~ f(y) = (f(X)'~ K(x, y)\ x-
dy oy J 

Note that d/dy f(y) may not be an element of X, nor 
need it be defined on all points of D. 

Next, in order to establish a fact that the space H2(A) 
defined in the previous section has the self-reproducing 
kernel, we shall prove the following theorem. 

Theorem VI: Suppose that X,.1 is a subspace of a 
Hilbert space X 2 whose norm is Ilf11 2 • Moreover, we 
assume that Xl is also a Hilbert space with a new norm 
II fill satisfying 

(2.9) 

for all f E Xl' If the larger space X 2 has the self
reproducing kernel K 2(x, y), then the Hilbert space Xl 
has also self reproducing kernel K 1 (x, y) with property 

(2. 10) 

To establish this theorem, let us define a functional 
xU) in Xl by setting 

xU) = f(x). 

Since Xl as a set is a subspace of X 2 , we compute 

IxU)1 = If(x)I:::o IIfIl 2[K2(x,x)]1/2 

:::0 IIfIl 1[K2(x, x»)1/2_ 

This shows that the functional xU) is bounded in Xl 
and hence the Theorem I tells us that Xl must have 
self-reproducing kernel K 1(x, y). To prove the second 
half of the theorem, let us set 

n 

f(x) = L) C
Il

[K 1(x,x
ll

) -K2(x,x
ll

)], 
11=1 
n 

gt x ) = L) C
Il
K 1(x,x

ll
)· 

11=1 

Regarding f{x) and g(x) as functions in X 2, we compute 
n n 

0:::0 IIJII~ = IIgll~ + L) L) CIl [K2(xv,xll ) - 2K1(x v,x
ll
)]Cv• 

11=1 v=1 

J. Math. Phys., Vol. 15, No.7, July 1974 

965 

However, noting 
n n 

IIgll~:::o IIgll~ = L) L) C Il K 1(x,,,x ll )C V ' 

11=1 v=l 
this leads to 

n n 

L) L) C
Il
{K2(x v ,x

ll
) -K1(x v ,X

Il
)}Cv 20 0 

11=1 "=1 

which is (2.10). In this connection, we should remark 
that if X 1 and X 2 are the same space as a set, and if 
we have a stronger condition 

Ilflla:::O IIfll 1 :::o C IIf ll a (2.11) 

as in (1. 18), then we will have a stronger inequality 

(2.12) 

It is easy to verify4 that the space H2 is a Hilbert space 
with self-reproducing kernel (2.8). Then, identifying 
now 

and noting (1. 5), the Theorem VI guarantees that the 
space H2(A) has self-reproducing kernel. 

In order to calculate explicit form for the kernel, the 
following theorem is useful. 

Theorem VII: Let Xl and X 2 be two Hilbert spaces 
as is defined in the previous theorem. Then, there is a 
linear operator Q which maps X 2 into Xl with 
properties 

U, g)2 = (f, Qgh, f E Xl>g E X 2, 

IIQgll1:::O IIg1l 2 • (2.13) 

The self-reproducing kernel K l(X, y) of Xl is given by 
the formula 

K 1(x, y) = (Qgy)(x), 

gy(x) = Ka(x,y). 

To prove this statement, we note 

(2.14) 

for any f E Xl and g E X 2 - Hence, a linear functional 
defined by 

GU) = U, g)2 

is bounded in Xl' Therefore, F. Riesz's theorem assures 
us that we can write 

(2. 15) 

Setting now 

g= Qg, (2.16) 

Q is a linear mapping of X 2 into Xl' Especi£lly, choos
ing 

g(x) = gy(x) = Ka(x,y), 

then (2. 15) gives us 

f(y) = U, Qgyh· 



                                                                                                                                    

966 Susumu Okubo: Theory of self-reproducing kernel 

This proves that Qg y is indeed the self-reproducing 
kernel of Je l • The inequality in (2.13) is derived by 
setting f == gin (2.15) and noting II ill~ == 1 (g, g)21 ~ 
II i 112 II gil 2 ~ II g 11111 g 11 2, 

3. SPACE H2 (X) 

We must first prove that our space H2(>..) is a Hilbert 
space. In accordance with the notation used in the pre
vious section, let us define inner products of H2 and 
H2(>..) by 

1 J211 --
(f, g)2 == lim - de f(reifJ)g(re ifJ ) 

r-->1-0 27T 0 

1 J211 --== - def(eifJ) g(e i6 ) 
27T 0 

(3. 1) 

and 
1 J1 -(f,gh == (f,g)2 + -; -1 dx>..(x)f(x)g(x) (3.2) 

for two H2 functions f(z) and g(z). Obviously, H2(>..) is 
a pre-Hilbert space, and therefore it is only necessary 
to prove its completeness. 

Suppose that a sequence f 1'/2' •• , is.a Cauchy se
quence in H2(>..), i.e., 

IIf n - f mill -7 0, (n, m ~ 00). 

Then, since >..(x) is nonnegative by assumption, this 
implies 

IIf n - f m 112 ~ 0, 

1 r
1 
dx>..(x)lf,,(x)-fm(x)12~ 0 

(3.3) 

(3.4) 

(3.5) 

for n, m ~ 00. Since the space H2 is complete, the first 
condition (3.4) implies that we have a holomorphic 
function f(z) E H2 satisfying1 

lim f n(z) == f(z), Izl < 1. 
n-->OO 

The Fatou's lemma6 on nonnegative measurable 
functions implies 

1 
lim inf J dx>..(x) 1 f n(x) - f m(x) 12 
m~OO -1 

(3.6) 

(3.7) 

2: L~ dx>..(x) Urn inf if n(x) - f m (x)l.2. 
m-->OO 

Therefore, (3. 5) and (3.7) give us 

lim L~ dx>,,(x)lin(x) - f(x) 12 == O. 
n-->OO 

Combining this with (3.6) leads to the desired result 

lim II f n - fill = 0 
n-->OO 

which proves the completeness of the space H2(>..). Thus, 
H2(>..) is a Hilbert space and also we have 

(3.8) 

Therefore, the Theorem VI guarantees that H2(>..) must 
have the self-reproducing kernel which we rewrite here 
K(z,~) instead of K 1(x, y). Next, we shall prove the fol
lowing result. 

Theorem VIII: Suppose that >..( x) is a summable 
function of x in the interval - 1 ~ x ~ 1. Then, the self-
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reproducing kernel K(z, ~) of the space H2(>..) must 
satisfy the integral equation 

1 1 
Ko(z,~) = K(z,~) + "iT L 1 dxKo(z,x)>..(x)K(x, ~), (3.9) 

Ko(z,~) = 1/(1- z~). (3.10) 

Conversely, solution of the integral equation (3.9) such 
that >..(x)K(x,~) belongs to L2(1,- 1) is unique and we 
have for all f E H2 

fm = (f(z),K(z, mI' (3.11) 

The proof of the first part of the theorem is easy. In 
order to avoid confUSion, let us set 

h 1(z) = K(z, ~), 

h2(z) == Ko(z, 1/) 

for fixed values of ~ and 1/ with 1 ~ 1 < 1, and i 1/ i < 1. If 
>..(x) belongs to L1(1, - 1), then we obviously have 

J 1 dx>..(x) IKo(x, 1/) 12 s 11 I J 1 dx>..(x) < 00 
-1 (1 - 1/)2 -1 

so that ha(z) is an element of H2(>..). From definition, we 
then have 

(3. 12) 

Since h2 and hI are self-reproducing kernels of spaces 
H2 and H2(>..), respectively, we have 

(f,h 1)1 =f(~), f EH2(>..), 

(g, h2)2 = g(1/), g E H2. 

Therefore, with the help of the hermiticity condition 
(2.4), we find 

(h2' hlh = h2m = Ko(~' 1/), 

(h2' h 1)2 = (hI> h2)2 == hI (1/) = K(~, 1/) 

so that (3. 12) is rewritten as 

(3. 13) 

Taking the complex conjugate of this equation and noting 
(2.4), this gives (3.9) if we change the variable 1/ by z. 

To prove the second part of the theorem, we need the 
following lemma. 

Lemma: 

LetR(x) be a function belonging to L2(1,- 1), i.e., 
1 L1 dxIR(x)12 < 00. (3.14) 

Then, a function p(z) defined by 

1 Jl 1 p(z) == - dx -- R(x) 
7T -1 l-xz 

(3.15) 

belongs to H2 with norm 

IIplI~ =~ (1 dx t dyR(X)R(y) :slt dxIR(x)i 2• 
7T 2 • -1 -1 1 - xy 7T -1 (3. 16) 

Moreover, we find 
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L~ dx Ip(x) 12 :s L~ dx IR(x) 12. (3.17) 

Finally, for any H2 function fez), we have 
1 1 __ 

(f,P)2 = -; L1 dxf(x)R(x). (3. 18) 

Before we prove this lemma, we shall demonstrate the 
validity of the second half part of the Theorem VIII. 
Suppose that the integral equation (3.9) admits a solu
tion such that A(x)K(x,~) belongs to L2(1,- 1). Then, 
setting 

P(z) 0= 1.. t dx _1_ A(x)K(x, ~), 
'If -1 1 - xz 

it defines a function belonging to H2 by our lemma. 
Moreover, (3. 18) gives 

IJ1 --(f, P)2 = -:; -1 dxA( x)f( x)K( x, ~) 

for any f E H2. If K(z, ~) satisfies the equation (3.9), 
then we have P(z) = Ko(z, 0 - K(z, ~) and this implies 

111 --(f(z),KO(z'0>2 = (f(z),K(z, 0>2 + -; -1 dXA(x)f(x)K(x,~) 

= (f(z),K(z, WI> 

where the integration variable is understood to be z in
side any bracket. However, the left-hand side of the 
above equation is equal to f(~) since Ko is the self-re
prodUCing kernel of H2, and we discover (3.11), i.e., 

f(~) = (f(z),K(Z';»l 

for all H2 functions fez). Especially, restricting our
selves to f E H2(~), this relation shows that K(z, ~) must 
be a self-reproducing kernel of the space H2(A). Since 
the self-reproducing kernel is unique, this proves the 
desired result. Note that (3. 11) is valid now not only 
for H2(A) functions but also for any fez) E H2. 

Now, we have to prove our lemma. First, we shall 
show that P(z) belongs to H2. Since R(x) is of a class 
L2(1, - 1), it is also sum mabie by Schwarz inequality. 
Then, P(z) must be a holomorphic function of z in a cut 
z plane with cuts on real axis at 00 > z 2: 1 and at 
- 1 2: Z > - 00. Especially, it is regular in the unit open 
disk Iz 1 < 1, and we can expand it into a power series. 

P(z) = E anz n, Iz 1< 1, 
,"00 

a = 1.. 11 dxxnR(x). 
" 'If -1 

Noting 

1 an 1 :s bn = 101 
dxxnS(x), 

Sex) = 1- (IR(x) 1 + IR(- x) I) 
'If 

and using an inequality7 of Hardy-Littlewood-Polya, we 
estimate 

E 'a 12 :s f; (b )2 :s 'If t dx(S(x))2 :s! (1 dx IR(x) 12. 
>100 n >100 n 0 7T • - 1 

This proves that P(z) belongs to H2. However, it gives 
an upper bound for II p 112, which is twice larger than 
(3.16). We shall improve this bound shortly. To show 
(3. 18), we compute 

(f,P)2 = lim ~ t" def(reifl)P(re ifl ) 
r~1-0 27T 0 

lim _1_ t" de t dx 1 . f(reifJ)R(x). 
>c~1-0 27T2 0 -1 1 - rxe-.fI 
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For r < 1, the integrand is a summable function of x and 
e by our assumptions for f E H2 andR(x) E L2(1,- 1). 
Hence, by the Fubini theorem,6 we can interchange the 
order of the integrals to obtain 

1J1 -(f,P)2 = lim - _ dxf r(x)R(x), 
T~1-0 'If 1 

(3.19) 

where we have for simplicity set 

f"'(z) = f(r 2z). 

Using the Schwarz inequality and the Hilbert-Fejer
Riesz inequality 1, 5 

1 J1 -:; _ldxlg(x)12:s IIgll~, (3.20) 

we now estimate 

li~ dx(f(x)-fr(x»R(x)1 2 :s 7T IIf-fTII~ .(~dxIR(x)12. 
Since fez) belongs to H2, we know1 

lim IIf - fTII2 = 0 
T~1-0 

and this together with (3.19) gives (3.18). Especially, 
setting fez) = P(z), we estimate 

II pll22 ~ 1. t dxP(x)R(x) 
7T -1 

:s (.; t1 dx Ip(x) 12 ) 1/2 (.; L~ dx IR(x)12) 1/2 

:s IIPII 2 ('; 1_~dxIR(x)12) 1/2 

which leads to the desired upper bound in (3.16). The 
equality in (3.16) also follows from (3.18), if we set 
again f (z) = P(z) and if we use the Tonelli - Fubini 
theorem6 for interchange of order of double integrals. 
Finally, the inequality (3. 17) can be obtained by 

1- t dxlp(x)12:s lip 1122 :s1.. t dxIR(x)12 
7T -1 7T -1 

because of (3.20) and (3. 16). 

Now let us return to the discussion of (3.9). If we 
restrict ourselves to real values of z in the interval 
- 1 :s z :s 1, then (3.9) represents an integral equation 
of Fredholm type. However, its kernel is singular and 
the usual method is not applicable to solve it. If we 
iterate it once, then it will, however, become a less 
singular equation 

K(z, ~) = Kotz, ~) - K 1(z, ~) + 1.. t dxK1(z, x)A(x)K(x, ~), 
7T 1 (3.21) 

K 1(z, ~) = .1 t dx [A(x)/(l - xz)(1 - x~)] (3.22) 
7T -1 

which can be hopefully solved numerically for practical 
applications 

In what follows, we shall only investigate an iterative 
solution of (3.9). To this end, let us define the nth 
iterative kernel Kn(z, ~) recursively by 

(3.23) 
Ko(z, 0 = 1/(1 - z~). 

Then, Kn(n 2: 1) will be expressed as a nple integral. 
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Now we want to interchange orders of multiple integrals 
in (3.24) as follows. First, if z and ~ are real with 
Iz 1 < 1 and 1 ~ 1< 1, then the integrand of (3.24) is non
negative. 

Therefore, the Tonelli theorem6 justifies the inter
change. For complex values of z and ~,we notice an 
inequality 

11/(1 - xz) 1 ~ 1/[1 - xRe(z», I Rez I ~ 1, (3.25) 

so that (3.24) gives us 

IK,,(z, ~) I ~ Kn(Rez, Re~), n 2: 1. (3.26) 

Hence, we can justify again interchanges of order of 
integrals by Fubini-Tonelli's theorem, if the integral 
is finite. 

Immediate consequences of this fact are 

(3.27) 

and 
1 J1 Kn+m+l(z,~)::;:: -; -1 dxKn(z,x)~(x)Km(x, ~). (3.28) 

If iterative solution of (3.9) exists, then it must be given 
by 

K(z, ~) ::;:: f; (- l)nKn(z, ~) (3.29) 
,,~ 

In what follows, we shall investigate conditions under 
which (3.29) represents the correct solution of (3.9). 
To this end, we assume that >.(x) is bounded by 

o ~ ~(x) ~ M (- 1 ~ x ~ 1). 

Then, first we shall show that K,,(z, ~) for a fixed ~ 
belongs to H2 with a bound 

(3.30) 

~ tl d.x IK.(x, ~)12 ~ II Kn(z, ~)II~ ~ M2nKo(~' ~), 
(3.31) 

We shall prove this by induction. For n ::;:: 0, this follows 
from (3.16) and (3.20). Suppose that K,,(z, ~) is a H2 
function with the bound (3.31). Then since >.(x) is bound
ed by our assumption, >.(x)Kn(x,~) belongs to L2(1,- 1) 
and hence 

belongs to H2 by our lemma. Moreover, (3.16) and 
(3.20) again give the bound (3.31) for n ~ n + 1. There
fore, by mathematical induction, we have proved that 
Kn(z, ~) belongs to H2 with the bound (3.31). 

Applying (3.18) for the case 1(z) :::: Kn(z, ~) and P(z) :::: 
Km(z, ~), and noting (3.28), we find then 

Kn+m(TJ,~) = (Kn(z, ~),Km(z, TJ»2 (3.32) 
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where the integration variable is z. From this equation 
and (3.31), we estimate now 

IK,,(TJ, ~)I ~ IIK",(z, ~)1I2I1Kn-m(z, 11)11 2 

~ Mn [Ko(~, OKo(TJ, 11)]1/2. 

Therefore, if we have 

M< 1, 

(3.33) 

(3.34) 

then the series (3.29) converges absolutely and repre
sents a holomorphic function of z in I z I < 1. Similarly, 
it is easy to prove that it satisfies the integral equation 
(3.9), because by the Lebesque's dominant convergent 
theorem6 we can interchange the order of the summation 
and integration. To prove that our K(z, ~) belongs to H2, 
we apply (3.32) again to find 

(K(z, ~),K(z, 11»2::;:: f; ~ (- l),,+m(Kn(z, ~),Km(z, 11»2 
":0 m:O 

00 

:::: 6 (- l)n(n + l)Kn (11, 0 (3.35) 
n:O 

which absolutely converges again because of (3.33) and 
(3.34). Thus, K(z, ~) belongs to H2. Since >.(x) is bound
ed, the space H2(>.) is the same set as H2. Then, these 
facts and theorem VllI of this section guarantee that the 
iterative solution is indeed the correct solution under 
conditions (3.30) and (3.34). 

We shall simply mention in this connection that if >.(x) 
satisfies 

1 Jl 1 B :::: - d.x -- >.(x) < 1 
'If -1 1 - x2 

instead of (3.34), the iterative solution is still the cor
rect one since we can easily derive a bound 

for this case. However, this condition presupposes 
>.(x) ::: 0 at x ::;:: ± 1, which is not satisfied in general for 
our applications to high energy physics. 

Actually, we can prove a more general statement that 
the iterative solution must be the right one even without 
assuming the boundedness of >.(x), as long as K(x, y) in 
the real interval - 1 ~ x, y ~ 1 remains nonnegative and 
we have lim Kn(z, z) :::: O. To show this, we' rewrite 

n"'OO 

(3.13) as 

1 Jl Ko(z,~):::: K(z,~) + - d.xK(z,x)>.(x)Ko(x,~) 
'If -1 

(3.36) 

replacing TJ by ~,and ~ by z. Iterating (3.9) once by this 
equation, we find 

K(z,~)::: Ko(z,~) -Kl(z,~) 

+ 1 11 d.x Jl d >.(x)>.(y) K(x y) (3.37) 
1T2 ·-1 -1 Y (1 - xz)(l - y~) ,. 

Further, we iterate (3.37) 2n-times by repeated uses of 
(3.9) and (3.36) to obtain 
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2n+1 
K(z,~) = 6 (- l)mKm(z, ~) 

m=O 

+.1.. t dx t dyKn(z,x);>..(x)K(x,y);>..(y)Kn(Y'~) 
W

2 
1 1 (3.38) 

if we can interchange the order of multiple integrals we 
encounter. However, this can be justified as we have 
done for Kn(z, ~). For real values of z and ~,the inte
grand of the right-hand side of (3.38) is nonnegative if 
K(x, y) is nonnegative. Then, the Tonelli's theorem jus
tifies the interchange. For complex values of z and ~, 
we use the inequality (3.25) and repeat the same argu
ment. Obviously, this reasoning is also applicable even 
if K(x, y) becomes negative but with a finite lower bound, 
provided that a function Rn(x) = A(x)K,,(x,~) is summable 
in-l:5x:51. 

Theorems II and VI demand that the correct solution 
must satisfy 

(3.39) 

Then, the structure of Eq. (3. 38) implies that this leads 
to 

2n+2 2n+1 
6 (- l)mKm 2: K 2: 6 (- l)mK m• (3.40) 
m=O m=O 

We note now that a relation A 2: B gives 

A(z, z) 2: B(z, z), 

[A(z, z) - B(z, z)][A(~, ~) - B(~, ~)] 2: IA(z, ~) - B(z, ~) 12 

as in (2.7). Therefore, letting n -7 00 in (3.40), we dis
cover that the iterative solution 

00 

6 (- l)n Kn(z, 0 
n=O 

will automatically converge to the correct self-repro
ducing kernel K(z, ~), if we have lim K,,(z, z) = O. We 

n-oo 
notice that if ;>..(x) is bounded, then the function Rn(x) = 
A(X) Kn(x, 0 is summable as we have proved in (3.31). 
Hence without assuming M < 1, the iterative solution 
always represents the correct solution if we have 
lim Kn(z, z) = 0 and if K(x, y) is bounded below in the 
n-OO 
real interval - 1 :5 x, Y :S 1. 

Finally, we shall prove the following inequality 

(3.41) 

Let N be a fixed positive integer. For arbitrary com
plex numbers c1> c2 ' ••• , CN , we set 

N 

Cfn(z) = 6 C.)(n(z,zv), 
v=1 

where z 1> z 2' ••• ,z N are N arbitrary points in the unit 
disk. Then, from (3.27), (3. 28), and (3.32), we find (by 
setting n = m) 

N N _ 1 1 
6 6 Cfl K 2n+1(zfl'ZV)C V = 1T L1 dxA(X) I Cfn(x) 12 , 
fl=1 v=1 

N N 
(3.42) 

6 6 CflK 2n (Zfl'ZV)CV = IICfnll~, 
fl= 1 v =1 
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which immediately gives the lower bound 

in (3.41). To prove the upper bound in (3.41), we have 
to discuss separately two cases, depending upon whether 
n is even or odd. Here, for Simplicity, we prove it only 
for the case N = 1 as follows: 

(3.43) 

where we repeatedly used (3. 16), (3.17), and (3.20). 
From (3.41), we can again prove that the iterative solu
tion (3.29) converges absolutely if we have M < 1. 

We remark that the inequality (2. 12) gives us 

KO 2:K 2: _l_K 
1 + M 0 

(3.44) 

which must be valid independent of validity of the itera
tive solution. 

4. APPLICATIONS TO DISPERSION INEQUALITIES 

In high energy physics, we often encounter the follow
ing problems. Let F(t) be a holomorphic function of a 
complex variable t in a cut plane with cuts on the right
hand real axis at 00 2: t 2: to' and on the left-hand axis 
at - t1 2: t 2: - 00, (see Fig. 1), 

where to and t1 are real constants satisfying 

(4. 1) 

For some problems, we have no left-hand cut. In that 
case, we understand the situation by letting t1 -7 "". 

We assume that boundary function F(t ± iO) on the cut 
always exists, since it represents physically measur
able quantities. Generally, the only other informations 
available about F(t) ar~ the following: 

(i) F(t) is real in the sense that it satisfies 

F(t) = "F(i). (4.2) 

Then, we have 

F(t - iO) = F(t + iO). (4.3) 

This reality condition is usually a consequence of the 
time-reversal invariance of the theory. 

-b a 

FIG. 1 Cut structures of holomorphic functions F(t) and F 1(1). 
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(ii) Let k(t) be a given positive (almost everywhere on 
the cut) measurable function defined on the cut. Then, an 
upper bound A for the following integral on the cut is 
given: 

1 (00 -t l ) 
A 2: 1T fto + f_ oo dtk(t) IF(t + iO) 12. 

(iii) We may know a value or values of F(t) at a few 
points t = b j (j = 1, 2, ... , n) in the real interval 
- t1 < b j < to to be 

F(bj)=Cj (j=1,2, ... ,n). 

(4.4) 

(4.5) 

If this information is not available, then we set n = O. 

(iv) For some problems, the phase o(t) of F(t + iO) is 
known in a finite interval near the cut at a ?: t ?: to' 
and - b :5 t :5 - t1 (see Fig. 1). Hereafter, we define 
the phase o(t) so that we have 

F(t + iO) = ± I F(t + iO) I exp(io(t», 

where choice of the ± sign in (4.6) is determined by 
requiring 

(4.6) 

(4.7) 

because of the following physical reason. Generally, b(t) 
represents scattering phase-shifts for reactions such as 
1T - 1T, 1T - K or 1T - N scatterings so that the condition 
(4.7) is automatically satisfied because of threshold 
theorem for scattering phase-shifts. 

If we do not want to use this information on the phase, 
or if the information is not available, then we simply 
set a = to and b = t1 • . 

(v) Some kind of polynomial boundedness condition for 
F(t) at infinity. A more precise condition will be speci
fied in the end of this section. 

Suppose that these are only informations available on 
. F(t). We want to know whether it is possible to give 
some bounds for F(t) and its derivatives out of these 
constraints. As we shall see shortly, we can reduce 
our problem to a form stated in Sec. 1, and we can solve 
the problem accordingly. Before going into details, we 
shall mention various problems of this kind. First, let 
us enumerate those without taking into account the 
phase condition (iv), since this case corresponds to 
~(x) == 0 and it is easily solvable. We find this kind of 
problem for 

(1) Geshkenbein-Ioffe type problem 8 • 9 of finding an 
upper bound of pion-.nucleon coupling constant under 
some technical conditions which we shall not go into 
detail. Historically, this is the first problem of the dis
perSion iriequaUty, which has been solved by method 
due to Meiman. 10 

(2) Finding of an upper bound for the renormalization 
constant Z2 of the nucleon ll •12 and of the deuteron. 13 

(3) Determination of an upper bound for hadronic con
tributions 14 to the anomalous magnetic moment of the . 
muon and to the Lamb-shift. 11 

(4) Existence of a lower boundll •15 for Schwinger term 
in the algebra of current. 

(5) Upper and lower bounds for scalar Kl3 decay para
meters. 16.17.18 
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(6) Upper and lower bound19 for scaling-dimension of 
chiral-scale-breaking Hamiltonian theory. 

(7) Lower bound20,21 for low-energy 1TO - nO scattering 
amplitudes. 

(8) Existence22 of absolute upper bound for coupling 
constant of cubic scalar interaction. 

(9) Analysis23 of chew-Low integral equation 

There may be other applications the present author is 
unaware of. However, this list may be enough to illus
trate the usefulness of our method. As we remarked 
earlier most of these problems have been analyzed 
without assuming the phase condition (iv). However, 
for some problems, the inclusion of the additional know
ledge (iv) greatly emphasize the usefulness of the bound. 
Such is indeed the case with analysis of the K 13 prob
lem16 and also with the renormalization constant Z2 of 
the nucleon. 24 Also, the same should be applicable to 
the problem25 of the types (3) and (4). However, in 
usual treatment of such problems, the presence of the 
A(x) term in (1. 2) and (1. 3) is either neglected or suit
ably approximated (possibly excepting the analysis of 
the Ref. 25). As the result, the bounds so obtained are 
not the best to be achieved. Of course, as we shall see 
shortly, the expreSSion for A(X) is quite complicated 
and besides we have to solve the singular integral equa
tion (1. 8) to this end. Hopefully, these complications 
will be overcome and better bounds will be calculated in 
the future. 

NOW, returning to the original problem, let us set 

G(t) = exp [~(a - t)1/2(b + t)1/2 (It: + r:l) dt' ~,o~'~ ] ' 

Po(t') = I a - t'I-1/21 b + t' 1-1/ 2 O(t'). 
(4.8) 

If we do not want to use the information (iv), we have 
only to set a = to and t 1 = b with the consequence 
G(t) = 1. 

We shall assume on the physical ground that o(t) is 
continuous with Lipschitz condition 

I O(x) - O(y) I :5 C Ix - y In (4.9) 

for some positive constants c and n in the interval under 
consideration. We choose the cuts of (a - t)1/2 and 
(b + t)1/2 to lie on real axis at 00 > t ?: a and - b ?: t> 
- 00, respectively. We also choose their branches so that 
both functions are real and positive in the cut-free 
interval a > t > - b. Then, the function G(t) is real and 
holomorphic in the same cut plane as of F(t). Because 
of the conditions (4.9), G(t ± iO) is continuo.us on the 
interval a ?: t?: to and - b :5 t :5 - t1 • Further, we 
have 

ArgG(t ± iO) = ±o(t) (4. 10) 

in the same interval. Moreover, we have 

I G(t ± iO) I = 1 for t> a or t < - b. (4. 11) 

If we set 

(4.12) 

then we easily find 
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in the intervals a ~ t ~ to and - b ::s t 5 - t1• There
fore, we conclude that F 1 (t) has not cut at all in that in
terval. Since G(t) has no zero point in the entire cut 
plane as well as on the interval including the end point 
t == to and t ::: - t1 because of the conditions (4.7) and 
(4.9), we find that F 1 (t) satisfies the following modified 
conditions: 

(0 ' ) F 1(t) is a holomorphic function of t in a new cut 
plane with cuts only at co > t ~ a and - b ~ t ~ - 00. 

(i') F 1(t) is real, i.e., 

(iii) 

A ~ II + f2 

where II and [2 are given by 

Note that we have used (4.11) for the integral II' 

(iii') We have 

(4. 13) 

(4.14) 

(4. 15) 

(4.16) 

(4.17) 

(Vi) Same kind of polynomial boundedness condition for 
F 1 (t), which will be discussed shortly. 

In this modified form, we need not consider an analog 
of the condition (iv) any longer. 

Next, we perform the conformal mapping9 

[(a - t)/(b + t»)1/2 = (a/b)1/2[(1- z)/(1 + .e)] (4.18) 

which maps the cut plane of F 1 (t) into the unit disk 
Iz I < 1. This maps also both upper left and right cuts 
of the t plane onto the upper-semi circle 0 ::s argz ::s 1T, 
while both lower cuts are transformed into the lower 
semi circle 1T ::s argz ::s 21T. Moreover, three points 
t::: a, t ::: 0, and t::: - b are changed into z ::: 1, Z ::: 0, 
and z ::: - 1, respectively. Setting now 

(4. 19) 

thenf1(z) is holomorphic in Izl < 1. Further,we can 
rewrite [1 as9 

II::: ;1T 1:11 deW1(e) If1(e ie ) 12 , 

W
1
(e)::: 2ab(a + b)lsine I k[t(e)] 

[(b - a) + (b + a) cose)2 , 
(4.20) 

t(e) ::: 2ab 
(b - a) + (b + a) cose, 

while 12 is transformed into 

12 ::: -; '" + 11 dx"?'I(x) If1(x) 12. 1 ((1 -8) (4.21) 

Here, 0', (j, and I'1(x) are defined by 
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(ab + atO)1/2 - (00 - bt )1/2 
0' ::: 0 

(ab + atO)1/2 + (ab - bto)1/2' 

(3 _ (ab + bt1)1/2 - (ab - atl)1/2 

- (ab + bt1)1/2 + (ab - at1)1 /2' 

4OO(a + b )(1 - x 2 ) 

i'l(x) ::: [(a + b)(1 + x2) + 2(b _ a)x]2 k1[t(x)], 

t(x) ::: 4abx 
(a + b)(1 + x 2 ) + 2(b - a)x ' 

Note that 0' and (j satisfy the condition 

1~0'>0>-(j~-1. 
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(4.22) 

(4.23) 

In order to rewrite II in the form used in the Sec. 1, we 
further introduce 

( 
1 2n e ie + Z ~ 

¢1(z) ::: exp 41T fo de e ie _ z lOgw1(e») • (4.24) 

Assuming that logwl(e) is summable in (21T, 0), then 
¢1(z) is a holomorphic function1.26 of z in Iz I < 1. 
Also, from the Poisson's integral formula we have l ,26 

(4.25) 

almost everywhere on the unit circle. Therefore, finally 
setting 

we can rewrite 

1 J211 
[1 ::: 21T 0 de 1 f(e ie ) 1

2, 

1 Jl f2 :::"iT -1 dx"A(X) V(x) 1
2, 

A(X)::: Yt(X)I<Pl(X)I-2, 

where we have set 

A(X) ::: i'l(X) ::: 0, 0' > x> - (j. 

(4.26) 

(4.27) 

(4.28) 

ill this way, we have finally reduced the problem to a 
form stated in the Sec. 1. However, the mere existence 
of the integral II does not necessarily guarantee that 
/(z) belongs autolllatically to H2. To insure it, condi
tion (v) is needed. To see it clearly, we rewrite <Pl(z) 
in terms of the old variable t as 

¢1(z)::: (a + btl12(a- ~(b + t») 1/4 

[tab + at)1/2 + (ab - bt)1/2]¢(t), 

¢(t) ::: exp [..!...(a - t)1/2(b + tp/2 (C - (6) dt' p(tl)] 
211 • a • -00 t' - t ' 

p(t')::: It' - a 1-1/ 2 1 t' + H1/2 logk{t'). (4.29) 

Alternatively, we can write ¢(t) also as9 

¢(t) ::: exp - J de. logW(e) , ( 
1 211 e ie + z ) 

41T 0 e,e - z 

w(e) ::: k[t(e)], (4.30) 

t(e) ::: {2ab/[(b - a) + (b + a) cose]}. 
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Note that X(x) is finally rewritten as 

X(x) == I[G(t + iO)I<P(t)]12k(t), 
(4.31) 

t == t(x) == {4abxl[(a + b)(1 + x2) + 2(b - a)x]}. 

In general, X(x) is bounded in the entire interval 
-1:sx:s1. 

Now, let us investigate asymptotic behaviors of G(t) 
and ¢(t). First, G(t) becomes a constant at infinity so 
that it causes no problem at all. Second, in general, 
k( t) is polynomially bounded at infinity by 

I k( t) I :s Cit In, t~ 00 , 

for some constants c and n along the real axis. Then, 
¢(t) as a complex function of t is also polynomially 
bounded at infinity now in all directions in the complex 
t plane. 

Noting that on the cuts at "" > t > a and - b ~ t > - "", 
we have 

k(t) == I ¢(t ± iO)12, 

so that we can rewrite the integral 11 of (4.15) as 

II == ~ (fO + L~ )dtl ¢(t + iO)F 1(t + iO) 12 

(4.32) 

==~.P dtl¢(t)F 1(t)12, (4.33) 
27T cut 

where we used the reality conditions for ¢(t) and F l(t). 
If F(t) [and hence F l(t)] is polynomially bounded at in
finity, and if II is finite, then the Phragmen-LindelOf 
theorem assures that the product ¢(t)F l(t) will vanish 
at infinity in the complex t plane. In that case, we can 
add a large Circular term at infinity to II so as to make 
it a closed contour integral in the complex t plane. 
Then, we change the variable t into z. In this way, we 
make sure that J(z) will belong to H2, after some more 
lengthy arguments. Regardless, the precise condition 
for the ansatz (v) should be exactly that J(z) be an ele
ment of the space H2. 

Let us briefly remark that if we do not use the in
formation (iv), then we have X(x) == 0 by setting to == a 
and t1 == b. In that case, we can solve the problem ex
plicitly. Defining an inner product of two real holo
morphic functions J(t) and g(t) with the given cut 
structure directly by 

(1, g) == ~ (~OO + L~) dtk(t)JU + iO) g(t + iO), (4.34) 

then the kernel function K(t, 1]) of this space is calcula
ted to be 

_1_ = (_2_\t + b)(~ + b)[A(t) + A(~)][A(t)A(~)P/2 
K(t,1]) a + bj 

x ¢(t)CP(~), (4.35) 

where we have set for simplicity 

A(t) = [(a - t)/(b + t)]1/2 (4.36) 

and ¢(t) is defined by (4.29). For many problems of the 
high energy phYSiCS, k(t) has a simple form 

k( t) = c fi I t - Y j I, - b < Y j < a. 
j~l 

(4.37) 

J. Math. Phys., Vol. 15. No.7, July 1974 . 

972 

In that case, we compute9 

CP(t) = Cl/2 (a + btnl2 n [(b + y.)1/2(a- t)1/2 
j~l . ) 

+ (a - Yj)1/2(b + t)1/2]. (4.38) 

When the left- hand cut does not exist, then we simply 
let b ~ 00 in Eqs. (4. 35) and (4.29) to find 

_1 __ 2[(a - t)1/2 + (a - ~)1/2][(a - t)(a - 7j)]1/4cp(t)cp(1j) K(t, 1]) - , 
(4.39) 

CP( t) = exp (...!. (a - t)1/2 Joo dt' 11 III logk( t'») . 
27T a (t' - t) t' - a 2 

We can easily reproduce various dispersion in
equalities9.23 from these formulas of the self-repro
ducing kernel. 

We may mention that there are other Hilbert spaces27 

with self-reproducing kernels which are of some inter
est for applications to physical problems. Let J(z) be a 
holomorphic function of z in a Simply connected domain 
D with a rectifiable curve r. Then, we may introduce 
two norms27 by 

IIJII~=} J
D

d2 zIJ(z)12, d2z = d (Rez)d (Imz), 

IIJII~ =..!.. fr IdzIIJ(z)12, Idzl == [dzdz]l/2. 
27T 

The space H2 corresponds to the norm IIJII~ for a 
special case with D == {z liz I < 1}. The self-reproducing 
kernels K J.,.z, ~) and K b(Z, 0 of two spaces can be shown 
to satisfy an interesting relation 

a~though we will not go into its proof. Bergman and 
Schiffer28 also give some applications of self-repro
ducing kernels of harmonic functions for problems 
involving classical physics. 

Finally, we briefly remark that there is another class 
of dispersion inequality in high energy physics. It is 
essentially reducible to a study of the minimum inter
polating problem2 in the Banach space HOC. Since it is 
not a Hilbert space, we have to use a different approach 
to solve it. Here, we simply quote some relevant refer
ences9.21.29 for its applications, although its relation 
to the space H oo may not be apparent in these papers. 
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It is shown that under rather weak restrictions the discrete eigenvalues occurring in one-velocity 
transport theory are real or purely imaginary. simple. 21 in magnitude. finite in number. and occur 
in ± pairs. Proofs are obtained using methods of scattering theory applied to orthogonal 
polynomials. 

1. INTRODUCTION 

It has been noted1 that there is an intimate relation 
between the solutions of the one-velocity linear trans
port equation and the theory of orthogonal polynomials. 
On the other hand, we recently showed that scattering 
theory throws considerable light on the properties of 
orthogonal polynomials. 2 The interplay of these results 
were then used3 to investigate some simple inverse 
transport problems. Here we further develop this 
interplay. 

The problem we consider is the following: In the the-
0ry of neutron transport with anisotropic scattering the 
number and position of the eigenvalues of a certain op
erator playa crucial role. 4 While statements about these 
eigenvalues appear in the literatureS few proofs seem 
available and what statements that have been made ap
parently apply only to nonmultiplying media with a scat
tering kernel which is a finite polynomial. 

Here using the connection with properties of ortho
gonal polynomials we wish to give proofs that these 
eigenvalues 

(i) are real or purely imaginary, 
(ii) are Simple, 
(iii) occur in ± pairs, 
(iv) are '=' 1 in absolute magnitude, 
(v) are finite in number. 

These properties are proved with rather weak restric
tions on the scattering kernel. For nonmultiplying media 
(c ~ 1), it is believed that our restrictions are about as 
weak as possible for the above properties to hold. If the 
medium is multiplying, an additional condition (physical
ly not very restrictive) has been applied. It is not known 
whether this can be relaxed. 

The approach throws a certain amount of light on re
sults previously obtained. In particular, those results 
which are special for the finite polynomial scattering 
kernel can be isolated. 

Our plan is as follows: In Sec. 2 the relation of the 
eigenvalue problem of transport theory to a correspond
ing problem involving a three term difference equation 
eigenvalue problem is Sketched. Such equations are typ
ical in the theory of orthogonal polynomials. According
ly, in Sec. 3 we then derive some properties of such 
polynomials. Using these results, the following Secs. 
give detailed proofs of the eigenvalue properties enu
merated above for c < 1, c = 1, and c > 1, respectively 0 

Precise sufficient conditions in the various cases are 
given in Appendix D which sketches the detailed proof of 
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analyticity needed. Appendixes A and B show the connec
tion with previous formulations. In the last, Appendix D, 
some new and useful formulas are obtained as aby
product. 

2. THE CONNECTION WITH ORTHOGONAL 
POLYNOMIALS 

A typical problem6 of one-velocity neutron transport 
with anisotropic scattering is to find Iji which satisfies 

a at Iji(r, 0, t) + O.VIji + Iji= q + cf dO'!(O·O')Iji(r, 0', t) (2.1) 

in a volume V subject to appropriate boundary conditions 
on the bounding surface S. (Here we have assumed a 
homogeneous medium and the functional dependence of 
! indicated is such that we have rotational invariance.) 

Let us consider the simplified form of Eq. (2.1) when 
there is 

(i) no dependence on t; 
(ii) dependence on only one spatial variable - x; 
(iii) azimuthal symmetry, i. e., dependence on 0 is 

only thru Ox = IJ.; 
(iv) no inhomogeneous term. 

If we expand the scattering function in Legendre poly
nomials (PI) so that 

(2.2) 

then Eq. (2.1) reduces to 

(2.3) 

Looking for infinite medium solutions of this equation 
in the form rf>v(IJ.)e-x lv, one finds 

(2.4) 

where 
~ 

M(IJ., v) =6 (21 + 1)!/P,(IJ.)h,(v) (2.5) 
1=0 

with 

(2.6) 

We remark that with no loss of generality we can take 
ho(v)=l and define h_1(v) to be zero. 

Copyright © 1974 American Institute of Physics 974 
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Now it can be shown6 that under some conditions a 
complete set of functions is 

and 

cv M(/J. v) 
<l>v(/J.) =-2 P--'-+A(v)li(/J. -v), -1...:;: v...:;: 1, 

V-/J. 

<I> ( )_~M(/J.'Vi) 
Vi /J. - 2 vl-/J. ' 

where 

A(V) = A+(v) ; A-(v) , A(v) = 1-~ f 1 M(/J., v)d • 
2 -1 v- /J. 

(2.7) 

Here A± are the boundary values of A as the cut is ap
proached from above and below, respectively. The dis
crete eigenvalues v I are determined by the equation 

(2.8) 

Equations for the h,(v) are obtained! by multiplying 
Eq. (2.4) by P,(/J.) and using the orthogonality and re
cursion properties of the Legendre polynomials. The re
sult is the three-term recursion relation 

(1 + l)h'+l(V) + 1 h'_l(V) = (2l + 1)(1- cf,)vh l , 1 ~ 0. 

(2.9) 

This and the above values of ho, h_l clearly uniquely de
termine all h,(v). 

An equivalent form of the eigenvalue problem defined 
by Eq. (2.4) is to find those v for which Eq. (2.9) has 
bounded solutions. The solutions which are merely 
bounded correspond to the continuum. Those Vi for which 
there are square-summable solutions are the discrete 
eigenvalues. 

It is useful to consider the more symmetrical poly
nomials defined by 

ljJ(v, n) = [(2n + 1)/2J1/2hn(v). 

Then our equations are 

= vg(n)ljJ(v, n), n ~ 0, 

where 

and 

aO(n)=n/[(2n + 1)(2n _1)J1 / 2, g(n) = 1- cfn • 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Our main point here is to show that under the condi
tions given below the discrete eigenvalues have the pro
perties enumerated in the introduction. 

3. PRELIMINARIES 

A. Properties of the '/ 

(i) We assume 2:;:'0 l2lf,1 < 00 (This is needed for the 
analysis below to hold. ) 
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(ii) f(/J.) is continuous and f(/J.) ~ 0, -1...:;: /J. ...:;: 1. (Phys
ical considerations dictate this.) A consequence is that 

If, I < 1, 1;;,. 1. (3.1) 

Indeed, 

and therefore 

(3.2) 

(iii) g(2m +1);;,. 0, m =0, 1,2, ••• (3.3) 

This may appear to be a rather strange restriction. 
However, for c...:;: 1, Eq. (3.1) implies g(n) ~ ° (all n) and 
hence this is no additional restriction at all. For c> 1 
this is a sufficient condition for the results listed above 
to hold. Whether it is also necessary is not known. In 
any event it is, physically, a rather mild requirement. 

B. Some consequences of three-term recursion relations 

Let us consider7 functions <I> (A, n) which satisfy 

A(n + 1)<I>(A, n + 1) + B(n)<I>(A, n) +A(n)<I> (A, n -1) 

= A<I>(A, n), n ~ no, 

where 

(i) A(n), B(n) are real and finite for all n;;" no; 
(ii) limA(n)=A(oo) and limB(n)=B(oo) exist. 

n'" co n'" 110 

(3.4) 

For our purposes it is sufficient that convergence be 
such that the limits limn_",n2 [A(n) -A(oo)} and n2 [B{n) 
_B(oo)] exist. 

Then for large n the solutions of Eq. (3.4) tend to 
solutions of 

A(oo){~(A, n + 1) + ~(A, n -1)}+ B(OO)~(A, n) =A~(A, n) 

Two linearly independent solutions of this are 

~(A, n)=z±n 

where 

(3.5) 

(3.6) 

Thus for I z I = 1, i. e., z = e1iJ (fJ real), all solutions of 
Eq. (3.5) are bounded as n- 00, It follows that all solu
tions of Eq. (3.4) for 

(3.7) 

are bounded. 8 In particular, solutions <I> (A, n) of Eq. 
(3.4) subject to <I> (A, no -1} = 0, <I>(A, no) = C (C a const) 
are bounded. Thus with these initial conditions the spec
trumcorresponding to Eq. (3.4) has a continuous part 
for 

B(oo) - 2A{oo)...:;: A"':;: B(oo) + 2A(00). (3.8) 



                                                                                                                                    

976 K.M. Case: Scattering theory 

Let us define9 solutions of Eq. (3.4), <I>"'(A, n), by the 
conditions 

lim \ f?'(X, n) - z·n \ = 0 for \ z \ ,.: 1 
"~ .. 

\ z\ ;:.1 (3.9) 

where X is related to z by Eq. (3.6). 

Further, let us use Eq. (3.4) to define the analog of 
the Jost function9 as 

j(z) = A(no)<I>+(X, no -1). 

[We analogously define r(z)]. 

(3.10) 

Then square-summable solutions of Eq. (3.4) subject 
to the initial conditions exist for those Zl with I zll ,.: 1 
such that 

(3.11) 

The corresponding Xi are discrete eigenvalues with 
eigenfunctions 

(3.12) 

We investigate the properties of the eigenvalues and 
eigenfunctions of Eq. (3. 4) subj ect to the initial condi
tions in more detaiL Consider the following Green type 
identity. 

Let <I1(l)(X,n), <I1(2)(A',n) be two solutions of Eq. (3.4) 
corresponding to X, X', respectively. Then it follows in 
familiar fashion that 

(3.13) 

Some applications 

(i) Let X=X'. We conclude that 

(3.14) 

is independent of n (the Wronskian theorem). Thus for X 
in the continuum (I z I = 1) we can write 

CP(X, n) = C+<I1+(X, n) + C_<I1-(X, n), 

where the constants C. are respectively 

w[<I1 , <l>T] 
C.=± WL<I1+, <I1-]' 

From the asymptotic behavior of <I1'" we find 
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while from the initial conditions on <I> and the definitions 
ofr 

w[<I>, <1>"'] = C/,(z). (3.18) 

Notice that for 

(3.19) 

and thus 

<I> (X, n) = A(oo)[ZC _ z-IjV-(Z)<I>+(X, n) -r(z)<I>~(X, n)}, 

(3.20) 

AE continuum 

In particular, when z - Z-l, i. e., el8 _ e-18 , <I> is un
changed. Hence the continuum is characterized by 

X =B(oo) + 2A(00) cos 8, 0,.: 8,.: 11'. (3.21) 

We also note that a discrete eigenvalue cannot OCCur in 
the continuum since 

(3.22) 

The closest a discrete eigenvalue can be is at the edge 
of the continuum (Zl =± 1), since then the denominator in 
Eq. (3.20) also vanishes. 

(ii) Let us sum Eq. (3.13) from no to N. With some 
relabelling we obtain 

(X - A') t <I> (2)(X' ,n)<I>(l )(X, n) 
".no 

(3.23) 

Suppose A=A j (a discrete eigenvalue) and A'=Xj. Let
ting N- 00 the terms - A(N + 1)- O. Those multiplying 
A(no) are zero by virtue of the initial conditions 

:.2Imx j t\CP(A j ,n)\2=0. (3.24) 
niill"O 

Thus, the discrete eigenvalues are real. Notice that we 
can (and for simplicity will) choose the CP(Xj' n) to be 
real. 

(iii) In Eq. (3.23) let X = Xl' <I> (1 )(A, n) = CP(Xjt n), and 
<I> (2)(X', n) =CP+(X', n) where X'''''Xj• Again letting N- 00, 
we obtain 

tcp+(x"n)cp(\,n)=X'~X r(X'). 
n:.lno f 

(3.25) 

PaSSing to the limit A'_ Xj yields 

t CP+(Xj, n)cp(Xj' n) = C ~, r(X') I~ .. ~;' 
nano 

Remembering Eq. (3.12) we can rewrite this as 
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(3.26) 

Besides giving an explicit expression for the normali
zation sum of cf>(Ap n) this also shows that the discrete 
eigenvalues are simple. Indeed, a multiple eigenvalue 
corresponds to a multiple root of f+. IT this occurred the 
derivative above would be zero and then cf>(Ap n):= 0. 10 

C. Relevance 

It is probably clear that the properties listed in the 
introduction are to be proved USing properties of the re
lated discrete eigenvalues of Eq. (3.4). Thus the fact 
that the v I 2 are real will be related to the reality of the 
Ai' The fact that I Vii ~ 1 are related to the eigenvalues 
of Eq. (3.4) being such that I Zi I .,,; 1 with the only possi
bilities for I Z i I == 1 being Z I = ± 1. The proof, subj ect to 
suitable restrictions, that there are only a finite number 
of the Vi requires somewhat more analysis. This will be 
shown by demonstrating that there are only a finite num
ber of the related Ai' The proof of this, in turn, reduces 
to showing that F(z) is analytic (except perhaps for a 
simple pole at z = 0) for I zl .,,; 1. The method for demon
strating this is illustrated in Appendix (C) where the 
special case c < 1 is considered. 

4. THE CASE c < 1 

IT in Eq. (2.11) we make the replacement 

if!(v, n) = cf>(v, n)/..fgfiiY, (4.1) 

we obtain 

a(n + l)cf>(v, n + 1) + a(n)cf> (v, n -1) == vcf>(v, n), n ~ 0, 

(4.2) 

where 

a(n) = aO(n)/ v'i{n)g(n - 1) . 

We note that this is precisely Eq. (3.4) with the 
identification 

(4.3) 

(4.4) 

[Here the essential use of the condition c < 1 is that this 
guarantees g(n) > 0 (all n) and hence the coefficients a(n) 
are real.] 

Thus from the previous section we immediately con-
clude that the discrete eigenvalues Vi are 

(i) real, 
(ii) simple, and 
(iii) IVil ~1 [sinceA(oo)=~, B(oo)=O]. 

That the Vi occur in ± pairs is readily seen. Thus, if 
Vi is a discrete eigenvalue corresponding to the eigen
function cf>(vpn), then cf>'(v i ,n)=(-l)n.p(vp n) satisfies 

a(n + 1)cf> '(v i' n + 1) + a(n)cf> '(vi' n -1) == - vlcf> '(vi> n) 

(4.5) 

In Appendix (C) we prove (subject to the condition 
2, z12lfz l < 00) that j+(z) is analytic within the unit circle 
except that it has a simple pole at z == O. Further, sub-
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ject to 2,1 12 If 1 I < 00, j+(z) is continuous on the unit circle. 
Hence we conclude it has at most a finite number of 
zeros in the unit circle and hence there are a finite num
ber of discrete v j' 

5. TH E CASE c = 1 

The basic equation again is (2.11), but now 

g(O) = 1 - c = 0, g(n) = 1 - fn > 0, n> O. (5.1) 

From Eq. (2.11) with n=O we conclude that 

if!(v, 1)==0. (5.2) 

With n = 1 we obtain 

if!(v, 2) == - If (5.3) 

Thus our problem is to find the bounded solutions of 

aO(n + l)if!(v, n + 1) + aO(n)if!(v, n -1) = vg(n)l/J(v, n), n ~ 2, 

(5.4) 

subject to the initial condition of (5.2) and (5.3). 

As in Sec. 4 we now define cf>(v, n) by 

if!(v, n)==cf>(v, n)/..fgfiiY, n~2, 

and obtain 

a(n+l)cf>(v,n+1)+a(n)cf>(v,n-1)=vcf>(v,n), n~2, (5.5) 

cf>(v,2)==givenconst, cf>(v,l)=O. 

[Here by virtue of Eq. (5.1) the a(n) are again real. ] 
The considerations of Sec. 3 apply and we draw the same 
conclusions about the discrete eigenvalues as in Sec. 4. 
Thus, for example, we define a function f:(z) as follows: 
Let cf>+(v, n) be the solution of Eq. (5.5) subject to 
limn~",Icf>+(z,n)-znl =0, Izl"';l. Thenj+'(z)==a(l)cf>(v, 1). 
The zeros of j+' within the unit circle are the discrete 
eigenvalues. Also j+' (z) is (subject to the same condi
tions as before) analytic within the unit circle. (One dif
ference from the previous case is that there is no pole 
at the origin. ) 

It should, however, be fairly obvious that something 
is missing! Thus for a given v we have two fewer co
efficients if!(v, n). Alternatively, if we look at A(v) (whose 
zeros give us the discrete eigenvalues in the case c < 1, 
cf. Appendix (A)), we note that in the limit c- 1 this has 
a double zero at v = 00. This suggests that we go back to 
Eq. (2.3) and, in addition to solutions with x dependence 
of the form e-X lv, we also look for solutions of the form 

(5.6) 

Substituting and equating terms proportional to x and in
dependent of it separately, we obtain the two equations 

(5.7) 

and 
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If we multiply Eq. (5.7) by Pm{Jl) and integrate, we 
obtain 

(5.9) 

Since (1 - f m) > 0, m"* 0, we conclude that only the first 
Legendre coefficient of j3 is nonvanishing. Therefore, j3 
is a constant independent of Jl. Using this and a similar 
argument in Eq. (5.8), we further conclude that 

(5.10) 

where O! 0 is some other constant. 

Thus in addition to the e-X Iv type solutions, we have 
two more which can be taken to be 

,f!t{x, v) == 1 (independent of x) 

and 

Some remarks 

(i) We note that of all our solutions for c == 1, only 
</12 has any dependence on f10 (This has been noted in spe
cial cases previously 0 11) 

(il) It is readily proved that the functions 1, Jl and 

A, ( )-'t 2m+1 1/2 1>{v,n)Pn{Jl) 
'+'v Jl - --2- (1 _j )1/ 2 

"=2 n 

(5.11) 

(where v runs over the discrete and continuous spec
trum) yield a complete set of functions of Jl 0 

6. THE CASE c > 1 

Again the basic equation is (2.11). The same substi
tution </I{v,n)==1>{v,n)/1gfiiY yields 

a{n + l)1>{v, n + 1) + a{n)1>{v, n -1) == v1>{v, n), n'" 0, (6.1) 

where 

a{n) == aO{n)/v'g(n)g(n -1), g( -1) == arbitrary == 1, 

with 

1>{v, -1) = 0, 1>{v, 0) == vgroy 1j!{v, 0) == (1- c)/2. (6.2) 

Formal difficulties now arise since some g(n) [certain
ly g{O)] are negative and the a{n) need no longer be real
thus negating some of the results of Sec. 3. 

Also we note that the "initial val 
purely imaginary. However, this i 
[We can determine the eigenvalue 
tion cp (v, 0) == 1 and then find the c( 
by multiplying by .J(1- c)j2.] 
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To circumvent the difficulty of complex a{n) let us 
iterate Eqo (6 0 1). One obtains 

v21>{v, n) == a{n + 2)a(n + l)1>(v, n + 2) 

+ [a2{n + 1) + a2 {n)]1>{v, n) 

+ a{n)a{n -l)1>{v, n - 2). (6.3) 

We note that these are recursion relations which only 
couple odd (or even) n. (In Appendix (D) these are used 
to derive what may be called "double" Christoffel-Dar
boux formulas which are interesting and have certain 
applications 0 ) 

For the present we restrict our attention to the case 
where n == 2m + 10 Define 

A{m) == a{2m)a{2m + 1), B{m) == a2{2m + 1) + a2{2m + 2). 

Then Eqo (6 0 3) is 

A<I> {A, m} == A{m + l)<I>{A, m + 1) + B{m )<I>{A, m) 

+A{m)<I>{A, m -1), m'" 0 0 (6.4) 

We note that B{m) is real by construction, while 

_ aO{2m)ao{2m + 1) 
A{m) - g(2m)vg(2m + 1)g(2m - 1) (6.5) 

Hence, if the only negative g{n) are for even n the A(m) 
are all reaL We shall assume this is so. 12 [This is not 
as unreasonable an assumption as one might think. A 
typical case of weak anisotropy would have g(0) == 1 - c < 
o while all other g(n) > 0.] Whether our results are true 
with some weaker assumption is not known. 

The Eq. (6,4) is now in the form of Eq. (3.4). We still 
need initial conditions. Since 1>{v, -1) == <I>{A, -1) we have 

<I>{A, - n == O. (6.6) 

From Eq. (6.1) with n==O we obtain 

<I>(A, 0) == 1>{v, 1) == vII g(0)v'g\If. (6.7) 

(Notice that this is slightly different from before in that 
the initial condition here depends on the eigenvalue 0 •• 

However, it does so in a particularly simple fashion
multiplicatively.) Hence, to determine the Ai giving 
square-summable solutions we can just as well replace 
the initial condition by 

(6.8) 

The considerations of Seco 3 applyo The discrete eigen
value Ai of Eq. (6.4) are thus real, simple and I Ai I '" 1. 
Considerations (and conditions) similar to those for c < 1 
lead us to conclude that the corresponding r{z) is analy
tic within the unit circle (except for the simple pole at 
zero) and hence that the Ai are finite in number. 

For each simple discrete eigenvalue Ai we obtain two 
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eigenvalues of Eq. (6.1). These are just 

(6.9) 

Thus, these are ± pairs. These eigenvalues are readily 
seen to be simple. Indeed the eigenfunctions are readily 
constructed. Thus for n odd 

CP(III' 2m + 1) = CP( - II I' 2m + 1) =<J>(A I , m), 

while for n even we have from Eq. (6.1) 

(6.10) 

A.. ( 2) _ a(2m + l)<J>(Ap m) + a(2m)<J>(A" m -1) 
't' ±III' m -

± "I 

7. CONCLUSIONS 

It is hoped that it has been demonstrated that the me
thods of scattering theory applied to orthogonal polynom
ials is a useful tool for investigating solutions of the 
transport equation. This is not to say that other formu
lations such as exemplified by Eqs. (2.7) do not also 
have advantages. However, for obtaining the properties 
of the discrete eigenvalues the present approach seems 
particularly simple. Indeed, all but the finiteness of the 
number of eigenvalues are found by completely elemen
tary means. That this one property requires more so
phisticated methods should be obvious. One is trying to 
find weak conditions on the f" Under strong conditions
such as f, = 0, 1?- N-the result is immediate. 13 

I would like to thank the Institute for Advanced Study 
for hospitality during part of the time during which this 
work was done. 

APPENDIX A: THE RELATION BETWEEN f+ (z) AND A (v) 

In Sec. 2 we described the usual treatment of the 
transport equation. The discrete eigenvalues there are 
the zeros of A)II). In the remainder of our discussion 
these eigenvalues are described as the zeros of r(z) 
within the unit circle. Clearly r and A are related. 
Indeed here we show that 

(Al) 

where 

(A2) 

(The notation is justified by the fact-to be shown-that 
fo+ is just the Jost function corresponding to the three
term recursion relation characteristic for the Legendre 
polynomials. In Appendix (B) it is demonstrated that it 
is natural to split off an explicit factor of fo+ for a gen
eral Jost function.) 

Combining Eqs. (2.5) and (2.7) gives 

(A3) 

From the definitions of the associated Legendre func
tions and Eq. (2.10) this can be rewritten as 
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.. 
A(II) = 1-CII..[7l L;f,mTI lJI(II, l)Q,(v). (A4) ,.0 

Now for n ?-1, the function %(11, l) = ron Q,(II) satis
fies the relation 

~(1 + 1)%(11, 1 + 1) + ~(l)lJI/,(II, 1-1) = 11%(11, Z), (A5) 

with aO(l) given by Eq. (2.13). The asymptotic formula14 

for lJI6(II, l) then shows that 

!~~ IJo+(z)mTI Q,(II) - z" 1- 0, I z I ~ 1. (A6) 

It is therefore appropriate to write 

lJIo+(z, l) =fo+(z)mTI Q,(II). 

The Jost function corresponding to Eq. (A5), 
aO(O) l/Jo+ (z , - 1), is then given by 

-(A7) 

(AS) 

USing the explicit forms for the associated Legendre 
functions here, we readily obtain 

aO(O)l/Jo+(z, -1) =Jo+(z), 

thereby justifying the notation. 

Now we can write Eq. (A4) as 

A(II) = 1- c;V; Ef l l/J(II, Mo+(z, Z), 

where 

aO(l + l)l/J(II, 1 + 1) + aO(l)l/J(II, 1-1) =g(II)lJI(II, l). 

(A9) 

(Al0) 

(A12) 

Multiplying Eq. (All) by l/J(II,l), Eq. (A12) by l/Jo+(II, Z), 
subtracting and summing yields 

CII t f ,l/Jo+(II, Z)l/J(II, Z) 
1.0 

= aO(L + l)[l/J(II, L)l/Jo+(II, L + 1) -l/Jo+(II, L)lJI(II, L + 1)] 

+ aO(O)[l/Jo+(II, L -l)l/J(II, 0) -l/J(II, -l)lJIo+(II, 0)1. 

But the last bracket on the right is just fo +! v'2, 

:. A(II) =;: lim ~(L + l)[l/Jo+(II, L)lJI(II, L + 1) 
JO L~" 

-l/J(II, L)lJIo+(II, L + 1)]. 

However, we have 

(i) lim aO(L + 1) = lim a(L + 1), 
L_ao L .. ao 

(ii) liml/Jo+(II,L)=limcp+(II,L), 
L-oo L-ec 

(iii) lim l/J(II, L) = lim CP(II, L); 
L-oo L_<:o 

• ..[7l 
•• A(II) = '7+"lim a(L + l)[CP+(II, L)CP(II, L + 1) 

JO L .. oc 

- CP(II, L)CP+(II, L + 1)1. (A13) 
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The quantity whose limit we are to take is just the 
Wronskian-which as we have seen is independent of L. 
In particular, then 

a(L + l)[<f>+(v, L)<f>(v, L + 1) - <f>(0, L)<f>+(v, L + 1)] 

= a(O)[<f>·(v, -l)<f>(v, 0) - <f>(v, -l)<f>+(v, 0)] 

=r<f>(v,O)=~r 

. r 
•• A(v) =fo+ v'T=C: (A14) 

Remark: By simple iteration of the equations for 
<f>+(z,l) and <f>o·(z,Z), we readily find 

r(z) ., 
lim f" +(z) = v'g{U} II g(i) (A15) 
z~o JO 1.1 

and then from Eq. (A1) 

lim A(v) = IT g(i). 
v~.o ilSO 

APPENDIX B: THE RELATIONSHIP OF f+ TO THE 
SPECTRAL FUNCTION 

(A16) 

Here we restrict ourself, for simpliCity, to the case 
c < 1. We wish to do three things: 

(i) Give an explicit, direct calculation of fo·. 
(ii) Show that it is natural to factor any r in the form 

f· =fo·r. 
(iii) Demonstrate some general relations between r 

and the spectral function. In particular, we find that r 
determines the continuous part of the spectral function 
and the position of the discrete eigenvalues. Conversely, 
the continuous part of the spectral function and the posi
tion of the discrete eigenvalues explicitly determine r. 

Following closely the methods in the Appendix of Ref. 
2, we find that (a) if v, v' are in the continuum 

., 6(v -v') 
,B <f>(v',n)<f>(v,n)= ,(v) , 
n.O P 

where 

A(oo)sine 
p'(v) = 1TC21r 12 , 

and (b) if v iJ V j are discrete eigenvalues 

., 1 
6 <f>(vl,n)<f>(vj,n)=- 6(viJ Vj), 
n.O PI 

where 

Conversely, 

(B1) 

(B2) 

(B3) 

(B4) 

Jl <f>(v, n)<f>(v, m)p'(v)dv + 6 PI<f>(VI • n)<f>(v l , m) = 6(n, m). 
-1 I 

(B5) 

J. Math. Phys., Vol. 15, No.7, July 1974 

980 

Thus given r(z) we see we have p'(v) and the position 
of the discrete eigenvalues-since these are the zeros 
of r in the unit circle. We want to turn this around. 
Namely, we will constructr given P' and the VI' [As an 
aside we note that this implies that given P' and the VI 

we can construct the asymptotic form of <f>(v, n) when v 
is in the continuum.] 

The main tool is a version of the Poisson-Jensen 
formula. Thus let h(z) be 

(i) analytiC within the unit circle; 
(ii) real, i.e., h*(z)=h(z*); 
(iii) and h(O) is real. 

Then we readily find the representation 

Consider 

where the real, simple roots of f+ are at ± Zl' 

(B6) 

On the basis of the results in the main text, Appendix 
(A), and Appendix (C), we conclude that Ing(z) is a suit
able h(z), 

But on the unit circle 

(B7) 

. 1 jr [e I8' +z] 
•• Ing(z) = 21T -r Inlrl Le1b'-z] de' 

(B8) 

We note thatL: Iln(1-z/z2) is also an h, 

. '" (1 2 2) 1 l' [eI8
' + z] "'1 11 2 ,21 e' •• Llln -ZjZ =2" (19'_] LIn -Zi Z d • 

I 1T ~v e z i 

However, on the unit circle 11- Zl 2Z,21 = I Zj2 - z,21 , 

therefore Eq. (B9) becomes 

(B9) 

(1 2 2) 1 i" [eiB' + zJ '" 1 I 2 '21 de In II . - Z I Z = -2 L 19' ] LI n z I - Z • 
i 1T -r e - z I 

(B10) 

Adding Eqs. (B8) and (B10) yields 

1 IV [eI8
' + z] 

Ing(z)rr(1-z i
2z2)=-2 Inlf.l[ ,9'_ ]de,. 

I 1T -v e z 
(Bll) 

Then from the definition of g(z) and using the result 
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r(- 0) =r*(O') we obtain the representation 

f
+(z)- IIi(z/-z2) .!.eI 

- II i (l - Z/Z2) z ' 

where from Eq. (B2) 

(
A(OO)Sin O,)1/2 

f +(O,) -
- 1TC2p ' 

and thus 

z - Z-l ["In(SinO'/1T) dO' 
J---

- 41T 0 cosO, - v 

(B12) 

(z - Z-l) [qn[C2p'(v)/ A(oo)] 
- dO' 41T 0 cosO' - v • 

(B13) 

It is then seen that quite generally r(z) has a factor 

_ Z _Z-l ['In(SinO'/1T)dO' z 1exp__ . 
41T 0 cosO, - v 

(B14) 

This always occurs independently of p' and the Zi' In 
particular, for the Legendre case there are no discrete 
eigenvalues, p'(v)=l, C2=A(oo)=t, and thenfL+=fo+' 

The integral in Eq. (B 14) can be done explicitly. Thus, 

! In(sinO'/1T) dO' = II [lnv-In( v'7"=T)] 
o cosO, - v y'Ii2:::T v +..; V2 -1 

and we obtain 

(B15) 

The remaining integral in Eq. (B13) is conveniently 
transformed to one over the spectrum (cosO' = v,) and 
thus we finally obtain the desired result: 

(B16) 

(Note: The i here runs only over the positive z/ s.) We 
see how explicitly p'(v) and the Zi determine r(z). 

APPENDIX C: ANALYTIC PROPERTIES 

Here we wish to sketch the proof of the various prop
erties mentioned in the main text. To be specific we 
treat only the case c < L 

(1) ¢(v,n) is analytic on and within the unit circle in 
the z plane except for a pole at z = O. Indeed, ¢(v, n) is 
a polynomial of order n in v = (z + z-1)/2. 

(2)r(z) is analytic within the unit circle (except for a 
simple pole at z = 0) and is continuous on the circle 
provided 

(C1) 

To prove this we first demonstrate that ¢+(z, n) is 
analytic within and continuous on the unit circle. From 
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the definition 

z +Z-l 
r(z) = -2 - ¢+(z, 0) - a(l)¢+(z, 1), (C2) 

it then follows that r has at most a Simple pole (and it 
is at zero). 

The pole does indeed exist since from Eq. (A15) 

(
1- C )1/2 ~ 

lim zr(z) = -2- II (1- efl) * O. 
1: .. 0 1,.1 

(C3) 

As in discussing the solutions of differential equations, 
it is useful to transform to an "integral" equation incor
porating the boundary conditions. A convenient starting 
point is Eq. (2.11), i. e., 

vl/f(v, n) - aO(n + l)l/f(v, n + 1) - aO(n)l/l(v, n -1) = vefnl/f(v, n), 

(C4) 

with the condition limn_~11V(V, n) - zn I = 0, I z I <s 1. 

We introduce a Green's function defined by 

G(v,n;m)=O, n~m 

= :: {l/!o+(m)lJ!o{n) -l/!o(m)l/!o+(n)}, n <S m. (C5) 

(Here l/!o, l/!o+ are the regular and (+) solution of Eq. (C4) 
with e = O. ) Explicitly, 

l/!o(n) = [(2n + 1)/2]1/2 Pn(v), 

l/!o+(n) = (2n + 1)1 /2fo +Qn(v). 

Then 
~ 

I/f(v,n) = l/!o+(v,n) + 2:: G(v,n;m)vefml/!+(v,m). 
m=n+l 

We solve this by iteration. Thus, 

~ 

l/!+(v,n) =2:: I/f(!)(v,n), 
i:::O 

where 

and 

l/!+(!)(v,n)= t G(v,n;m)vefml/f(!-1)(v,m). 
m=n+l 

Now for I z I < 1 we have the estimates 

ll/!o+(z,n)1 <Colzln, 

IG(v~n;m)vl <sc1 Izln-m v'm. 

Thus, 
~ 

(C6) 

(C7) 

(C8) 

(C9) 

(C10) 

I l/!+ (O(v, n) I <sC1 2:: Izln-m..;mlefmlll/!+(i-l)(v,m)l. (Cll) 
m=n+l 

In particular, 
~ 

II/f(l)(v,n)1 <sCoc1lzln 2:: ..rm lefml, 
m=n+l 
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I I/ld2)(II,n) I ~COC12Izln t vrnlcfml t v'm'lcf ... 1 
m-n+l m".m+l 

• .. C{j)lzln(~ ) ., I IV(II,n) I ~PoCo 1 it ~+lrmlcfml I 

=ColzlnexpC1 t rmlcfml. (C12) 
ms1'l+l 

Therefore, the series converges uniformly provided 

For analyticity we need to show that the derivative also 
converges. This proof is as above-with the differenti
ation introducing another factor of m. Thus we have 
analyticity within the unit circle provided 

.. 
L;m 3

/
2Ifml <oe. (C13) 

m.O 

To discuss the behavior on the unit circle we need a 
more refined estimate for G. Introducing the form of 
Eq. (C6), we have 

G(II, n;m) = ..j(2n + 1)(2m + 1) {Qm(II)Pn(lI) - P m(II)Qn(lI)} 

(C14) 

Now on the unit circle I Pn(lI) I ~ 1, I Wn(lI) I < n.15 
Since always n ~ m we then obtain the bound 

This then gives as our convergence criterion 

(C15) 

(C16) 

(C17) 

Since this is the strongest of our conditions (and is in 
practice rather weak) we adopt this throughout the work. 

APPENDIX D 

"Doubled" Christoffel-Darboux formulas 

It is well-known17 that for functions satisfying three
term recursion relations of the form of Eq. (3.4) there 
exist summation formulas expreSSing sums like 
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l:.oil>2(X, N) in terms of iI>(X, N) and iI>(X, N + 1). Indeed, if 
in Eq. (3.23) we choose 

iI> (2)(X', n) =iI>(X', n) 

where iI> (X, no - 1) = 0 and pass to the limit X' - X, we 
find 

n~oil>2(X, n) =A(N + 1) ~(X, N) d~ iI>(X, N + 1) 

-iI>(X,N+l):X iI>(X'-1' 

Therefore for functions which satisfy 

(Dl) 

a(n + 1)<p(1I, n + 1) + a(n)<p(X, n -1) = 1I<p(X, n), n ~ no, (D2) 

we have what we will call the simple C -D formula 

t <p2(1I, n) = a(N + 1){<p(1I, N) :v <p(X, N + 1) 
n=no 

d· 
-<p(II,N+l) dll iI>(X,N)}. (D3) 

However, in Sec. 6 we found on iterating Eq. (D2) that 

v2<p(II, n) = a(n + 2)a(n + 1)<p(1I, n + 2) 

+ [a2(n + l)a2(n)]<p(II, n) + a(n)a(n -1)<p(1I, n - 2), 

(D4) 

(i) For odd n = 2m + 1 we define 

<p(II, 2m + 1) =iI>(lI, m), A(m)=a(2m)a(2m + 1), 

B(m) = [a2(2m + 2) + a2(2m + 1)], X = 112. 

Then Eq. (D4) is precisely of the form of Eq. (3.4) and 
Eq. (Dl) yields 

,t <p2(1I, 2m + 1) = a(2M + ;)a(2M + 3) {<P(II, 2M + 1) 
m=mo 11 

d 
x ;tV <p(II, 2M + 3) - <p(II, 2M + 3) 

X d~ <p(II, 2M + 1)} (D5) 

(ii) For even m = 2m we obtain analogously 

t <p 2(1I,2m)= a(2M +;)a(2M + 1) {<P(1I,2M) dd <p(1I,2M+2) 
m=mo 11 11 

- <p(II, 2M + 2) :v <p(II, 2M)}. (D6) 

We note that Eqs. (D5) and (D6) are formally the same, 
1. e., they say 

~: <p2(1I, n) = a(N + 2~:(N + 1) {<P(II, N) d~ <p(II, N + 2) 

-<p(II,N+2) d~ <P(II,N)} (D7) 

where ~' means a sum over even n if N is even or a sum 
over odd n if N is odd. 

Let us call Eq. (D7) a "double" Christoffel-Darboux 
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formula. While the "single" formulas follow only from 
the three-term recursion relation it is seen that the 
double ones are a consequence of the additional restric
tion that the "diagonal" terms B(n) are identically zero. 

An application 

In Ref. 2 a simple example was given. The decisive 
quantity K(n, n) was obtained in the form 

where for n even 

lEmEn-2 
m even 

and for n odd 

lEmEn-2 
m odd 

Here the CP(X, n) are Tchybecheff polynomials 
satisfying 

and 

(D8) 

(D9) 

Applying our "double" Christoffel-Darboux formula, 
we then have 

,,' - 1 - d-
L.J CP2(A, m) = ...... {CP(A, n - 2) d- CP(A, n) 

8A A 

- - d -
- CP(A, n) ...... CP(A, n - 2). 

dA 
(D10) 

Explicit results are obtained by noting that if X = cosh (J, 
then 

A-. (X ) = sinh m(J 
't' ,m sinh (J (Dll) 

Inserting in Eq. (D10) then yields 
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,,' - 1 (I sinh (2n - 2)(J) 
LJ cp2(A, m) 4 sinh2(J \(l-n) + sinh 2(J • (D12) 

Of particular interest is the behavior of K(n, n) for 
large n. Using Eq. (D12) we obtain 

1/K2(n, n)- 2e48 -1. (D13) 

That K(n, n) becomes independent of n is to be expected 
from the considerations in Ref. 2. 

*This work was supported in part by the Air Force Office of 
Scientific Research, Grant 722187. 

IE. Inonii, J. Math. Phys. 11, 568 (1970). 
2K. M. Case and M. Kac, J. Math. Phys. 14, 594 (1973). 
3K. M. Case, Phys. Fluids 16, 1607 (1973). 
4There are mathematically similar questions which arise in 
other problems, e.g., the so-called X-Ymodel. See K.M. 
Case and C. W. Lau, J. Math. Phys. 14, 720 (1973). 

51. Kuscer and 1. Vidav, J. Math. Appl. 25, 80 (1969) and 
K.O. Thielman and K. Claussen, Nucl. Sci. Eng. 29, 134 
(1970). 

6See , for example, K. M. Case and P. F. Zweifel, Linear 
Transport Theory (Addison-Wesley, Reading, Mass., 1967). 

7This may appear to be a peculiar variant of Eq. (2.11) but it 
will be shown that the cases c<l, c=l, c>l all reduce to 
this. 

8This should be proved. The analysis is quite similar to that 
used in Appendix C. 

9The Similarity of our treatment to the theory of scattering 
should be noted [cf., for example, R.G. Newton, Scattering 
Theory of Waves and Particles <McGraw-Hill, New York, 
1966)]. Indeed, our whole further discussion is just the dis
crete version of that theory (cf. Ref. 2). 

IOOne might object to this argument by saying that cf>+P'j, nO> 
could be zero. However, Eq. (3.4) withr(zj=O), cf>+(X;,nJ=O 
implies cf>+('ll.j,n) == 0, in clear contradiction to the definition of 
cf>+ (Aj , n). 

USee Ref. 6, p. 168. 
12We also assume that no gin) = O. If one is zero the treatment 

para lIe Is tha t for c = l. 
13See Ref. 6, p. 9l. 
HE. W. Hobson, The Theory of Spherical and Ellipsoidal Har

monics (Cambridge U. P., Cambridge, 1931), p. 61. 
15Ref. 14, p. 63. 
16E. C. Titchmarsh, The Theory of Functions (Oxford U. P. , 

Oxford, 1939), p. 124. 
17G. Szego, Orthogonal Polynomials (American Mathematical 

Society, New York, 1939), p. 41. 



                                                                                                                                    

ISing models derived from binary lattice gases * 
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Transformations of two-component lattice gases are studied. The original binary lattice gas has the 
Widom-Rowlinson type of interaction: infinite repulsion between nearby unlike particles and no 
interaction between like particles (except that multiple site occupancy is forbidden). The first 
transformation is to an equivalent one-component lattice gas, with many-body interactions-some 
attractive, some repulsive. The second transformation is to the isomorphic Ising spin system, having 
many-spin interactions-some ferromagnetic and some antiferromagnetic. All interaction functions are 
obtained as el!.plicit geometrical derivates of the mutual el!.clusion "sphere" of the original binary 
system. The results are discussed in light of recent theories of phase transitions of Ising models with 
symmetry-breaking many-spin interactions. 

INTRODUCTION 

There have been several publications recentlyl-4 con
cerned with proofs of the existence of phase transition 
in Ising systems with many-spin interactions-including 
interactions of odd order that destroy the up-down 
symmetry in zero field. The purpose of this communi
cation is to point out a special class of model containing 
many-spin interactions for which the ferromagnetic 
tranSition can be proved in other ways. 

The "A -B" model of Widom and Rowlinson has proved 
to be quite valuable. 5,6 The model postulates a two
component system (the A and B particles), with no in
teraction between like particles and repulSive interac
tions between unlike particles. The original version had 
continuous tranSlational coordinates and the repulsion 
between unlike particles was of the hard sphere type. 
It has been shown7 rigorously that this model undergoes 
a demixing tranSition at a high activity (same activity 
for both components). Similar proofs have been given 
for extensions of the original model to lattice versions8 

and to models with soft repulsions between unlike parti
cles_ 9 The lattice version with infinite repulsion between 
nearby unlike particles is certainly the simplest mem
ber of this class of model. 

In the initial description of the (continuum) modelS it 
was pointed out that the two-component (A-B) system 
with hard core A-B repulsion is isomorphic to a one
component system of "penetrable spheres." The parti
cles of this one -component system may be thought of as 
the A particles of the A -B system after the B particles 
have been rendered invisible. Thereby we must attach 
to each configuration of A particles a weight determined 
by the totality of B-particle configurations consistent 
with the A-particle configuration. The effective A-parti
cle interactions induced in this way will be of short 
range but many-body in character. 

Among these effective interactions, attractions will 
predominate, since clustering of A particles precludes 
a certain amount of repulsion with the (invisible) B 
particles. Widom has stated this principle more pre
cisely6 with the observation that the effective potential 
energy of an A-particle configuration is just the mea
sure of the region excluded to the B particles, minus 
the total "volume" of the A particles each regarded as 
a sphere. So defined, the effective potential energy is 
always negative, but can be written as: 
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- (region common to A pairs) 

+ (region common to A triples) 

- (region common to four A particles) 

Although it does not appear to have been done, there 
is no reason why the two-component-to-one-component 
transcription cannot also be carried out for lattice ver
sions of the A-B model. An additional incentive in the 
lattice case for the transcription is the possibility of 
then effecting a further transformation of the resulting 
one-component lattice gas to the corresponding ISing 
spin system. It turns out that both transformations are 
Simpler than might be supposed and provide a collection 
of ISing systems, with many-spin interactions, rigor
ously known to undergo phase tranSitions. 

LATTICE GAS 

We briefly construct the partition functions for the 
two-component A-B system and for the corresponding 
one-component system to show the relationship. For the 
former, each site of the lattice A may be occupied 
either by an A particle (activity ZA) or a B particle 
(activity ZB). Hence we have for the grand partition 
function 

- ( ) ~ IRI ~ lSI 
,:!,AB ZA, ZB = R'c!.A ZA SCA \R+ ZB 

where R+ denotes the sites excluded to B particles by 
virtue of the A particles residing at the sites of R C R+. 
The number of sites in set R is denoted I R 1. Thus we 
have 

EAB(ZA,ZB)= :0 ZA1><1 (1 +ZB)IAI-IR+I. (1) 
RCA 

The region R+ will be the union of (possibly overlapping) 
exclusions "spheres" Ex, where x E R is a site occupied 
by an A particle. For the simplest, nearest-neighbor 
exclusion case each Ex consists of the lEI sites conSist
ing of x plus the 2d nearest-neighbor sites (d equals 
dimensionality, two or greater). The demixing tranSi
tion, however, has been proven for any Ex that is simpl~ 
connected, convex, and possessing a center of 
symmetry. 8 

Copyright © 1974 American Institute of Physics 
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Consider now a one-component lattice gas system on 
the same lattice A. For particles at sites x E R the 
energy H is given by: 

-H(R) = III R I + U(R)€ 

where Il is the one-body energy (chemical potential), € 
is a parameter with units of energy, and - U contains 
all interactions, two-body and higher. The one-compo
nent partition function is then 

2(z,J3}= L ZIRl exp[j3EU(R)] 
RCA 

(2) 

where z = eal" and 13 is the inverse temperature. 

We now notice that the choice 

(3) 

and the identifications 

f3€=ln(l +ZB), 

13 [Il + I E I €] = lnz A (4) 

render the partition functions (1) and (2) identical, apart 
from the analytic factor exp(f3€IAI). 

These identifications mean, of course, that the ana
lyticity or nonanalyticity of the two models go hand-in
hand. Large positive ZA and ZB for the two-component 
model correspond to low temperature (large 13) and not
too-negative Il for the one-component model. It is 
necessary that € be positive (attraction between two 
particles) and that Il be greater than - I E I €. 

TWO PROPERTIES OF THE PENETRABLE SPHERE 
LATTICE MODEl 

We now show that the exclusion "sphere" Ex contains 
all the information needed to develop the configurational 
energy of either the one-component lattice 5as or the 
corresponding ISing spin system. The many-body 
potentials are simple derivates of the geometry of Ex' 

Lattice gas 

The interaction term U(R) can be expanded in many
body potentials as 

U(R) = L cp(p) 
PCR 

(5 ) 

where IIp is the number of sites from which B particles 
are excluded by each A particle at the sites of P. The 
summations are over sets P of two or more sites. 
(Throughout, whenever a set occurs as an exponent, 
such as (-)P and 2P, the meaning is the corresponding 
number of sites of the set, or (_)IP 1 and 2 1P I. ) The first 
property is stated as a lemma. 

Lemma 1: If there is some point x such that PCEx , 

where I P I ~ 2, then IIp is equal to the number of trans
lates of P also contained in Ex; otherwise IIp = O. A 
translate of P is the set {T(x)lxEP}, T being any trans
lation of the lattice. 

Proof: Suppose there is an x such that PCEx ' For any 
YEP, Y is in the exclusion sphere of an A particle at x. 
Consequently, x is in the exclusion sphere of any Y E Po 
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Also if T(P} C Ex, then by the same reasoning r-1(x} is 
also in the exclusion sphere of all sites of P. If on the 
other hand there is no x such that PCEx , then there is 
no site in the exclusion sphere of each point of P, and 
IIp = O. This completes the proof. 

Ising spin system 

We introduce spin variables ax for each site x and 
aR = IIxER ax' where (1x = ± 1. Now the (negative) configu
ration energy of the lattice A is expressed as 

U= L J(R)aR +const 
RCA 

where the functions J(R) are relatedlO to the functions 
cp(p) by 

(6) 

J(R) = L 2-P cp(p). (7) 
P~R 

Our second property is that these two set functions are 
in fact identical on sets of two or more sites, apart from 
a constant factor. This of course is not in general true 
for the lattice -gas-to-spin-system transcription. 

Lemma 2: For IRI ~ 2, 

J(R) =2-E cp(R). (8) 

Proof: In view of Eq. (7), the equation to establish is 

L 2-P(-)P IIp=2-E(_)R llR' 
P::JR 

If llR = 0 and I R I ~ 2 there is nothing to prove, since IIp 
must also vanish for any P::JR, by Lemma 1. Suppose 
then that llR"'O and RCEx for 1", i'" llR' where the Ex.'s 
are translates of each oth~r. Consider first ' 

IEI-lllI(IEI -IRI)( 1 ~+n 6 2-P( -)P = 6 - -} 
P::JR n=O n 2 

(E ::JP) 
Xi 

= (1 _1/2)E-R (_1/2)R 

=2-E(_)R. (9) 

(10) 

since (a) IIp = 0 unless P is contained in some translate 
Ex. and (b) each set P occurs exactly IIp times in the 
right-hand side of Eq. (10). But the inner summation 
is independent of i, so the right-hand side is equal to 
2-E(_)R llR' by Eq. (9), and the proof is complete. 

For convenience we can define the one body terms to 
be cp({X})=1l in the lattice gas case and J({x})=h 
(magnetic field) in the spin case. Neither lemma applies 
for these independent field variables. The general rela
tionship between the coeffiCients, Eq. (7), is still valid, 
however, and may also be used (in conjunction with the 
boundary conditions) to determine the constant in 
Eq. (6). 

APPLICATIONS AND DISCUSSION 

For the simplest application we consider the two
dimensional square lattice with nearest-neighbor exclu
Sion between an A particle and a B particle. Each ex
clusion sphere Ex consists of five pOints. 
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TABLE I. Square lattice. penetrable sphere model. 

Set P ({J (P) J(P) X 25 

• 
• 

•••• 
• • .. , .. 

• ... , . 
• . ' .. , . 
• 

• 
•• , etc. 

• 
• ., etc. 

• 
• 
•• , etc. 

• 
• 

• • • 
• 
• 

••• 
• 

Lattice gas 

o 
M 

2E 

2E 

E 

-E 

-E 

-E 

-E 

Spin system 

16M +49E 

16M + 75E 

2E 

2E 

E 

-E 

-E 

-E 

From Lemma 1 we find the cp coefficients in the ener
gy expansion 

-H(R)=Il/R/+ 6 cp(P) 
peR 

Ip 1;02 

as shown in Table I. To convert to spin language and the 
J(R) coefficients of Eq. (6) we can use Lemma 2 for 
I R I ~ 2. The results are also given in Table I. The one
body term (magnetic field) must be obtained by explicit 
summation of the inversion formula, Eq. (7), for R 
= {x}. The chemical potential Il = cp({x}) enters here and 
could be inhomogeneous rather than constant, as indi
cated in the result shown in Table I. In evaluating Eq. 
(7) for J({x}) there is one term for each set P in the 
table-as well as sets obtained by rotation-each 
multiplied by I P I to account for all possible locations 
of the site x in the set P. 

The constant in Eq. (6) may also be computed uSing 
the inversion formula, Eq. (7), with the understanding 
that the constant is the contribution of J(C/J), C/J being the 
void set. If we invoke periodic boundary conditions J(¢) 
is proportional to I A I, and J( ¢)/ I A I is a summation 
over the sets P with nonzero J(P), including rotations 
but not translations. This is how the entry J«(/) in Table 
I is obtained. 

It is easily learned from the interaction coefficients 
that the total energy per site -H/I A I for the (+) con
figuration (all 0',= +1) is Il +4€, which is also the total 
energy per site in the lattice gas language for the com
pletely filled lattice. Similarly for the (-) configuration 
(all 0',= -1) or the empty lattice gas, the total energy 
is zero. 
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We know from previous work on the A-B lattice 
modelS and the isomorphism developed above that this 
Ising spin system has a phase transition-with ferro
magnetic pair and fourth-order interactions and anti
ferromagnetic third- and fifth-order interactions. It is 
interesting to interpret this system in light of the recent 
work of Pirogov and Sinai. 1 In their study of Ising spin 
systems it is shown that a phase transition occurs if the 
following conditions are met: 

(a) pair interactions are ferromagnetic; 

(b) many-body interactions are suffiCiently weak; 

(c) temperature is sufficiently low . 

The actual meaning of (b) is the following. We first 
define a special value of the magnetic field h* =J({x}} by 
the condition that in the field h* the energy of the (+) 
configuration is identical to that of the (-) configuration. 
For the special case of only pair interactions, h* = O. 
We then define the Peierls contours in the usual 
mannerll-as if the many-body interactions vanished. 
With nonvanishing many-body terms, however, the 
energy that can be attributed to the contour, or "fault 
line," is no longer the same in the two complementary 
situations: a "sea" of (-) spins with (+) boundary condi
tions on the outside of the system, and a "sea" of (+) 
spins with (-) boundary conditions. The meaning of con
dition (b) is that the many-body terms be sufficiently 
weak so that in the field h* for eitler case, the sign of 
the contour energy is determined by the pair interac
tion' i. e., the contour energy is always repulsive. 

For the present example, the special field h* is ob
tained by setting Il = - 4€ [so that the energy of the (+) 
configuration and the (-) configuration is zerol. Accord
ing to the entry for J({x}) in Table I this means h* 
= (1l/32)€. It may now be shown directly that any con
tour has repulsive energy. For any configuration of 
spins the total energy may be written as: 

UA = 6 W, + J«(/) , 
,EA 

where W, is a mOdified (negative) energy for the set of 
five spins: x plus its four nearest neighbors. The modi
fication is that W, is computed according to Table I 
except that (a) the nearest- and next-nearest-neighbor 
pair energy terms are halved-since each is included 
in two W/s-and (b) the one-body term applies only to 
the central site. No other terms are overcounted. We 
must also remember to interpret J({x}) as h* = (1l/32)€. 

Thus we find, for example, that with all five spins 
+1 (or -1), Wxtakes the value +(15/32)€. IfO'x=-l 
and the other four are +1, then W,= -(9/32)€. There 
are twelve distinct cases, apart from rotationally 
equivalent configurations, and all except the "pure" con
figurations +1 or -1 have W, «15/32)€. 

The Pirogov-Sinai definition of the energy of a single 
contour in the field h* is equivalent to 

6 [w, - (15/32)€], 
,EA 

which will always be negative for any contour. This 
means that condition (b) is met and that the conclUSions 
of the Pirogov-Sinai development apply: a phase transi
tion occurs at sufficiently low temperature (spin 
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system), or at sufficiently high activity (A-B system). 
This amounts to an alternate proof of the phase transi
tion first proved in Ref. 8. 
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An explicit analytical solution is found for the scattering potential produced by a straight line 
segment. Integral transformations are introduced which map the mixed boundary value problem into 
one which can be solved by standard Green's function methods. 

1. INTRODUCTION 

There have been several attempts to calculate the 
scattering potential by a straight line segment or needle, 
see Jones. 1 These attempts are in general unsatisfac
tory because the needle has been considered as the lim
iting case of a prolate ellipsoid of revolution which pro
duces a discontinuous solution as the boundary reduces 
from three-dimensional to one-dimension. For example 
Bowman, Senior and Uslenghi2 have described the solu
tion of the Dirichlet problem for a prolate spheroid. 
This is found as an eigenfunction expansion in spheroidal 
wave functions and it can be shown that when the spher
oid degenerates into a needle the total potential exterior 
to the straight line segment is the incident wave whilst 
on the needle the potential vanishes in accordance with 
the sound soft boundary condition. This result is typical 
of Similarity solutions, that is solutions obtained by 
"separation of variables" appropriate to the coordinate 
curves describing the boundary. A similar result was 
obtained for the electrostatic potential problem in Ref. 
3. 

In this paper the scattered potential for an incident 
plane wave advancing parallel to the axis is formulated 
as a three part mixed boundary value problem in which 
the potential and its derivative normal to the axis are 
prescribed at different parts of the axis. At infinity the 
Sommerfeld radiation condition is to be satisfied. The 
problem as stated is well posed because using an inte
gral transformation described in Sec. 3, the axially 
symmetric problem can be mapped in a one-one manner 
into a two part mixed boundary value problem for the 
two-dimensional reduced wave equation in which the po
tential is prescribed on the positive axis and the normal 
derivative on the negative axis. At infinity the two-di
mensional radiation condition is satisfied. This problem 
can be solved in terms of standard Green's function 
methods and it can be shown that the scattered potential 
is finite at the tips of the needle, but its derivatives are 
infinite. The radiation condition at infinity is satisfied 
provided the needle is finite in length. 

It is pointed out the Sec. 2 provides a rationale for the 
integral transformations used in this paper. These are 
clearly related to the Mehler-Dirichlet integral repre
sentations for the Legendre polynomial. Section 3 gen
eralizes the result of Sec. 2 for the situation in which 
there are distributions of singularities on the axis. 

Finally the continuous potential which is finite at the 
tips appears to be unique, but if the finiteness condition 
is relaxed there are infinitely many solutions for the 
scattered potential which are infinite at the tips. It is 
conceivable that the solution described here is in fact 
the limiting case of a solid cylinder finite in length. 
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2. INTEGRAL TRANSFORMATIONS FOR THE 
REDUCED WAVE EQUATION 

The integral representations used in this paper can be 
motivated by some elementary considerations. Let x 
= r cos B, P = r sinB define spherical polar coordinates; 
then separable solutions of the axially symmetric re
duced wave equation 

(1) 

where L 1 is the axially symmetric Laplacian defined by 

02 2 0 1 0 (, . a ) 
L1 == ar2 +:;: or + r 2sinB ae \smB ae ' (2) 

are given by 

w(n)(r, 0)= r- 1
/
2 [An H~!i/2(kr) + Bn H!:i/2(kr)]Pn{COSB) • 

'(3) 

H~!i/2(kr), H~:i/2(kr) are Hankel functions of fractional 
order and Pn(cosO) is the Legendre polynomial. Now the 
Mehler-Dirichlet formulas for the Legendre polynomial 
are 

P 
£'l 21/2 f8 cos(n+~)XdX 

cOSu ---n( )- 1T 0 (COSX - cosO)l/2 

- 21/2 f~ sin(n+~)XdX 
- 1T (cosB-cosx)1I2' 

8 

and it follows that 

w(nl(r o)=r-1/2f6 un(r,X)dX 
, (cosx - COSB)1/2 

o 

where 
f' vn(r ,X)dX 

=r-1
/

2 
9 (cos 0 - COSX)l/2 , 

21/ 2 

(4) 

(5) 

U + iv = -- [A H(l) (kr) + B H(2) (kr)]e i (n+1/2n 
n n 1T n n+l/2 " "+1/2 • 

(6) 

Moreover, it is natural to generalize Eqs. (5) by writing 

w=.0w(nJ, (u+iv)=.0(u +iv); 
n n n " 

(7) 

then 

W( 0)- -1/2f8 u(r,X)dX 
r, -r (cosX-COSB)1/2 

o 

1 f' v(r,X)dX 
=r-

12 
(cOSB-cosxP/2, 

8 

(8) 

where 

21/2 
U + iv= -- .0 [A H(1) (kr) + B H(2) (kr)]ei (n+1 /2IA 

1T n n n+1/2 n n+1/2 

(9) 
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satisfies the equation 

(La + k 2)(u + iv)= ° 
and the operator 

02 1 a 1 02 

L=-+--+--0-or2 r or r2 OA2 

(10) 

Thus the integral representations (or transformations) 
expressed by Eq. (8) map solutions of the two-dimen
sional Helmholtz equation into solutions of the axially 
symmetric form of the same equation. Since the kernels 
in (8) are of Abel type, the inverse transformations are 
also of a simple form but these are not required for the 
present paper. The integral transformations (8) possess 
the following properties on the axis: 

(i) 
a 

v(r,O)= OA v(r,A)\x •• =o, 

(ii) 
a 

u(r,1T)= ail u(r,A)\x=o=o, 

(iii) W(r, 1T)= (2r)-1/2 1Tv (r, 1T), 

(iv) W(r,O)= (2r)"1/2 1Tu(r, 0) , 
(11) 

(v) aWl (2y
/2

0vl ae 9"= r OA x .. ' 

(vi) oW 1 C /12 au 1 ae 9=0 = r ail x.o· 

These relations are certainly satisfied for u + iv = un 
+ iVn or a finite combination of the un + ivn• In fact, when 
there are no sources on the axis 8 = 0, or 1T, the expres
sions in Eq. (11) [(v) and (vi)] are all zero. If there are 
sources on the axis, or part of the axis, as will be the 
case when the axis forms part of the boundary it is 
necessary to proceed in the manner described in the 
next section. 

3. VALIDITY OF THE INTEGRAL 
TRANSFORMATIONS WHEN THERE ARE SOURCES 
ON THE AXIS 

From Eq. (8) it is natural to define 

W(r 8)-r-1/2f' v(r,A)dA 
, - (cos 8 - COSA)1/2 , 

9 

(12) 

where v (r, A) is continuous with its partial derivatives 
in r> 0, 0" A < 1T and v(r, 0) = 0. This latter condition 
ensures convergence of the integral (12) as 8 - 0. It is 
convenient to introduce new variables defined by 8' = 1T 
-8, A'=1T-A, u(r,A')=v(r,1T-A), and Wl (r,8') 
= W(r, 1T - 8'); then Eq. (12) can be written as 

,) -1/2f9' u(r,A')dA' 
W l(r, 8 = r a (COSA' _ cosil' )1/2 , (13) 

where it is assumed that u(r,A') is even in A' [see [9]]. 
Again it may be verified by replacing the lower limit in 
(13) by € and considering the limit € - ° ±, that if 
(L l +k2 )Wl =0, then 

(14) 
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since 

ou I ou I - -±-
OA' ).'=0: - OA' ).'=0+' 

Equation (14) is equivalent to 

2 OU I (Lo+k 2 )u=± "2 -, O(A'), 
r OA x' =0", 

(15) 

where 0 (A' ) is the Dirac delta function. To determine 
which sign is appropriate for consistency set U = e-1k,,' u 
and consider the divergence theorem applied to the vec
tor F = grad U + 2ik Vi in the (p, 1/» plane Over the region 

r" p ., r + or, - OA' ., I/> ., OA' • 

This yields 

f
6X

' ( 0 )-or La + 2ik ax' Urdl/> 
-OA' 

f 6A'(OU - )\ = a + 2ikU cos I/> (r + or )dl/> 
-6),' P p=T+6 T 

f 6A'( oU - )\ - ap + 2ikUcosl/> rdl/> 
-6),' per 

+ or{['!:" o,,~ _ 2ikUsinl/>] 
r u~ ~~~ 

[
1 au - ] } - - 0'" - 2ik U sinl/> • 
r '+' 0c-Ol.' 

(16) 

Hence as or, OA' - ° 
. f 6X

' ( • 0)- 2 oU I 11m La + 2ik -;;-;- Urdl/> = - ;-;- , 
6X' _ a u X r u A x' =0+ 

-6).' 

(17) 

or equivalently 

La + 2ik "ax' U = ~ ~ I 0 (A' ) • 
u r 0 A' A' =0+ 

(18) 

In terms of u, (18) yields 

(Lo+k 2 )u= ~ o~ I O(A'). 
r aA A'=O+ 

(19) 

Thus when OU/OA' 1 A'=O+*O, the positive sign in Eq. (15) 
should be chosen. (See note added in proof. ) In terms of 
v(r, A) it follows that a solution of 

2 ov I (Lo+k2 )v=-- a O(1T-A), 
r A x=. 

(20) 

with v(r, 0)= 0, maps into a solution of (Ll + k 2)w= 0, by 
the integral transformation (12). Also from (12) it fol
lows that 

W(r, 1T)= (2r)-1/21Tv (r, 1T) , " oW 1 =(~)1/2 ov I. 
au 0.. r OA 

(21) 

4. SCATTERING BY A FINITE LINE SEGMENT 

Consider an incident plane wave represented by Wi 
= e-ikx advancing on the needle p = 0, - 1 ., x ., 0, or 8 = 1T , 

0., r" 1. The total potential W= Wi + Ws ' where Ws is 
the scattered potential. The boundary condition (sound 
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soft) requires W=O, on the needle, or 

W.==_e+ib, 8==1T, O";r.,;l. 

In view of symmetry 

aw. 
39==0, 8==0, r>O, 

=0, 8==1T, r>l, 

(22) 

(23) 

and finally the scattered wave should satisfy the Som
merfeld radiation condition at infinity. Now W. is a 
solution of the reduced wave equation (1) and a suitable 
representation for the solution is expressed by equation 
(12), that is 

W (r 8)-r-l12fw v(r,X)dX 
s ,- 8 (cos 8 - COSX)I/2 , (24) 

where v(r,O)=O, and v(r,x) is a solution of the two
dimensional reduced wave equation in r > 0, 0.,; A .,; 1T. 
The boundary conditions for v are 

(2r)1/2 
v(-r,O)= - --- e+ikr , X==1T, O";r"; 1, 

1T 

av -0 1 OA - , A=1T, r> • 

(25) 

The radiation condition at infinity is satisfied for W. if 
the two-dimensional form of the condition is satisfied by 
v. It is not clear that the condition 0 W /08== 0, on 8 == ° 
is satisfied. To show this write t== cosX, (3= cos8 and 
consider 

oW . 0 f8 vdt 
-a 8 == - sm8 0 a -I ,., (1 _ t2)l/2(fJ _ [)1/2 , (26) 

. 0 f" vdt 
- sme 0 (3 (1 _ f)1I2(j9 _ t)I/2 , 

-I 

(27) 

where 1 ~ 13 > a > - 1. Since 

o f8 vdt 
of' .. (1_t2)1/2(f'_t)I/2 

f 8 0 { V } dt (v)to .. 
= .. at (1- t2)1/2 (13 _ dl / 2 + (1 _ ( 2)1/2(fJ _ a)i/2 

(28) 

(29) 

both of which remain finite as fJ - 1 or 9 - 0, it follows 
that OW/09-0, as 9-0, provided 

lim ~(....!!...-) 
~~o OA sinA 

(31) 
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. exists. This will be fulfilled by the condition v(r,O)=O. 

It is convenient to pose the problem for v in trans-
1ated coordinates (r lO A1) defined by 

(32) 

Regarding vasa function of (rlO A1), the boundary value 
problem can be stated as follows: 

02 1 0 1 02 

(Lo+k 2)v=O, Lo'" ~ + - - + 2" ~o or l r l or l r l Al 

exceptonx1 =0, 0";r1 .,;1, and 

v==g(r1) , Al==O, 

where 

=0, r 1 >1. 

(33) 

(34) 

(35) 

Also OV/OA 1 == 0, Xl == 1T, and v satisfies the Sommerfeld 
condition at infinity. The mixed problem for v can be 
solved in terms of the Green's function formula 

1 fl (v OC) v--- -- dp 
- 21T 0 PI 01>1 <1>1,0 1> 

(36) 

where the Green's function C(P1>1> 1 Irl>A1 ) is defined by 

subject to the mixed conditions 

oC 
C==O, 1>1=0, 01>1 =0, 1>I=rr, (38) 

and C satisfies the two-dimensional Sommerfeld condi
tion as PI - co; C is found in the appendix and is repre
sented by the eigenfunction expansions 

(39) 

for PI < rIO and 

C = 2rri .t H(~i/2(kpI) [In+1 / 2(kr)] sin(n + i)1>1 sin(n + i)A1 , n=:O n 

for PI> r 1 • Thus v may be expressed in the form 

v == 2:" t (n + t)H~~i/2(krl) sin(rz + t)A I rrv2 n.O 

X fl (1-PI)!/2 e+ikU-PI)[J (kp )]dp 
P 

n+I/21 I' 
o 1 

for r 1> 1; and for ° < r 1 <.1 

(40) 

(41) 

2' 00 fTI (1 )1/2 v = _t_ ); (n + 1. )H{1) (kr) sin (rz + l.)A - PI rr.,f2 n';;6 2 n+I/2 1 2 1 P 
o 1 

x e+iW-PI ) [In+I /2(kpI)] dpi 

+ R2i t (n + t)[Jn+ I / 2 (kr I )] sin(rz + t)AI 7T nliO 



                                                                                                                                    

991 K.B. Ranger: A scattering problem 

f l (1- )1/2 
X PI e+i~(I-pl) H(1) (kp) dp 

PI n+l/21 l' 

rl 

(43) 

so that 

2 · ikr .. f' . ( 1) -" W - ze L) e-i.(n+1) /2(n +.1) sm n + 2" x'1 WI. 

S (Jr3k)ir n=O 2 (cos8-COsx,)i/2 
9 

Thus the scattered wave does in fact satisfy the radia
tion condition at infinity. From the manner in which 
v(r,x') and hence W(r, 8) has been constructed it follows 
that W(r, 8) is continuous at the tips of the needle r=O, 
and r = 1, 8 = rr. It is difficult from the eigenfunction ex
pansion for the Green's function to determine the nature 
of the singularity in the derivative of W at the tips and it 
is useful to this end to write the Green's function as an 
integral representation. This can be achieved by a 
slight modification of the method given by Clemmow. 4 

In this case G is given by 

G _ i~R' e IJ. e dlJ. (f" i,,2d f" 1,,2 

- e -m' (1J.2 + 2kR,)172 - m' (1J.2 + 2kR' )l72) 

where 

and 

= 2(kp1r 1 )1/2 (cf>1 - x'1) 
m Rl +R cos 2 ' 

, _ 2( kPlr l )1/2 (cf>1 + x'1) 
m- R

1
+Rl cos 2 

R = [p~ + r~ - 2Plrl COS(cf>1 - x'1)]1/2 , 

R' = [p~ + r~ - 2Plrl cos (cf>1 + X1)]1/2 , 

Rl =Pl +r1• 

(45) 

(46) 

(47) 

This solution for the Green's function is obtained by 
adding to Clemmow's solution the Green's function at 
the image source point so that the derivative cancels out 
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on the negative axis cf>1=rr. From (44) it is readily shown 
that as PI - 0, G is continuous but the derivatives contain 
Singularities like pi1/2• From this it can be shown in a 
straightforward way that Ws is in fact finite at the tips 
of the needle but the detivatives have square root sin
gularities. The solution constructed is thus the only one 
possible if Ws is to be finite at the tips of the needle, 
but there are clearly infinitely many solutions to the 
problem if this condition is relaxed at the tips. For ex
ample, the functions 

Gn = H~!~/2~Pll H~!~/2(krl) sin(n + ~)cf>1 sin(n + ~)Xl) , 

(48) 

n = 0, 1,2, ... , can be added to the eigenfunction expan
sions for the Green's function. Gn clearly satisfy the 
inner and outer boundary conditions but have singular 
behavior near PI = O. 

Note added in proof: It turns out that (14) implies (15) 
only when the positive sign is chosen, and to determine 
the scattered potential Ws accurately first write Ws 
= Wso + W!; W~ is the scattered potential found in the 
paper and W! is defined by 

W1_r-1/2 S82 u(r2,X)dX , 
s - 2 0 (COSX - cos82)1/2 

where r2 sin82 = rSin8, 1 +rcos8=r2cos82. On the axis 
u(r2,rr)=0, r 2 >0, u(r2 ,0)=0, 0.,;r2 .,;1, X=O, ouj'ax 
= 0, r 2 > 1, X = 0, and at infinity u satisfies the radiation 
condition. In order that Ws be a solution~ of the reduced 
wave equation it is found that 

(82 (Lo + k 2 )udx' (u~)o 
)0 (COSX - cos82)1/2 + ra(1 - COS82)1/2 

(
r2)1/2 (v~)rr 

= r r2(1 +COS8)1/2 . 

This Abel equation is readily inverted and an inhomo
geneous Helmholtz equation is obtained for u which can 
be solved in a straightforward manner subject to the 
above boundary conditions. 
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Summary Report, 1324, University of Wisconsin, January 
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Expansion-free electromagnetic solutions of the Kerr-Schild 
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Starting with the general Kerr-Schild form of the metric tensor, ds2=1/+1 ® I (where I is null and 
1/ is flat space-time), a study is made for those solutions of the Einstein-Maxwell equations in which 
I is geodesic, shear-free, and expansion-free. It is shown that all resulting solutions must be of 
Petrov type [4] or type [-] and the Maxwell field must be null. Because of the expansion-free 
assumption there exist flat and conformally flat gauge conditions on all metrics in this class; i.e., 
there exist metrics of this Kerr-Schild form which are flat (or conformally flat) but are not 
Lorentz-related. A method is given for obtaining meaningful solutions to the field equations with the 
latter gauge equivalence class removed. A simple example of a radiative field of type [4] along a line 
singuIarity exhibits how solutions in this class may be generated. 

1. INTRODUCTION 

This work concerns itself primarily with radiation so-
1utions of the Einstein-Maxwell equations for a metric 
in Kerr -Schild form. The assumption that the special 
null congruence is expansion-free bridges the gap left 
between those electromagnetic solutions of Debney, 
Kerr, and Schild1 (hereafter called DKS) and the general 
expansion-free cases studied by Kundt. 2 

The original Kerr -Schild paper 3 concerned itself with 
vacuum space-time metrics which have the form (where 
1) is the metric for flat space -time and 1 is tangent to a 
null congruence} 

ds 2 = 1) + Z0 Z. (1.1) 

It assumed the Einstein vacuum field equations plus the 
condition that Z have nonvanishing expansion (_p *" 0, in 
Newman-Penrose notation,4 hereafter called N-P). The 
general properties possessed by these vacuum space
times include: (a) They are all algebraically special; {b} 
1 is a degenerate principal null direction for the Rieman
nian curvature tensor (and is both geodesic and shear
free); and (c) the Schwarz schild and Kerr5 classes of so
lutions fall into this category. 

Later, metrics of the same form satisfying the 
Einstein-Maxwell source-free equations were studied in 
DKS, again assuming the condition that Z have nonvanish
ing expansion but also assuming Z to be geodesic. The 
properties implied in general about these space-times 
turned out to be: (a) They are all algebraically special; 
(b) 1 is a principal null direction for the Weyl conformal 
tensor and 1 is shear-free; and (c) they contain the 
Reissner-Nordstrom and Kerr-Newman6 classes of 
solutions. 

Before the Kerr-Schild studies appeared, Kundt2 con
sidered all vacuum, and certain nonvacuum, space
times which possessed a geodesic and shear-free null 
congruence 1 with vanishing complex expansion. These 
fell into two general categories determined by whether 
the rotation (T in N -P) of 1 vanishes or not. 7 It was con
cluded that such space-times fell into all algebraically 
special categories and the cases with vanishing rotation 
were the (type [4]) "pp waves. " The general name of 
"expansion-free radiation fields" characterizes the 
whole expansion-free class. 

It is the purpose of the present paper to examine in 
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more detail the expansion-free constraint on the special 
null vector in the Kerr-Schild metrics and its implica
tions in the context of Einstein-Maxwell theory. Such 
studies in vacuum cases have been treated by H. 
Urbantke9 and by the author. 10 

Section 2 contains the algebraic preliminaries. Here, 
also, one assumes the expansion-free condition for 1 
and its alignment with the electromagnetci field. Appen
dix A supplements this section with the computations to 
derive the field equations, proving along the way that the 
Petrov type must be [4] or [-]. 

Section 3 provides a better coordinate system (at least 
when the rotation X*" O) in which to solve the field equa
tions. The work in Appendix B exhibits the flat and con
formally flat "gauge" conditions on the metric, provid
ing a way of obtaining type [4] solutions modulo these ad
ditional gauge terms. The problem here is that "the" 
flat background is not unique in these expansion-free 
cases: some of "Z0 Z" can go into "1)" to form another 
flat background, not related to 7j by a Lorentz transfor
mation. A method given for removing these solutions 
from the picture allows meaningful examples to be cho
sen. Section 4 exhibits, as an example of vanishing ro
tation, an electromagnetic field which falls off radially 
in cylindrical coordinates and propagates along the z 
axiS; it possesses true singularities on this axis. 

2. PRELIMINARIES 
The Kerr-Schild3,1 form for the metric on a four

dimensional Lorentz manifold (C i of Signature (+++-) 
is stated simply as ds2 = 7j + 10 Z, where 1) is the metric 
for a flat (Minkowski) background and Z,. is the tangent to 
a congruence of null curves. Notice that writing 

(2.1) 

tells us that l'" is null with respect to both g,.v and 7j,.v' 
The field equations for a Einstein-Maxwell space-time 

(2.2) 

plus the source-free Maxwell equations for the electro
magnetic field F ,.v 

(2.3) 

must also be satisfied. [R,.v=RO< ,.vo< is the Ricci tensor, 
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T "'v== (ilT)(F ",c?v'" - ig",? al'aB) is the electromagnetic 
stress-energy tensor, and the Riemannian curvature 
tensor R",voq, satisfies Va; ",v - Va; v'" =Raa",v V a for any vec
tor field V. J 

The approach used to find solutions to (2. 1)-{2. 3) 
makes use of a complex null tetrad. [This set of four in
dependent vector fields forms a basis (or "frame") in 
which all geometric objects and equations may be writ
ten. Components with respect to such a basis are indi
cated by Latin indices, whereas components with respect 
to a coordinate basis are indicated by Greek indices. ] 
The contravariant and covariant components of the tetrad 
are expressed through 

(2.4) 

respectively 0 Since the two systems of vector fields in 
(20 4) are vector space duals they satisfy, by definition, 

The "complex null" part comes from the additional re
lations resulting from a formal complexification, where 
"bar" denotes complex conjugation: 

- - -e2 =eU e 3 =e3 , e4 =e4 • 

In such a system the metric takes the form 

ds2 =g ,wdx"'dxv = 2El€2 + 2E3E4 =gab€a€b. (2.5) 

If {x,y,z, t}={x"'} are Cartesian coordinates in the 
background Minkowski space, define complex null co
ordinates {I:, t, u, v} by 

Y2u==z+t, Y2v==z-t. 

Then TJ",vdx"'dx"'=2dl:dt+2dudv. By letting hbe an un
known scalar and 1'" == (2h)1/2k'" the metric (2.1) becomes 

ds2 =g",vdx"'dx" =2dl:dt + 2dudv + 2h{k",dx",)2. (2.6) 

A choice of tetrad is made in terms of these coordinates: 

(2.7) 

As in DKS, the unknown complex function Y{x"') may be 
introduced to express any null vector field k dx'" in 
Minkowski space. The contravariant tetrad {ea} is then 
computed to be 

(2.8) 

e4 =aV + Yae + 1'ae- Y1'au==k"'a",. 

Denoting the operation of ea on a scalar cf> by ea(cf» ==cf>'a 
it is clear from a study of Ricci rotation coefficients for 
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k", that Y>4=O ... k", is geodesic and Y,2=0"k", is shear
free. Furthermore Y, 1 = z, the complex expansion of k", 
("p" in Newman-Penrose4). (See Appendix A.) 

The first assumption Made for this system is that k", 
is a principal null direction for F "'v; i. e., F ",vk'" = Q kv 
for some scalar Q. This is essentially the same as that 
made in DKS because k'" is geodesic and shear-free if 
and only if it is a principal null direction for F ",v (see 
Appendix AL Consequently, the scalar h in (2.6) may b~ 
chosen so that k'" is tangent to an affinely parametrized 
congruence of null geodesics. The congruence is also 
shear -free. 

The next assumption, Z = 0, restricts the study to 
those Kerr-Schild electromagnetic solutions for which 
the vector 1'" in the metric is expansion-free. As shown 
in Appendix A, this produces the general theorem: All 
source-free vacuum or Einstein-Maxwell fields Of the 
Kerr-Schild class ds2 = 'Y) + 10 1, where 1'" is an expan
sion-free principal null direction for the Maxwell field 
F "V are of Petrov type [4]. Furthermore, the electro
magnetic field F ",v is null; 1. e., F ",?"'V = ° == F :vF'" v 

3. NEW COORDINATES: SOLUTIONS OF THE 
FIELD EQUATIONS 

It is shown in Appendix A that the vector fields {eu e2 , 

e i } satisfy leu e2 ] = leu e4 ] = [e2 , e4 ] = 0. Frobenius' theo
rem suggests that one may find new coordinates, say 
{Q,a,p,w}={x""}, for which 

(3.1) 

Indeed this may be accomplished by setting 

Q=I:-Yv, G:==t-1'v, w==v, 
(3.2) 

p==u+ 1'1:+ Yt- Y1'v. 

Notice that Q G: + pv = I: t + uv but that {x"'}- {x"1 is not 
Lorentz except when Y is a constant. However p = TJ",vx" kV 

=g"vx"'kV so that p=k·P, where P is a position vector in 
the original "background" Minkowski space. 

The tetrads expressed in the new coordinates become10 

(3 0 3) 

(with rotation X== Y, 3 and r== 1 +QX +CiX) and 

(304) 
e 3 = - v{Xa '" +xaa) + ra p - ha v' 

The field equations [Eqs. (A14a)-(A14d)] may be written 
as 

haa - haX - ho,X = - 2FF, 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

The geodesic, Shear-free, and expansion-free conditions 
on k'" clearly imply through (A4) and (A10) that Y = Y(p). 
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Hence, Y, 3 =X = r(dY/ dp) = rY' so that 

r-1 =1-y'a -y'a. (3.6) 

Equation (3.5a) implies that F=F(a,a,p) and that 

h=a(a ,a, p)v + g(a ,a ,p), (3.7a) 

where a and g are real-valued functions of their argu
ments. Equation (3. 5b) implies 

a==rA(p), (3.7b) 

where A is arbitrary. The function a does not enter into 
(3.5c) so that (3.5c) and (3.5d) reduce to, respectively, 

(3.7c) 

(3.7d) 

Although it is not obvious, an investigation similar to 
that of Appendix B gives us that a conformally flat solu
tion must necessarily have X=O, F==F(p), and g 
=D{p)aa. -How€ver, these only make up a proper sub
class of solutions where F=F{p). The latter solutions, 
even though X == 0 is implied here too, are not all con
formally flat since they admit a more general function 
g(a,a,p) in the metric. 

It is shown in Appendix B that any function (3.7a) hav
ing the form 

h=r{A(p)v + K{p)a + K(p)a + L{p)], (3.8) 

where A, K, L are arbitrary functions of p, results in 
the metric 

(3.9) 

being a representation of fiat space-time with no field 
F; i. e., any such it. term in general makes no contribu
tion to the curvature. Consequently, there exists a co
ordinate system in which (3.9) may be written manifestly 
as flat space. Instead of looking for this coordinate trans
formation we alternatively take the approach that solu
tions to (3.7c) and (3.7d) not containing h=av+g, where 
g=r{Ka +Ka +L] for X,.O or g=Daa +Ka +Ka +L for 
X = 0, are to be regarded as meaningful for the present 
purposes. 

4. A SPECIAL SOLUTION WITH X = 0 (pp WAVE) 

Since X =0 implies the system {a,a,p, v}={t, I, u, v}, 
let 

(4.1) 

where y(u} is arbitrary and real. Then by the discussion 
in Section 3 the metric is not conformally flat. 
Furthermore, 

FF=y2/tt 

By solving (3. 7c) the nonflat part of the metric becomes 

g(t, t,u)=-2y2(u)lln(t} 1
2

, 

Hence, the metric is 
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(4.2) 

(4.3) 

with a curvature Singularity at t = 0 (i. e., x = y = 0) and 
possibly elsewhere if Y(u)- "". 

Let .f2 t==Re iB • Then R ==x2 + y2 and cylindrical coordi
nates {R, 9, z, t} are established. From the relation 
F />vdxl-'A dx" =FabIf'A€b one obtains the electromagnetic 
field tensor 

F/>vdxl-'AdxV== 12" {2y/R)[dR Adz +dRAdt]. (4.4) 

Classically, the electric field E is along R and the mag
netic field H is along 9; propagation takes place along 
the z axis and the intensity falls off as W l in the radial 
direction. The amplitude y(z + t) determines the longi
tudinal behavior of the wave. 

Notice that many choic€s for the starting point (4.1) 
exist and it is possible to study many more type [4] cases 
when X == 0 as long as gee "* 0 and the conformally flat it 
=Dt"E is avoided. Curvature singularities will most like
ly be determined by the singularities inherent in the 
choice of F. 
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APPENDIX A: THE STRUCTURE EQUATIONS FOR 
THE KERR-SCHILD CLASS 

The following discussion first. makes use only of the 
Kerr-Schild form of the metric. Further assumptions 
come in later as: (a) ZI-' is a principal null direction for 
the electromagnetic field FI-'v and (b) the complex expan
sion of ll-' vanishes (i. e., z = 0), respectively. 

The first structure equations are stated concisely as 
d&=r"\/bl\.eC

, which are true for any torsion-free con
nection I'" bc and any tetrad .(or "frame") {&} locally 
throughout the space-time. The condition that the con
nection be the "metric connection" of Levi-Civita is the 
equivalent to stating rbac=-rabc' where rabc=gamrmbc. 

=gamrmbC' 

For the particular metric (2.1) and tetrad (2. 7) the 
de3 equations are written as 

de 3 =!(r <lab - r 400)& /\ eO 

=(Y _Y )€lA€2+y €3/\€l+y €31\e2 
t 1 t 2 t 3 ,3 

+ Y €4/\ e1 + Y €4/\ e2 
,4 ,4· 

Equating coefficients and defining z = r 241> X = Y 3' we 
obtain • 

(Al) 
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The de4 equations become 

+ (hX - h,2)E3A e2 + hY, 4e4/\e1 + hY,4e4/\e2 0 

Equating coefficients allows one to write 

r 342 - r 324 = hY,4' 

r 312 - r 321 = h(z - z), r 313 = h,1 - hi, r 323 = h,2 - hX. 

(A2) 

Finally the dE2 equations are written as 

Upon equating coefficients we obtain (through the use of 
complex conjugation) 

hY,1=r311 , hY,2=r322 , 

Y,2=-r124 +Z, Y,1= r 124 +z, 

hY,2 = r 123 + r 312' hY,1 = - r 123 + r 3211 

r121=r122=0, r 413 = r 314 -X - hY,4' 

r 423 = r 324 -X - hY,4. (A3) 

Putting together the information in (Al)-(A3) results 
in 

z = Y,lI Z=Y,2' r 321 = hz, r 312 =hz, 

r 422(shear of kl') = - Y,2' r 322 =hY,2' 

r 424= - Y,4' r 342 =hY,4' r 324 = ° = r 344' 

-r42S =hY,4+X , r 323 = h, 2 - hi. 
(A4) 

The second structure equations dI'" b + r a m/\ rmb 
= ~R\CdEC/\Ed contain implicitly the field equations Rab 
=-87TTab (where I"'b'" r\/c are the connection l-forms). 
However, one obtains in particular the relationship 

(A5) 

Hence, making the first assumption that kl' is a principal 
null direction for F I'.(and therefore T 1'.) implies Y,4 '" 0. 
But Y 4 = ° implies r 424 = r 414 = 0, which is equivalent to 
stating that kl' is a geodesic. Hence, kl' is a principal 
null direction for Fl'. if and only if kl' is a geodesic. Our 
assumption here (as in the earlier DKS paper) then pro
duces the Simplifications 
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r414=r424=r341=r342=0, r 423 =-x, r413=-x. (A6) 

Furthermore, this forces Rab partly into a canonical ... 
form 

(A7) 

since F14 = F24 = ° now, as well. The connection l-forms 
of interest reduce to 

(A8) 

-1 2 hX)-3 r 31 =h(JE +hZE +(h,1- E, 

where a'" - r 422. 

The dr 42 + r 4m Arm 2 = ~R42ab e' A eb equation results in 

R4212=R4234=0",,*C(4)=0 (1/11 in N-P), 

implying that the space-time is algebraically special 
and that kl' is a principal null direction for the Weyl con
formal curvature tensor. Also 2R4231 =C(3) (1/12 in N-P) 
so that 

- C(3) = 2z[h, 4 - (z - z)h]. (A9) 

The field equation - ~R22 = R 4232 = ° is not identically 
satisfied; it becomes 

a[h,4 - (z - z)h] = 0. 

As in DKS, (1'# ° gives rise to a contradiction (i. e., van
ishing electromagnetic field, algebraically special space 
-time, -a'#O are incompatible). Therefore a=O must re
sult. Note that we have derived the relation that kl' must 
be geodesic (r 424 = 0) and shear -free (r 422 = 0). 

At this stage the work of DKS and that discussed here 
differ in that the assumption z = ° (kl' is expansion-free) 
is imposed. From (A9) it is clear that C(3)=0 so that 
Petrov types [3, ll, [4], or [- 1 are the only possibili
ties. We choose to exclude the conformally flat cases 
(type [ -]) since these have been solved completely in 
the Einstein-Maxwell context (see, for example, Cahen 
and Leroyll). 

The special relations imposed above imply the follow
ing relations from (A4) (omitting complex conjugates): 

r 122 = r 121 = r 123 == r 124 = ° = r 421 = r 422 = r 424 = r 414' 

r 311 = r 312 = r 314 = ° = r 341 = r 344' (Al0) 

r 343 =h,4' r 313 =h,1- hi, r423=-x. 

In tetrad form the Maxwell equations are written with 
z=O: 

(F12+F34),1-2F31,4=0, 

(All) 
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Since FI2 is pure imaginary and F 34 is real, the field 
equations R12 =-81TT12 and R34 =-81TTs4 become 

IF1212+ IF34 lz=O, 

h,44=-IF12 !Z- !F34 !a 
so that h,44 == 0 == F 12 == F w Therefore the only nonzero 
components of Fab are F 31 and F sz• Study of canonical 
forms for Fab reveals that FOb is a null elect~omagnetic 
field. Furthermore, the only nonzero component of Tab 
is Tss=(4/T)-1F31F32=(41T)-IIF3112. Hence the equations 
left are (letting F 31 ;: F) 

(A12) 

The equations RS1 = Rsa = 0 come from the d(r12 + r 34) 
structure equations to give 

h,)( - h,41 = e(Z) (l/!3 in N -P), 

h,;X -h,42==0. 

The reality of h implies therefore that e(2) =0, the 
Petrov type is [41, and radiation solutions are to be 
expected. 

The dr 31 equation completes the set of field equations. 
These are given by 

- ( - 1 1 12 h,1X-hXX+ hX),2-h,l2="2R33=-2 F , 

h 1X - hi2 + (hi) 1 - h 11 == tell) (l/!4 in N-P), , " 
The general relationships cP ,ab - cP ,00 = cP ,m(r"'ob - rm 00) 

are true in any tetrad system for any scalar CP. These 
correspond to the Lie brackets lea, eb] = em.be m on the 
basis fields {e.}. Applying this to eu e2, e4 and using 
(AI0), we find that 

(AlS) 

1. e., cP 12 == cP 21> cP 14 ==: cP 41> and cP 24 = cP 42' In further 
applying this to the' function ¥ in the metric one obtains 
algorithms for derivatives of X: 

The simplifications above reduce the set of field equa
tions for the expansion-free Kerr-5child case with elec
tromagnetism to 

(A14a) 

(A 14b) 

h,l2 - h,lX - h,zX=-2FF, (A 14c) 

F,2 -XF==:0=F,4' (A 14d) 

with the [ - ] case excluded through the constraint 
e(l) .. 0; i,e., 

h,l1 -2h,lX .. o. (A15) 

The only relationships to come from the Bianchi iden
tities turn out to be 
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e(l) -0 R 
,4- = 33,4' 

which are-<all identically satisfied. 

APPENDIX B: THE GAUGE CONDITIONS FOR FLAT 
SPACE 

In the {O!, a, P. v} coordinates the general solution for 
the function h in the metric is given by the real-valued 
functions 

h=av+g, a=a(O!,a,p), g=g(O!,a,p). (Bt) 

Furthermore, a=rA(p), where A(p) is arbitrary and 
r-1 = 1 - ylO! - ¥'Ci, Thus far the relations (A14a) and 
(A14b) are the ones satisfied. 

Consider the cases with no electromagnetism present 
(F=O). Then the equation (A14c) is the condition that 

(B2) 

Hence, gr-l :::::S(O!, p) + S(a, p), where S is arbitrary. 
However, there will be a large amount of repetition of 
solutions because of a gauge condition implicit in (A15); 
i. e" the set of all functions g for which 

(BS) 

give a solution h = av + g which is necessarily flat space, 
completely independent of "a" • [When inserting h = av + g 
into (A 15) one finds that the "av" terms cancel each. other 
identically in all cases, leaving only a constraint on g. ] 
It would make things much simpler if somehow one might 
"divide out" these flat-space solutions. 

The condition(B3) is the gauge condition for flat space. 
The general solution for all such functions g satisfying 
(B2) and (BS) is 

g =rlK(p)O! +K(p)a +L(p)], (B4) 

Where K, L are arbitrary and L is real. This works in 
a vacuum (F=O), but it also holds true in the present 
electromagnetic case. This is most easily seen by ob
serving that (A14c) is the differential equation 

(B5) 

Hence, any function g added to g will contribute nothing 
to the field equation (B5) since (gr"1)aii=0. 

In summary we have shown that the metric 

+ 2r-1(Av + KG! + Ka + L )dp2 

is a representation of flat space (where A, K, L are arbi
trary functions of the coordinate p). It illustrates a pe
culiarity of these expansion-free wave solutions in that 
"the" flat background is by no means unique. In fact, a 
comparison of results in a vacuum with the linearized 
theory, even in the X=O case, is doomed to frustration 
until one writes his particular metric in the correct co
ordinate system. (Such a coordinate system is usually 
not manifestly 1) + l ® l. See, for example, Misner, 
Thorne, and Wheeler12 .) 
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We present a proof of a set of FK.G inequalities, namely. 
dIJ_l(pJv

, rrJ=l(pj)"i> - < rrr=l(PI)V, > <rrJ=l(pj)"i> ~O. 
The proof is obtained using Gaussian random variables and holds for systems whose Hamiltonian 
contains a positive quadratic form and one-body interactions on which no restrictions are placed. 

In a recent paperI we presented a new proof of the 
first and second Griffiths-Kelly-Sherman (hereafter 
GKS) inequalities2 for a class of general spin Ising sys
terns. The proof was based on the rewriting of the cor
relation function averages in terms of averages of 
Gaussian random variables. Subsequent to the initial 
proof of the GKS inequalities by Griffiths, a different 
set of inequalities, the FKG inequalities, were proven 
by Fortuin, Kasteleyn, and Ginibre. 3 Proofs of these 
inequalities being rather abstract, we offer here a sim
ple derivation of a subclass of the FKG inequalities, 
the method of proof being similar to the approach used 
in Ref. 1 to prove the GKS inequalities. 

Let Sl be a finite lattice whose sites will be designated 
by i = 1,2, ... ,N. On each site there is a spin variable 
SI =p,p - 2, .•. , - P + 2, - P or equivalently an occupa
tion number variable PI = 0, 1, ... , p, where 

(1) 

The spin Hamiltonian of the system is 
N N 

H({s})=-tL;J(i,j)Sjsj-L;L;hm(i)sjm_L; L; IJ.n(i)sl"' 
I~J j=I ~d M e';:'n 

(2) 

where m and n are respectively, odd and even integers, 
J(i,j)~O, and J(i,j)=J(j,i). The spin Hamiltonian 
H({s}) can be transformed into an equivalent lattice gas 
Hamiltonian H({P}) by use of Eq. (1). Also, any other 
function f{{Sj}) of the spin variables can be written as a 
function, f({PI})' of the occupation number variables. 
The thermal averages of such functions are 

(3) 

with 

ZN= L; exp[-H({s})]= L; exp[-H({P})]' 
Is} {p} 

(4) 

where {s} is a configuration of the set of N spins and we 
have for SimpliCity set f3= 1. We shall be interested in 
thermal averages of products of the PI'S given by 
nf=I(Pltl, where VI is a multiplicity function assigning 
a nonnegative integer to each site i. 

The method of Gaussian random variables is based 
on the identity4 

998 

exp[tL; ~kak,~,J= (21T)-N/2(deta}-1/2 
k.l 
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valid for any symmetric, real, and positive definite 
matrix a and for any N complex variables ~k' The sign 
of (deta )-1/2 is to be chosen positive. The right-hand 
side of Eq. (5) can be considered as the average 
<expLf=IXj~J) Ava' where < )Ava denotes the average with 
respect to the probability density 

W N(x) = (21T)-N /2(deta)-1/2 exp[ - t ~ xk(a-I )kIX,J, (6) 

where x is the vector with components xJ • The identity 
(5) can be used to rewrite the Boltzmann factor, 
exp(- H), by identifying the variable ~J with the spin 
variables Sj and forming a matrix J = a with off-diagonal 
elements J(i,j) and all diagonal elements equal to a 
number Jo = J(i, i} large enough to guarantee that J is 
positive definite. The Boltzmann factor with the 
Hamiltonian (2) is then 

N 

exp(-H) = <exp E [XkSk + ~ hm(k}skm + ~ /1,(k}Sk" 
odd even 

_lcJ S 2J) 
2 0 k 

AvJ' 

We then prove the following. 

(7) 

Theorem: Given the system described above, one has 
the inequalities 

(VI (p/l J~ (P/P - (~1(P1)"? <~I (PJ}O) ~ 0 (8) 

for any multiplicity functions VI and 61' 

Proof: Using Eqs. (5) and (6) and the relationship be
tween PI and sp we have 

Xexp(six/ + S~YI) 

xexp .6 h",(i)[Sf+ (s'JmJ + .6 IJ.n(i)(Sj+(Si)"J} 
m " 
odd. even 

(9) 

Defining new variables 

1h= (1/v'2) (x k + Y k ), ~k= (1/v'2) (x k - Y k), (10) 

Copyright © 1974 American Institute of PhysiCS 998 
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one can rewrite (9) as 

Z![(n (p,)"; Ii (p/J\ _In (p/iY Ii (P/J\] 
,~=1 J= 1 / \1=1 IY- I I 

N {(1)' v",eJ [ 1 ~ a a) ~ v, x n - -=- - + - +P 
',J=l 2 '1/2 a1l i a ~, 

(
[ 1 (' a a \ ~ OJ [1 (a a J + Pl eJt 

x Lv'2 a1l j + af;J + PJ - [12 \a1l j - ar;J J f 

X VI exp {s"x k + S~Yk + ~ hm(k) [s:, + (s~)m] 

+~!J.n(k)[(Sk)n+(S~)n]}. (11) 

By looking only at the terms arising from expressing 
(Pi)"; and (p/j as partial derivatives, 

- [~ (a~j - a!) +~ OJ)}, (12) 

and defining 

1 a 
')1.= -- +P 

• v'2 a1l i ' 
(13) 

the preceding expression (12) becomes 

N (l)V.+Oj )vi "" oJ! )OJ-r JL '2 • (Yi + Ei ~ (0, _ r)! r! (')I, (EJY. (14) 
odd 

The above expression can be written as 

where l; and k; are nonnegative integers and where 
C(ll' kl' ... , l N' k N) is a positive constant. We can there
fore consider two separate averages, one of the 'Y;' s 
which operate on the variables 11 i and the other of the 
E;' s which operate on the ~;' s. The 'Y;' s and the E;' s act 
on the terms involving S i and si being summed from - P 
to + p. This expression can be written in terms of 11, and 
~; as 

6, COSh(Sj+s; 1Ii+ 6 hm(i)[si+(si)m]\ 
5i'Si 12 m Y 

odd 

X COSh(1 Sj - SI I)~. 
v'2 • 

xexp(~ !J.n(i)[si+ (S'i)n]). 
even 

( 15) 

Any y:i or E:i acting on this quantity gives respectively 

}' {! (s i + sj + \ Ii 
S~'i 2 2 PJ 
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1 (S.+S' )/ 
+'2 t"~+P 

xexp (_ Sj~SI 1Ii-~hm(i)[Sr+(s;)m~} 

XCOSh('S~SII ~j) exp(~ !J.n(i)[Si+(Si)n]) (16) 

even 

where e(x) = sinh(x) if k i is odd and e(x) = cosh(x) if k i 
is even. One now sees that for the terms involving the 
1Ii variables in (16) and (17) we have only nonnegative 
functions of the 1I;'S irrespective of the values of SI' si, 
and the hm(i)'s. This is true in (16) since (si+si)/2 'fP 
for all allowed values of Si and si, and it is true in (17) 
since cosh(x) ~ 0 for all x. Hence their average is non
negative when taken with respect to W N(1I). For the re
maining random variables, ~;'s, we can expand the cosh 
and sinh terms as a power series in the ~/s. We there
fore have a sum of averages of the form 
C(a 1 , ••• , aNH~l ~;2 ... ~N(Y.N, where the constant 
C( aI' a2, ••• , a N) is nonnegative. The average of any 
product of the ~ / s being nonnegative whenever 
J(i, j) ~ 0 the average of the cosh and sinh terms in the 
~i variables is a sum of nonnegative terms. Clearly 
the terms involving the !J.n(i)'s are nonnegative and, 
hence, the right-hand side of Eq. (9) is nonnegative and 
the inequality is proven. 

Note that for these inequalities there is no longer any 
restrictions on the one-body interactions, a feature 
common to FKG inequalities. Such freedom has been 
exploited by Lebowitz5 to enable him to prove cor
relation inequalities for a specific class of antifer
romagnets. Using the above approach and a transforma
tion of Lebowitz these inequalities can be proven 
directly by the above method. 
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Unification of the external conformal symmetry group and the 
internal conformal dynamical group 
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The two common applications of 0(4,2) as a conformal group on external space-time coordinates 
and as a dynamical group on internal relative coordinates are combined into a unified algebraic 
structure for composite systems. A method is given for obtaining from this structure 
infinite-component wave equations and a discrete, linearly increasing mass spectrum. 

1. INTRODUCTION 

The four-plus-two-dimensional orthogonal group 
0(4,2) has been applied in physics both as a symmetry 
group of transformations of global or external space
time coordinates and as a dynamical group of transfor
mations of rest frame states of a system having internal 
degrees of freedom. The first application arose his
torically from the demonstration by Bateman and 
Cunningham1 in 1910 that Maxwell's equations are in
variant under the inversion 

(1.1) 

When this observation is combined with the well-known 
Poincare and dilatation invariance, Maxwell's equations 
are found to be invariant under the 15-parameter group 
of transformations called the conformal group-a par
ticular nonlinear realization of 0(4,2).2 A conformally 
invariant formulation of classical electrodynamics, 
both for massless and massive particles, has been 
given recently. 3 

The second application of 0(4, 2)-as a dynamical 
group-has been continuing over the past decade, grow
ing out of studies of such composite systems as the 
hydrogen atom and, more recently, the relativistic 
models for composite hadrons. 4 The quantum numbers 
of the system which characterize certain internal de
grees of freedom can be made to correspond with eigen
values of certain generators, or combinations of gen
erators of the group. Other generators then serve as 
transition operators between eigenstates. It seems 
that precisely 0(4,2) is both necessary and sufficient 
to characterize the system of two spinless particles. 5 

In the case of the hydrogen atom, a specific realization 
of the generators in terms of internal coordinate vari
ables is known. 6 

The question arises whether there may be underlying 
physical significance or a physical "reason" for the 
occurrence of the same group in these two different but 
complementary aspects of particle dynamics. This is 
the primary question investigated in this paper. Al
though a conclusive and final answer is yet to be found, 
we shall demonstrate the relationship between these 
two roles of 0(4,2) and indicate some surprising and 
interesting interconnections .. Moreover, we shall show 
that the combined external and internal groups can be 
used to generate a discrete mass spectrum in a manner 
which avoids the restrictions of O'Raifeartaigh's 
theorem. 7 
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2. THE CONFORMAL GROUP-EXTERNAL 

The Lorentz group 0(3,1) of rotations and boosts 
has six generators LjJ.v which close under commutation 
to form a Lie algebra. If we add to these the four gen
erators of translation P jJ.' we obtain the Poincare group 
or inhomogeneous Lorentz group 10(3,1). The additional 
possibility of inversion, a single discrete operation, 
requires the addition of five new generators in order 
finally to achieve a closed group 0(4,2), the conformal 
group. The new generators are: first, a 4-vector KjJ. 
wl1ich generates the so-called special conformal 
transformations 

,_ XI!: _CjJ.X2 

XjJ. - 1- 2C
v
X v + C2X2' 

(2.1) 

obtained as the product of inverSion, translation, and 
reinversion; and second, a scalar D which generates 
dilatations 

X~=pXjJ. 

and occurs in the commutator of PjJ. and KjJ.' 

If XjJ. and 1IjJ. are conjugate variables, 

(II jJ.' Xv] =igjJ.v, g= (+, -, -, -), 

we may write the conformal generators as follows: 

LjJ.V=XjJ.llv - XvlljJ., 

PjJ. =LjJ.6 +LjJ.4 =1IjJ.' 

KjJ. = LjJ.6 - LjJ.4 = 2XjJ.(XvIIV +iH) - (XvXV) 1IjJ.' 

(2.2) 

(2.3) 

D = L64 =Xv rrv +iH. (2.4) 

Here H is a number called the homogeneity (for rea
sons given below) and is related to the Casimir invari
ant of the algebra by 

(2.5) 

Acting as differential operators on a function space of 
X, 1IjJ. would be represented by ia/(aXjJ.). Direct verifi
cation shows that the generators Lab obey the 0(4,2) 
commutation relation 

where g is the diagonal metric 

g=( + +). 
0=512346 (2.7) 

Copyright © 1974 American Institute of Physics 1000 
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The specific commutators are 

[L,.." LAp] = - i(g,. xL.,p + g.,pL,.x - g,.pL.,), - g.,xL,.p) , 

[P,., K.,] = 2i(g,."D- L,..,) , 

[L,.." p x] = - i(g,.xP., - g.,x P ,.), [D, p x] = - iPx, 

[L,.."Kx]=-i(g,.xK.,-g"xK,.), [D,Kx]=iKx. (2.8) 

All other commutators vanish. 

One can readily show for the representation (2. 4) that 
P ,.p,., while not an invariant of this algebra, neverthe
less gives some quantity times itself when commuted 
with each of the generators (for the case H = 1). Hence, 
in the special case that P ,.p,. equals zero when acting 
on the carrier space, p,.p,. is invariant and the con
formal symmetry is exact. This observation has led to 
the customary view that the presence of mass terms 
breaks conformal symmetry, and thus limits the use of 
the conformal group to the high-energy domain where 
rest masses effect only minor symmetry breaking. It 
has been shown, however, that by considering the usual 
rest mass to be a scale factor times a new, conformal
ly-invariant mass, and by interpreting conformal trans
formations as a space- and time-dependent change of 
scale, conformally invariant equations of motion can be 
written for massive particles as well. 3 (Recently, 
Dirac8 also considered a transformation of mass with 
dilatations proportional to the age of the universe. ) 
Physical processes are conSidered to take place in a 
six-dimensional space in which the usual Minkowski 
sapce is a special projected subspace wherein the scale 
or unit of measure remains constant from point to point. 
Although the following analysis is valid regardless of 
whether or not one chooses to apply this latter inter
pretation, such an interpretation significantly extends 
the applicability of all conclusions regarding conformal 
symmetry. We therefore consider the case where 
P ,.p,."* 0, i. e., P ,.p,. has then a continuous spectrum. 

The special conformal transformation (2.1) may be 
linearized by introducing K as a scale parameter along 
with the following new coordinates 

Y"-==KX", 

y4+r -==A=KX,.X", 

having the property 

(2.9) 

y. Y-== YaY"= y,.y,. - (y4 - r)(y4 + r) = y,.y,. - KA = O. 

(2. 10) 

The generators (2.4) may then be written in the simple 
form 

(2. 11) 

where Q is the variable conjugate to Y. With the inter
pretation indicated above, physics takes place on the 
five-dimensional hypercone Eq. (2.10) in the six-dimen
sional Y-space. 

The procedure for paSSing from six-dimensions down 
to four3,9 involves, in addition to the change of variables, 
the imposing of two constraints. First, S = y. Y is an 
invariant of the algebra and so may take a particular 
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fixed value-zero, in this case. In fact, formal change 
of variables from Ya to Y,., K, and S in Eq. (2.11) 
yields generators independent of Qs or o/(aS). Hence 
the value of S cannot affect the commutation relations; 
one variable is effectively eliminated. Secondly, the 
carrier space of functions are taken to be homogeneous 
in Y. With the change of variables (2.9), the homo
geneity property allows one to factor out the K depen
dence as K-H, where H is the homogeneity. The K
dependence in the generators occurs only in terms of 
the form KQK-iKa/aK, which may be replaced every
where by - iH, its effect upon such homogeneous func
tions. Thus, one is left with generators in four vari
ables-the conformal group in X-space, "Sq. (2.4). We 
shall call this procedure "reduction with respect to Y." 
[The same net result is more readily 7 but less rigorous
ly, achieved by making the change of variables Eq. 
(2.9) and then simply replacing A by KX,.K" directly, 
and setting Qx = 0, thus avoiding the variable S. ] 

3. THE DYNAMICAL GROUP-INTERNAL 

A dynamical group G is a group whose subgroup 
structure and multiplicities in a representation Tg can 
be made to correspond with all the rest frame states 
(bound and continuum) of a quantum system having inter
nal degrees of freedom, and which contains current 
operators representing interactions and effecting transi
tions between states. For example, 0(4) is an exact 
symmetry group of the nonrelativistic H atom and con
tains the quantum numbers, n, 1, and m describing the 
rest states. But each irreducible representation of 0(4) 
corresponds to a different n and different energy. En
larging the group to 0(4,1) is necessary to allow for 
transitions between states of different energy. Finally, 
enlarging to 0(4,2) is necessary in order to include con
tinuum states and current operators. 

The dynamical group approach and associated tech
niques have been applied successfully to a number of 
problems of composite systems. From the quantum 
mechanical point of view, a knowledge of the states 
(i. e., wavefunctions) and of the interaction current 
operators is all there is to know about a system. Ex
tension of the method from known systems such as the 
nonrelativistic H atom and the Dirac atom to strongly 
"bound" highly relativistic systems such as pion and 
proton has enabled calculations of mass spectra of ex
cited states, form factors, structure functions, and 
cross sections of various electromagnetic processes, 
all in agreement with experiment-all using 0(4.2).10 

The representations generally used as dynamical 
groups are characterized by having generators which 
obey the representation relation!! 

(3.1) 

The representations with minimum spin- zero and spin
half in this class have found most frequent applications. 
For strongly bound and highly relativistic systems in 
which concepts such as localizability and constituent 
particles become poorly understood and perhaps use
less, the particular realization of the group represen
tation becomes a matter of convenience as the postu
lated algebraic structure takes precedence over the de-
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tailed physical interpretation of the generators. For a 
glven algebraic structure, the introduction of internal 
coordinates sometimes becomes ambiguous. 12 But in 
nonrelativistic problems, from which we gain intuition 
on how to approach the strongly bound and relativistic 
problems, the realization is determined by the known 
constituents and coordinates and by the interaction. 

For the H atom, one can build the 0(4,2) realization 
somewhat as outlined at the beginning of this section, 
starting with 0(4). Or one can combine the appropriate 
radial 0(2,1) algebra with the rotation group 0(3) using 
knowledge of either the Runge-Lenz vector or the in
ternal Galilei booster. We shall indicate an alternate 
approach which reveals a curious connection with the 
conformal group of Sec, 2. 

Conformal group in momentum space 

Consider the generators of the conformal group of 
transformations of an internal, four-dimensional mo
mentum vector 71'". conjugate to the difference four
vector of two particles x", =x1", - x2",. These can be writ
ten directly from the generators (2.4) by letting II". - x", 
and X". - - 71'", (the minus Sign occurs to preserve the 
commutator in the form [71'"., x~] = ig ",~) and reordering 
with 1T'S to the right by convention to obtain 

llJ6 +l"., = x"., 

l",G -I"" = 2(X~1T~ + ih) 71'". - X".1T~1T~, 

lS4 = - (X~1T~ + ih). (3.2) 

Just as the special case P ",P'" = 0 was an invariant of 
the conformal group in X-space, likewise here x",x". =0 
is an invariant of the conformal group in 1T-space (for 
h = 1), We may incorporate this special case into the 
algebra by changing to the three-dimensional variable 
r = x' and s = x ",x'" and afterwards set s = 1) and r = I r I to 
obtain13 

lii: = r,1T J - r J1T, = €iJk(r X7/')k, 

l,ol = r1T, 

l,s+l,4=-r, 

los +l04 =r, 

l'G -li4 = 2(r' 7/'- i) 1T- r1T2
, 

lOG - l04 = r1T
2, 

lS4=r°7/'-i. 

(3,3) 

Up to Sign conventions and labeling of indices, this is 
the usual H atom 0(4,2), useful in both the nonrelativis
tic and relativistic cases. 14 This realization is also use
ful in establishing the correspondence between the tradi
tional formulations of Schrodinger, Klein-Gordon, and 
Dirac with the method of infinite-component wave equa
tions, giving strong motivation to the choice of coeffici
ents required in the latter approach. 15 

The generators (3.3) no longer generate conformal 
transformations of an internal 4-momentum; one 0(4,1) 
subalgebra, however, still generates the conformal 
group of transformatiops of the three-dimensional inter
nal1T vector. This group includes the well-known 0(4) 
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rotational symmetry of the Fock-transformed 1T 

vector. is 

Direct calculation shows that the general conformal 
algebra with which we began [Eq. (3.2)] does not satis
fy the representation relation (3.1), However, after 
limiting our concern to the special case x".x", = 0, we 
find the generators (3.3) do indeed satisfy the relation 
(3.1) and generate the spin-zero representation of this 
class. Likewise, although the conformal algebra in 
X-space [Eq. (2.4)] does not satisfy the relation (3.1), 
when restricted to act upon solutions of (P".P"')l/!=O, and 
with H= 1, the relation (3.1) does hold on this function 
space, and the spin-zero representation is again 
realized. 

The special case x ",x'" = 0 is a very natural and desira
ble one, as this condition is also obtained as that nec
essary for electromagnetic interaction to take place be
tween the particles according to the Green's function 
5(x2) in the action integral or in the vector potential, or 
Simply by the assumption that the interacting field 
propagates at the speed of light. 

The question of the "physical cause" of the so-called 
accidental degeneracy or 0(4) symmetry of the non
relativistic H atom is thus equivalent to seeking an ex
planation for the occurrence of the conformal group in 
internal four-dimensional momentum space (reduced to 
three dimensions with the condition x ",x'" = 0) as the dy
namical group of hydrogenic systems. 

4. COMBINED EXTERNAL AND INTERNAL GROUPS 

A. The six dimensional approach 

We shall now give two approaches towards unifying 
the concepts of Secs. 2 and 3 by investigating group 
structures which combine external and internal prop
erties of a two-particle composite system. 

First we shall apply the interpretation of Ref. 3 and 
assume that for each of the two particles physical pro
cesses actually take place in a six-dimensional space. 
Our task is to understand how these processes appear 
projected into the observed four-dimensional Minkowski 
space. If in six dimensions the equations of motion for 
each particle are "rotationally invariant" (i. e., con
formally invariant in Minkowski space), then we may 
write the total invariance algebra for the system as 

Lab = (Lab)1 + (Labh. (4.1) 

From Eq. (2. 11) 

(4.2) 

where (Ya)' and (qa)' are the six pairs of conjugate vari
ables (a = 1, ... ,6) for particle i (i = 1, 2). We further 
require [see Eq. (2. 10)] that 

(4.3) 

in order that each particle algebra reduces correctly to 
Minkowski space, We now introduce usual external and 
internal variables 

Y =Y1-Y2, 
(4.4) 
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where W and ware arbitrary weight functions with the 
property 

W+w=1. (4.5) 

(We do not call Ya center-of-mass variable as we wish 
to leave unspecified the possible relation of W and w to 
the cor.stituent masses.) It is readily shown that 

[Q",Yb]=[q"'Yb]=ig"b' (4.6) 

while all other commutators vanish. 

With these definitions the algebra (4.1) splits into 
commuting external and internal algebras; i. e. , 

Lab = (Lab)1 + (Labh 

= (y"qb - Ybqa)1 + (Yaqb - Ybqah 

= (Y"Qb - YbQ,,) + (Yaqb - Ybq,,) 

= Lab + lab' 

(4.7) 

We would like the external algebra to generate the 
conformal group in X-space when reduced to four di
mensions, so that the composite particle would behave 
like an "elementary" particle as far as external coordi
nates are concerned. Recall that reduction to Minkowski 
space requires the constraint y. Y = O. The compatibil
ity of this constraint with Y1 • Y1 = 0 and Y2 ' Y2 = 0 implies 
some interesting consequences: 

0= Y' Y = (WY1 +WY2) , (WYl +WY2) 

= W2Yl 'Yl +W2Y2' Y2 + 2WWYl 'Y2 

= 2wwYl' Y2' 

(4.8) 

Either W or W equals zero, or Yl ' Y2 = O. For W or w 
equal to zero, Y equals Y2 or Yi> respectively; Y satis
fies the constraint trvially, and the reduction to the con
formal group in X-space is equivalent to the single par
ticle reduction. But the interesting case Yl 'Y2 = 0 im
plies [using Eqs. (2. 9) and (2. 10)] 

0= Yl ' Y2 = Y1ILY2 1L - tKl'\2 - !K2 Al 

= iK1K2(2xl1J.X21J. - X1 2 - X22) 

= - h1K2(Xl - X2)2. 

(4.9) 

Thus we must have Kl or K2 identically equal to zero 
(which contradicts their interpretation as scale param
eters), or we must have (X1 - X2)2 = O. If we define the 
internal coordinate to be 

(4.10) 

we have precisely the desired restriction xlJ.xlJ. = 0 dis
cussed in Sec. 3 for the internal algebra. Thus we de
rive a rather unexpected and non-trivial result from 
applying the six-dimensional interpretation to conformal 
symmetry of a two-particle system. 

We may now reduce the external 0(4,2) with respect 
to Y, using the condition y. Y = 0, and arrive at the 
conformal group in X-space according to the procedure 
concluding Sec. 2. We then focus our attention on the 
internal 0(4,2). If we attempt a similar reduction in
ternally, we find ourselves forced away from the usual 
and desirable definition of internal coordinates (4.10) to 
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the definition [according to Eqs. (2.9) and (4.4)] 

x =~ Yi!! - Y214 = K1Xi!! - K2X214 (4.11) 
1£ K Kl - K2 Kl - K2 • 

Not only is this a strange and undesirable internal co
ordinate, but it becomes totally useless in the case Kl 
= K2-a case we would like to interpret as both particles 
being in the same Minkowski space, using the same unit 
of measure. In order to avoid this definition, therefore, 
and to recover instead the definition (4.10), it seems 
necessary to reduce the internal 0(4,2) with respect to 
q, assuming the condition q' q = O. That is, we consider 
(2q~) to be the scale parameter analogous to K, define17 

qlL = 2q~'\IL' 
q4 +qs = 2q~, 

q4 - qs = 2q«, 

(4.12) 

and proceed in analogy with the reduction procedure in 
Sec. 2, treating the q's as coordinates and the y's as 
differential operators. The result of this reduction is, 
of course, the conformal algebra in 1T-space, Eq. (3.2). 
The rigorous reduction procedure yields the same re
sult as replacing q« by q~1T ,.1T1L and setting K = 0 (i. e. , 
Kl = K2, as desired) in analogy with the· prescription con
cluding Sec. 2. 

In order to have this conformal albegra in internal 
1T-space identical to the dynamical algebra discussed in 
Sec. 3, we must make the natural requirement that all 
scale factors be the same. Physically, this is Simply 
the requirement that all measurements-xi> X2, X and 
x-be made with the same "units." Mathematically, this 
is 

Kl=K2=KO, 

K :;WKl +WK2 = (w +w) Ko = Ko, 

K =Kl- K2 '" 0, 

(2q>.)a1 = Ko· 

(4.13) 

With these "constant units" the internal coordinate vari-
able x,. is 

x lL =YIL(2q~) = (K1X11J. - K2X2IL)(2q~) = Xl 1£ - X2,.· (4.14) 

So the restriction (X11L - X21L)2 = 0 obtained from reducing 
the external algebra may be applied to the internal alge
bra to give us finally the dynamical algebra of Eq. (3.3). 

In summary, we began this section with the hypothesis 
that the position coordinate of each of two particles 
transforms according to the conformal group and that the 
motion of each particle may be considered to take place 
in a six-dimensional space, constrained to a five-di
mensional hypercone. Upon introducing external and 
internal variables, the total system algebra splits into 
commuting external and internal algebras. The external 
algebra may be projected to Minkowski space to de
scribe a composite particle which transforms conformal
ly as did the original constituents, but the possibility of 
such a projection implies (Xl - X2)2 = 0 (or the trivial case 
W or w = 0). The internal algebra cannot be reduced in 
the same manner, due to the meaningless coordinate 
definition which results and due to the possibility that 
K = O. It can, however, be reduced with respect to the 
q- space conjugate to Y in a totally analogous manner, so 
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that the internal algebra becomes the conformal algebra 
in a four-dimensional internal momentum space. When 
all quantities are measured by the same scale, the in
ternal position coordinate is precisely x1 - X2; so the 
condition (X1 - X2)2 = 0, which happens to be an invariant 
of the conformal group in momentum space, may be 
used to reduce the algebra to the usual r-space realiza
tion of the two-particle dynamical group. The total sys
tem algebra, therefore, is the direct sum of the con
formal algebra in the space of the external position co
ordinate [Eq, (2.4)] and the usual dynamical algebra in 
the space of the internal position difference coordinate 
[Eq. (3. 3)]. 

B. The Casimir operator and mass spectrum 

The invariant Casimir operator of this total 0(4,2) 
algebra which combines external and internal algebras 
would be expected to indicate something of the nature 
of the system or to indicate nothing, being trivial. In 
fact, it is quite complex and can be diagonalized only 
after considerable algebraic manipulation which we out
line here. 

The external group is generated by L",., P"" K"" and 
D [Eq. (2.4)]. For convenience, we shall employ the 
same letters in lower case-l",v, P"" k"" and d-to rep
resent the generators of the internal group [Eq. (3.3)], 
and in script-L ",v, p"" K"" andO-to represent the 
sum of the two algebras. Since all three are 0(4,2) al
gebras, all obey the commutation relations (2.8). 

The total Casimir operator is given by 

Q =iLabL ab 

=iL ",vL ",v +i p~'" +iK",P'" -02 

= i L '" vL "'., + K '" P'" - 0 2 + 4iO 

=Q +q +L",j"'V +K~'" +kIJ.P'" - 2Dd, (4.15) 

where Q and q are the external and internal Casimir 
invariants. Slight Simplification is obtained by trans
forming each generator by 

(4.16) 

using the explicit form of the generators for the exter
nal algebra but the commutation relations only for the 
internal algebra. The transformation T1 leaves L ",v and 
o unchanged, but translates PIJ. by an amount (- P",) so 
that 

P~ = (P", - P",) +p", =PIJ.' 

KIJ. becomes 

K~ =K", +klJ. + 2 (XlJ.d +Xvl",v)' 

(4.17) 

(4.18) 

The effect on the form of the Casimir operator is the 
seemingly miraculous cancellation of the terms L",.l"'v, 
2Dd, and K",P"', leaving 

Q' =Q+q- k~'" +k",PIJ. - 2iHd. (4.19) 

We diagonalize Q and P "" i. e., we let Q' act on eigen
states of external momentum P", (which after the trans
formation T1 is also the new total momentum P~). We 
may transform Q' to the rest frame using the "deboost" 
operator 

(4.20) 
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where ~ is the rapidity given by 

P'" =M(cosh~, ~ sinh~). (4.21) 

Q' then takes on a form entirely in terms of the internal 
algebra: 

Q" =Q +q- k",P'" +Mko- 2iHd. (4.22) 

We next take advantage of the fact that the internal al
gebra obeys the representation relation (3,1) with O! = 1. 
From the special case (b = c = jJ.= 0, 1,2,3) we obtain the 
identity 

(4,23) . 
which we substitute into Q", replacing liJ Zil = 212 with 
its eigenvalue 2l(l + 1), and q with its eigenvalue - 3: 

Q" = Q - 1 + 2l(l + 1) - 2koPo + 2i(1 - H) d + Mko. (4.24) 

Finally, to eliminate the d term, we transform with the 
operator 

Ts = ko <t_H) /2, (4.25) 

uSing the relations 

k'O<t-H) /2 Po k~1-H) /2 = Po + ik(j1[ (1 - H) d - ti(1 - H)(1 + H)], 

k'O<t-H) /2 dk~1-H) /2 = d + i i(1 - H), 

(4,26) 

to obtain 

QIII = Q - 1 + 2l(l + 1) - 2koPo - i(1 - H) (3 - H) + Mko 

= s - 2koPo + Mko, 

(4.27) 

where in the last step we have gathered all the constants 
into one term s. 

If we go on to diagonalize QIII itself, we find a contin
uous spectrum for M. However, if we diagonalize kr}QIII 
(or, equivalently, if we postulate an additional term k~ 
conSidered to represent an interaction to produce bound 
states), we may postulate a wave equation such as 

QIII~= (2132) k5~, 13= const, 

ko[(Po - i ska1) + 132ko - i M] ~= 0, 

(4.28) 

(4.29) 

To solve this equation, we define p~ = Po - i sk,[/ and 
note that i(ko +P~), i(ko - p~), and d form an 0(2,1) al
gebra with compact generator i(ko + P~), as one may show 
by direct calculation. So this equation is diagonalized 
by transforming with 

T4 = exp~dtanh-1 (~2: ~) ] ' (4.30) 

to give 

13[i(ko + P~)] zp = (t M) zp. (4.31) 

The spectrum of i(ko + PG) is of the form n + cp, where n 
is a nonnegative integer and cp is a constant depending 
on the 0(2, 1) Casimir invariant. Letting Mo = 413cp and 
M1 = 413, we find a linear rising mass spectrum of the 
form 

M=Mo+nMb n=0,1,2,···. (4.32) 

The interesting aspect of this result is not the exact 
form of the spectrum or the parameters involved, nor 
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the form of the wave equation or the tedious algebra re
quired to solve it. The result is remarkable rather be
cause it indicates the capability of this approach to 
produce a discrete mass spectrum despite 
O'Raifeartaigh's theorem from an algebraic framework 
containing both Poincare transformations and an inter
nal dynamical group. 

There is no contradiction, however, as P ",P'" still 
commutes with the internal algebra; it is the additional 
postulated wave equation which selects out particular 
discrete masses. Hopefully, with further investigation 
and refinement, the approach will yield quantitative 
results as well. 

C. Relation to infinite-component wave equations 

Equations (4.15), or (4.19), or (4.22), or (4.27) 
show that, for the fixed value of the total Casimir in
variant Q(or Q' or Q" or QIII), we have an infinite-com
ponent wave equation for the composite system. As is 
well known, the infinite-component wave equations of 
interest have the form 

(J ",P'" +K) 1f;(P) = 0, 

where K is an operator on the space of rest frame in
ternal states of the system [e.g., an internal 0(4,2) 
operator]. The current operator is 

where r", and r 4 are also operators like K. In the rest 
frame we have 

(JoM +K) 1f;(0) = o. 

In our case, Eq. (4.27) is precisely of this form with 
Jo=ko (i.e., (\11=1, 0!2=0, (\I3=-l/M) andK=s-2koPo 
- Q''', because ko and Po are operators on the rest 
frame states, as we know, Note that no such interlock
ing of external and internal operators is obtained if we 
use the Poincare group alone. 

The current operator corresponding to 0(4,2), Eq. 
(4.27), J", = r '" - (11M) p",r4, is typical of a zero-energy 
two-body system. Indeed, so far the only "dynamics" 
that we have put in has been the condition x",x'" = 0, which 
gave us a three-dimensional internal space and the dy
namical group SO(4, 2) representing the space of rest
frame states. The operator (r 0 - r 4) cannot be put into 
the form cro or c'r4 by tilting. It has continuous spec
trum. The second part of the dynamics comes in the 
assumption of the operator form of the total transformed 
Casimir operator Q"' in the enveloping algebra of the 
internal dynamical group 0(4,2), as was done, for ex
ample, in Eq. (4.28). The exact form of Eq. (4.28) will 
depend on the further properties of the two- body system, 
such as masses, strength, and the type of coupling. 

The purely covariant steps leading from the two-body 
problem to the infinite-component wave equations devel
oped in this work complement the previously given ap
proach, where one has generalized the noncovariant 
Schrodinger, or Klein-Gordon or Dirac equations into 
a covariant infinite-component wave equation. 
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D. The four-dimensional approach 

As a totally different approach towards combining ex
ternal and internal groups, we may confine our attention 
to Minkowski space from the beginning and avoid the 
need for passing from six coordinate variables to four. 
We begin with the direct sum of two conformal algebras, 

L ",p= (x",'lTp-Xp'IT",)l + (x",'lTp- xp'IT",h. 

P '" = ('IT ",)1 + (rr ",h. 
D = (xv'ITP+ih)l + (xprrP +ihh, 

K", = [2x", (xp'ITP +ih) - ~'IT"']1 + [2x",(xp~ +ih) - X2'ITuh. 

(4.33) 

and introduce external and internal variables directly 
in 4-space: 

(4.34) 

We find that all generators separate very nicely except 
for K",: 

L ",p= (Xul1p-XJI",) + (xu'ITp-Xp'IT",) =L ",p+l",p, 

p", =11", =P"" 

D = (Xv I1P +iH) + (xp'ITP +ih) =D+d, 

K", = [2X",(XpW +iH) -X211",1+ (iii - w)[2x",(xp'ITP +ih) - X2'IT",] 

+ 2 (X",d +rl",p) + 2wiii(2x",xpW - x 211",). (4.35) 

For the particular case iii = 1 (w = 0), K", Simplifies to 

K '" =K", +k", + 2 (X",d +rz",p). (4.36) 

Noting p", and K "" we see this is precisely the form 
of the generators found in Sec. 4 B, Eqs. (4.17) and 
(4.18), following transformation by exp(iXpp~. There, 
however, lower case letters referred to generators of 
the conformal group in 'IT-space (or of the dynamical 
group after taking x",x'" = 0), whereas here they refer to 
generators of the conformal group in x-space. Never
theless, we see that the inverse transformation Til 
= exp(- iXpp~ upon this algebra makes it exactly separa
ble into external and internal conformal groups (in X
space and x-space, respectively). This neat separation 
occurs because the condition iii = 1 implies X = X2, and 
so naturally transforms conformally. The transforma
tion exp( - iXpp~ translates x by an amount X = X2; thus 
x, =x+X = (Xl - X2) +X2 =xb so it, too, transforms 
conformally. 

There is an especially interesting feature of this 
algebra. Recall that while x",x'" = 0 is an invariant of 
the conformal group in 'IT space, it is not an invariant 
of the conformal group in x-space. Indeed, the con
formal group in x-space includes translations which 
certainly change x,..x'" = O. Since the above algebra after 
transformation by exp(iXppP) contains the full conformal 
algebra in x-space, it does not conserve x",x'" = O. Never
theless, x",x'" = 0 is an invariant of the algebra before 
transformation. This feature enables us once again to 
reduce the effective internal dimensionality to three. 

This algebra, like that of Secs. 4 A and 4 B, can 
also be made, after various manipulations, to yield a 
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discrete mass spectrum. Although it does not contain 
the usual internal dynamical algebra, it nevertheless 
does manifest certain desirable characteristics which 
tempt one to speculate on the likelihood of its eventual 
usefulness. 
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Quantum field theory on a seven-dimensional homogeneous 
space of the Poincare' group * 
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Field theories over the homogeneous space of the Poincare group consisting of the direct product of 
ordinary Minkowski space j}J and a three-dimensional timelike hyperboloid H 3 are investigated in an 
effort to provide a description of a relativistic extended body. The locality properties of such fields 
are investigated, and it is found that such fields are in general nonlocal with the nonlocal behavior 
governed by the type of representations used. It is also found that an internal 0 (4) symmetry arises 
quite naturally and is used to construct a model describing an infinite number of particles with an 
almost linear mass spectrum. This model provides no unphysical solutions, decreasing electromagnetic 
vertex functions, positive definite field energy, and weak nonlocality. All the vertex functions are 
calculated and discussed. 

1. INTRODUCTION 

The idea that hadrons are some sort of composite 
objects is widely accepted even though the nature of 
their constituents is currently being debated. Indeed, 
the very meaningfulness of the term "constituent" is in 
doubt when in order to "see" such an object one has to 
perform experiments whose energies exceed the pro
duction thresholdS of strongly interacting particles. 
One method which has been designed to circumvent such 
a problem is the bootstrap hypothesis. I However, there 
are other approaches2

-
s which make use of the valuable 

aid of field theory. Such an approach describes the 
composite objects themselves in terms of a field theory, 
more specifically by fields built over homogeneous 
spaces of the Poincaril group which are larger than and 
indeed contain the ordinary Minkowski space. The added 
underlying variables are then the relativistic analog of 
the Euler angles of an extended solid, for example, and 
provide for a relativistic description of an extended 
body, 6 without specifying the details of the constituents. 

Moreover, such an approach allows the spin of a 
particle to playa role more analogous to that of its 
mass, 7 the additional degrees of freedom acting as the 
carrier space for the spin. In this way one can obtain 
fields associated with families of particles, the mem
bers of which have a definite mass spin relationship. 
Although this is not a necessary consequence of such 
field theories, this approach offers the advantage of 
explicitly incorporating Regge trajectories as well as 
providing for the large proliferation of strongly interac
ting particles now seen. However, whether or not this 
type of infinite multiplet approach is used, fields on a 
large enough homogeneous space of the Poincare group 
have enough structure in first order perturbation theory 
to provide at least qualitatively for the decreasing elec
tromagnetic form factors of hadrons. 

In the present work, we investigate fields built over 
the homogeneous space of the Poincare group conSisting 
of the direct product of ordinary Minkowski space In 
and the three-dimensional two- sheeted hyperboloid H3. 
Such fields are in general nonlocal and become local 
only when the finite dimensional representations of the 
auxilliary Lorentz group 0(3, 1) are used. In the local 
case the usual spin statistics result follows. In the non
local case it is found that the highly reducible unitary 
representations of 0(3, 1) obtained by making full use of 
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the function space available on H3 provide a much more 
acceptable nonlocality. 

On the internal space H3
, one can intro<Rtce an ad

ditional 0(4) symmetry in a natural way. In this way we 
are led to an infinite multiplet theory describing an 
almost linear spectrum of particles with hydrogenlike 
degeneracies by a wave equation similar to an infinite 
component wave equation of Casalbuoni, Gatto, and 
Longhi. 8 However, in our case the basic fields are quite 
different enabling one to use the canonical decomposition 
where the particle properties are manifest. All the first 
order vertex functions are calculated and discussed. 
They exhibit the noncrossing symmetric behavior typi
cal of such theories. 3.9 The calculation of scattering 
amplitudes and the completeness problem are briefly 
discussed. 

2. PRELIMINARIES 

A homogeneous spacelO E of a group G is a topological 
space on which the group action is transitive, i. e. , 
given Xl' X2 E E, there exists g E G such that x2 = gxl • 
The homogeneous spaces of G are homeomorphic to the 
coset spaces of G. To demonstrate this, the concept of 
stability or stationary subgroup is introduced. For a 
fixed point XoE E, consider all the elements hE G which 
leave Xo invariant, i. e., hxo = xo' All such elements h 
form a subgroup H of G, called the stability subgroup at 
the point xo' Now if Xl =gxo' then all other transforma
tions gl carrying Xo to Xl are of the form gl =gh, hE H. 
Since G acts transitively on E, there is a one-to-one 
correspondence between E and the left cosets of G/H. 
(Of course, right cosets could have been used instead of 
left cosets. ) Notice for any other point x' E E related to 
Xo by x' = gxo' the stability subgroup is just given by the 
conjugate subgroup gHg- I • 

In the following, we are concerned in general with 
the homogeneous space obtained from the complete 
Poincare group p and the subgroup 0(3), i. e., 10(3,1)/ 
0(3). As a topological space it is homeomorphic to the 
direct product of Minkowski space In and the two
sheeted hyperboloidH3={T/JL:T/JLT/JL=1}. We also consider 
the homogeneous space obtained from the restricted 
Poincare group and its subgroup 50(3); i. e., [500(3,1)/ 
SO(3), which is homeomorphic to the direct product of 
In and the single sheet of H 3

, H:. Any further discussion 
of the discrete symmetries is postponed until Sec. 4. 

Copyright © 1974 American Institute of Physics 1007 
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The basic objects of our theory then are the wavefunc
tions (to be quantized later) over /J1 ® H3 described by 
the scalar-valued functions l/>(x,1). The action of the 
Poincar~ group on such functions is given by the linear 
representation 

U(A-\a)l/>(x,1)=I/>(Ax+a,A1), A,aEIO(3,1), (2.1) 

where for now I/>(x, 1) is assumed to be a sufficiently 
smooth function of x and 1). 

The generators of the Lie algebra of P are obtained 
in the usual way via the one parameter subgroups, 
yielding 

M"v=L"v+Su.v' L"v=i(Xu. o!v -Xva!u.), (2.2) 

which, of course, satisfy 

[M"v,Ma~]=i(gvaMu.x -gu.oMvx -gVAM"o + gu.xMva), 

[M"v,pJ=i(gVAPU.-g"AP), (2.3) 

[Pu.,pJ=O, 

with the Casimir invariants given by 

(2.4) 
w" = te""ApMvA pP = tE"vAP svx Pp. 

The canonical basis is then given in the usual way by 
diagonalizing the operators JP-, Wl, P, WS' It is clear, 
however, that the eigenvalues of these six operators 
cannot specify completely the functions I/> over the 
seven-dimensional space /J1 ® H3. Leaving aside the 
additional degree of freedom11 for the moment the above
mentioned decomposition can be implemented for time
like momenta by introducing the spherical coordinates 
onHs: 

71 0 = ± cosha, 

711 = Sinha sine Sinl/>, 

71 2 = sinha sine cos 1/>, 

71s = sinha cose, 

o ~a< 00, 

o~e<1T, (2.5) 

0~1/><21T, 

where the ± sign in 71 0 corresponds to H!. It is easily 
seen that the intersection of HS

, in this coordinate 
system, with a hyperplane defined by 1)0 = const as 
shown in Fig. la defines the two-dimensional sphere S2. 
The operator Wl reduces in the rest frame to the 
Laplace-Beltrami operator ~(S2) on this sphere, i. e. , 

rest frame, (2.6) 

where 

02 0 1 02 

~(S2)= a~ +cote oe - sin2 e 01/>2 (2.7) 

with eigenvalues P2 s(s + 1). The regular solutions to this 
eigenvalue problem are the well known spherical har
monics, Y.",(e,I/». The canonical basis states are then 
given in the rest frame by 
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In a frame with arbitrary momentum, one obtains by 
applying a Wigner boost L(P) 

1,t,M sm) -exp(- ip· x) p(71' p)Y.",(e" 1/>,), (2.9) 

where el>' I/>.l indicate that the variables e, I/> have been 
boosted by p, for example for p in the z direction 

ta e sinha sine n.. I/> 
n P= pscosha+Posinhacose' '/'1>= • 

(2. 10) 

The functions p(1)' p) are yet to be determined and their 
specification determines the representation of the 
Wigner boosts. It should be emphasized, however, that 
the transformation properties of the wavefunctions, Eq. 
(2.9), under the Poincar~ group do not depend on the 
choice of the representation of the boosts, but only on 
the little group 0(3), viz., 

U(A-l)l/>sm(P' 71) = L; D~, ",(R)I/>sm' (A"A~) 
m> 

where R is the Wigner rotation, 

and 

I/>.",(P, 71) =p(71' p)Ysm(el>' 1/>,). 

(2. 11) 

The first approach which comes to mind for specifying 
the functions p(1), p) is to just pick an irreducible rep
resentation of the auxilliary Lorentz group 0(3, 1). 
Indeed this approach treats the two spaces /J1 and HS on 
quite an equal footing, for one then diagonalizes the two 
invariants, the Laplace-Beltrami operators on each of 
the two spaces /J1 and HS

• The relevant group is then 
the group of metric automorphisms on 
/J1 ® H~, Po® 0 [(3, 1) '" P@Oi3, 1), where @ denotes the 
semidirect product and Po is the "orbital" Poincar~ 
group generated by L "V' P ", and 0[(3, 1) is the auxiliary 
Lorentz group12-14 generated by S"V. However, it will be 
seen in Sec. 4 that these fields yield undesirable non-

Figure 10 Figure Ie 

7 
FH~ure Ib 

FIG. 1. The intersection of the hyperboloid If3 by various 
hyperplanes corresponding to different subgroup reductions as 
described in the text. 
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local properties. Therefore, it becomes advantageous 
to consider highly reducible representations of Ol3, 1). 
Perhaps the easiest way to deal with such reducible 
representations is to replace 0[(3,1) by a larger group 
G=> 0 [(3,1). This is done for several reasons. First, 
many calculations are simplified by using powerful 
group theoretical techniques. Second and perhaps more 
important is the belief that the additional symmetries 
introduced by a larger group represent hidden dynamical 
symmetries which are valid to at least first order, such 
as the degeneracies in the hydrogen atom spectrum. 

The group Po® 0 p, 1) on In ® H3 is labeled by the two 
invariants 

(2. 12) 

and 

(2. 13) 

To obtain the extension15
,16 to a larger group Po® G, we 

introduce the operators 

1 [] .. ( 0 0 \ r,,=- 2i ~,1)" -P1J,,=z 01)" -1),,1)' 01) +UI1"J. 
(2. 14) 

;: i(13" + 0'1),,), a= - % + ip. 

It is not difficult to show that the operator r" along with 
the S"v formally span an irreducible representation of 
the Lie algebra of O( 4,1). These representations are 
Hermitian with respect to L 2(H3

) for p real, and give 
rise to the degenerate continuous principal series of 
0(4,1). Of course, here G=0(4, 1) and the conditions 
necessary to integrate the above representation of the 
Lie algebra to a representation of the group have been 
discussed elsewhere. 7 Instead of the operator (2.14) we 
could consider the operator 

T "v = - (1/2i) [~, 1) ,,1)v1 - P1J ,,1) v 

=i(1)"ov+1)vo"+g,,v+UI1,,1)v)' a=-4+ip, (2.15) 

and obtain a twofold reducible representation of the Lie 
algebra of SL(4, R), i. e., G =SL(4, R). In both of the 
above cases an additional 0(4) symmetry has been 
introduced. 

The basic requirement that probabilities be indepen
dent of the Lorentz frame in which they are observed 
demands that the representation of the Poincar~ group 
be unitary. To construct unitary representations of p, 
we consider a general inner product defined over the 
Fourier transformed momentum space 1B which is local 
inP, 

where K is a Poincar~ invariant kernel which must, of 
course, allow (¢1' ¢2) to satisfy the required properties 
of an inner product. We shall confine our attention to 
three cases of special interest. 
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(1) 

(
,I. ,I. )=1 d 3P jd

3
1) ¢i(P, TI)¢2(P, 1), 

'1"1' '1"2 + Po + Tlo (1) • p)~ 
(2. 17) 

where>.. is real and is chosen to guarantee the proper 
convergence properties. With this inner product L "V 
and S"v in Eq. (2.2) are not separately Hermitian al
though their sum M "V is. Hence, the representation of 
0[( 3, 1) is nonunitary; an example would be the finite
dimensional representations denoted by the Gel'fand19 

notation (0, n + 1). 

(2) 

(2.18) 

This inner product is L 2(H~xH3). The representation of 
both L"v and S"v are Hermitian separately. The rep
resentation of the internal 0(3,1) generated by S"v con
sists of two copies of the highly reducible quasiregular 
representation whose decomposition into irreducible 
parts is given by the Gel'fand-Graev transform. 20 

Moreover, a unitary representation of 0(4, 1) can be 
constructed on L 2(H3 ) 14,16,17,21 whose infinitesimal 
generators are, along with S"v' the r" given by Eq. 
(2. 13), viz., 

Ua(g-l)f(1) = Ig4vTlv+g44la f(i::~~:~::), 

where tEL 2(H3
), gE SOo(4, 1). 

( 3) 

(2.19) 

(,I. ,I. )=1 d 3Pf d
3

1) d
3
1)' ¢i(P,1)¢2(P,1). (2.20) 

'1"1' '1"2 + Po 1)0 1)~ (1 -1) • TI' )a.3 

This inner product with a= - 2 is relevant for the 
relativistic Coulomb problem. Again the representa
tions of L "V and S "V are separately Hermitian. The 
representation of r jJ. is Hermitian with respect to this 
inner product for - 3 < a < O. The decomposition with 
respect to the 0(3, 1) subgroup is the same as case 2 
for the range - 2 .,. a'" - 1, and contains an additional 
point for the remaining ranges. 17 

3. WAVE EQUATIONS 

In the preceding section, representations of the 
Poincar~ group were built over the space In ® H3. From 
such a procedure, two types of theories can be devel
oped. First, a theory in which the wavefunctions de
scribe a particle with a definite mass and spin. Second, 
a theory in which the wavefunctions contain an infinite 
ladder of spin states. While most of the present article 
is concerned with the infinite dimensional theories, a 
brief presentation of the finite dimensional theories is 
also given. This presentation for integer n seems 
somewhat similar in spirit to the work of Nilsson and 
Beskow13 for more general representations. However, 
we do not get to the pOint of the introduction of interac
tions, where all the difficulties of such theories lie. 
Thus our discussion of these theories is very incom
plete. Be that as it may, the investigation of the finite
dimensional models from our vantage point is, never
theless, instructive. 
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Finite-dimensional models 

We describe here only those models in which the 
fields describe particles of one mass M and one spin s 
reserving any multiplet structure for the infinite-di
mensional theories. In this context, any group larger 
than the Lorentz group is superfluous; hence only 
0(3,1) models are discussed. 

In the standard theories on Minkowski space, one 
describes the spin by choosing a representation of the 
internal Lorentz group 0(3, 1) in terms of spinor or 
tensor valued functions over /11. The mass /11 is then 
selected by the choice of a wave equation. However, in 
our theories there is a carrier space for both M and s. 
Thus in order to select out wavefunctions describing 
particles of mass M and spin s, two equations are 
needed. These wave equations indeed playa very sym
metrical role, each being the eigenvalue problem for 
the Laplace-Beltrami operator on the respective 
spaces, /11 and H~. Thus at this level the mass M and 
spin s are on quite an equal footing. The wave equations 
are then 

(0 +M2) cf>(x, Tj) = 0, 

[.:l+n(n+2)] cf>(X,Tj) =0, 

where 0= (il/ilx")(il/ilx,J and .:l=.:l(H!) =62 has been 
given previously. 

The rest frame solutions of Eq. (3.2) which are 
regular at the origin Tj" =(1, 0, 0, 0) are given by 

cf>nsm(Tj) = Pns (cosha) Y.m( e, cf» 

with 

(3. 1) 

(3.2) 

(3.3) 

Pns(cosha) =N' (sinhatl/2 P~!fiV2) (cosha) Y.m(e, cf» 

=NsinhasC~:!(cosha)Ysm(e, cf», 

where Nand N' are the appropriate normalization fac
tors and the functions p~ and C ~ are Legendre and 
Gegenbauer functions22 respectively. These solutions 
will be well defined with respect to the norm defined by 
Eq. (2.17) provided the real parameter A satisfies 
A> 2 Re(n) + 2. This is obtained by using the asymptotic 
expansion for Legendre functions (22). It should also be 
mentioned that the solution to Eqs. (3. 1) and (3.2) does 
not describe a system with one spin s. For such a 
system we need a covariant spin projection operator. 23 

We now summarize the relevant material needed to 
construct the finite-dimensional wavefunctions over 
/110 H~ for particles of mass M and spin s, i. e., a 
Poincare irreducible system: The two wave equations 
(3.1) and (3.2) whose solutions are given by 

cf>(x, Tj) =:6 L: f dp
3P 

s m + 0 

x [exp( - ip· x) cf>nsm(P, Tj) a.m(p) + exp(ip· x) 

(3.4) 

with 

cf>nsm(P, Tj) =N' {[Tj' (p/M)]2 - 1 }-1/2 P~!fW2) [(Tj' p)/M] 
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the covariant spin projection operator 

_ n_,( WZ - p2s'(s' + 1) ) 
e. -~, p2s(s + 1) _ p2s'(s' + 1) , (3.5) 

wheres'=O,"', s-l, s+l, "', nifnisapositive 
integer and s' = 0, "', s - 1, s + 1, .•.. if n is other
wise; and the relevant inner product (2. 17) with 
A> Re(2n + 2). Notice that in the case n = ° the cf> func
tions have no Tj dependence and the internal space be
comes innocuous; the theory reduces to ordinary 
Minkowski theory. Notice, too, the projection operator 
is an infinite product when n;< positive integer, but it is 
well defined on the space of solutions of Eq. (3.2). 

Infinite-dimensional models 

At this point it is convenient to clarify exactly what ls 
meant by a wave equation over /110 H3. In the finite
dimensional case, we were interested in wavefunctions 
which described particles of one given mass M, and we 
obtained such by writing two wave equations, each 
involving the respective Laplace-Beltrami operators on 

/11 on H~. This is a case where the wavefunctions trans
formed as representations of Po0 0 1(3,1)" P 6) 0 i3, 1). 
In the infinite-dimensional case, with internal symmetry 
group G, there is an analogous case-the mass degen
erate case. However, instead of using the Laplace
Beltrami operator on US which has a purely continous 
spectrum with respect to the inner product [Eq. (2.17)], 
the H3 wave equation analogous to Eq. (3.2) is obtained 
by using a covariant form of the Casimir operator of 
the maximal compact subgroup of G. The mass degen
erate equations are then 

(0 + M2) cf>(x, Tj) = 0, 

(C MG + K) cf>(x, Tj) = 0, 

(3.1) 

(3.6) 

where C MG in the rest frame is the product of p2 with 
the Casimir, operator of the maximal compact sub
group of G, and the fields cf>(x, Tj) transform as unitary 
representations of P ID G. For example, if G = 0(3,1), 
th~ P2CO(3) = WZ and K= P2s(s + 1); if G = O( 4, 1), p 2CO(4) 

=WZ=(p. r)2-p2:Pl+WZ and K=p2 n(n+2), n positive 
integer. Although the mass degenerate case is not very 
realistic, it does have some nice properties which 
makes it worthy of further discussion. 

Indeed, the most interesting case physically and the 
most difficult mathematically is provided by one wave 
equation over /110 H3 which yields a desired mass 
spectrum. Such a wave equation breaks the symmetry 
under P ® G since constraining oneself to the solutions 
of such an equation introduces a more complicated 
algebraic structure. 24 Indeed a complicated algebraic 
structure (not forming a Lie algebra) is necessary in 
order to circumvent the n9-go theorems25 prohibiting 
the unification of internal symmetries and mass split
tings. It should be mentioned that most of the wave 
equations that follow can be derived from a suitable 
Lagrangian, although this is not the procedure followed 
in the text. 14 

When writing down wave equations, it is much more 
convenient to work in the Fourier transformed momen
tum space. The Simplest nontrivial wave equation then 
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is one linear both in the momentum P," and the operator 
r," such as 

(3.7) 

Such an equation, however, is unacceptable since its 
rest frame solutions are eigenfunctions of the noncom
pact operator ro given in Eq. (2.14). Thus Eq. (3.7) has 
a purely continuous spectrum with respect to the inner 
product, Eq. (2.34). Another wave equation with a 
purely continuous spectrum would be 

(3.8) 

since as mentioned previously the Laplace-Beltrami 
operator fl,(H 3) has a purely continuous spectrum. Both 
Eqs. (3.7) and (3.8) are unacceptable whether the 
underlying space is H3 or H!. 

The next simplest equation would be one which is a 
combination of Eqs. (3.7) and (3.8) 

(3.9) 

where co' C l' c2 could depend on p2 if desired. Such an 
equation is, however, somewhat unwieldy. In the rest 
frame putting x =1)0 = cosha and solving for the angular 
part in terms of the Ysm(8, 1/» yields for the p functions 
the equation 

d 2 p dp 
(1- r) dX2 + [(1- X2) c2 - (2s + 3)x] dx 

+ [co- s(s + 2) + (c i - c2s)x]p=0. 

This equation has regular singular points at x =:!: 1 and 
an irregular singular point26 at X= 00. Due to the dif
ficulty of equations with irregular singular points, we 
will not obtain an explicit solution. However, it should 
be mentioned that an equation of the form (3.9) with c2 

= 0 has been used in the quasipotential approach to the 
harmonic oscillator by Donkov, Kadyshevsky, Mateev, 
and Mir-Kasimov. 27 In this paper, the authors obtained 
a solution in terms of an expansion in Whittaker func
tions and an approximate mass spectrum. In our case, 
however, rewriting Eq. (3.9) in terms of the 0(4,1) 
generator r It' 

(3.10) 

and choosing a = c / c2 "* positive integer suggests ex
panding the solutions in a series of the basis functions 
for an irreducible representation of SO(4, 1), 

~ 

I/> Nsm(P' 1) = L bnPn (p. 1) Ysm(e' , 1/», 
n=0 

(3.11) 

where the Pn(P '1) will be given explicitly for the SO(4, 1) 
case later. Demanding the functions (3.11) to be solu
tions of Eq. (3. 10) will then yield a set of recursion 
relations involving five b terms at most, 1. e., bn+

2
, 

bn+ 1 , b", bn_l , bn_2 • These equations could in principle 
be solved and along with the convergence property 
demanded by Eq. (2.17) possibly yield a discrete mass 
spectrum. The unwieldy mathematics, however, seems 
too high a price to pay unless there is some good 
physical reason for choosing Eq. (3.10) over other wave 
equations with Simpler solutions. 

Before proceeding on to the analysis of the 0(4,1) 
equations, mention is made of a model obtained by 
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Fleming. 28 This model, obtained from a Lagrangian 
approach, yielded a mass spectra which is linear in the 
spin s. The wave equation is defined only over H! as 

[P202 - (p. 0)2 + 3(7/' P)(p· 0) - ClP
2 - C~4] I/>(P, 7/) = O. 

(3. 12) 

The timelike solutions4 normalized in L 2(H!) can be 
written as28 

I/>Nsm=N(17' ptS+4 p<;,S+I/2) [1- 2p2/(7/' p)2] Y sm({!' 1/», 

(3.13) 

where p<;.S+I/2) are Jacobi polynomials and provides the 
mass spectrum 

p2 = (l/c2 ) [(2N + 3) (2s + 2N + 4) - cil. 
This model seems to have nothing at all to do with a 
higher group other than being Poincarl! invariant, 1. e. , 
it is not written strictly in terms of the generators of 
any group or for that matter any Lie algebra of finite 
dimensionality. This arises from the fact that the 
commutator of 0," with 7]" generates higher polynomials 
in 7/, thus forming an infinite-dimensional algebra. It 
is, however, interesting to note that the solutions (3.13) 
in the rest frame form a complete orthogonal basis in 
L 2(H!) which provides a discrete decomposition of the 
quasiregular representation of the connected component 
of the homogeneous Lorentz group SOo(3, 1). 

Needless to say many other models could be con
structed which yield a discrete basis. For example, on 
the single sheet H:, models can be built which involve 
the Lie algebra of say SO(4, 1) but which cannot be inte
grated to representations of the group. Such models 
when restricted to the compact subalgebra so( 4) contain 
only half the usual number of representations, 1. e. , 
they only involve functions even under 7]0 - -1)0' In what 
follows for reasons explained previously, we shall con
fine our attention to models which have a group theoreti
cal interpretation, 1. e., the wave equation involves dif
ferential operators which are the generators of a cer
tain Lie group [usually SO( 4, 1) 1 and the representation 
of the Lie algebra provided by such differential opera
tors can be integrated to a representation of the cor
responding Lie group. 

0(4,1) models 

A Poincare invariant wave equation, second order in 
the generators of 0(4, 1) and polynomial in p, which 
yields a discrete timelike spectrum is given by 

[C(p2) + P'"P"S,"xS\ + p'"pvr ,"rv + (if + 3a+ l)p2] I/>(P, 7/) 

= 0, (3.14) 

where C(p2) is for now an arbitrary polynomial in p2 
from which the last term is kept separate for future 
convenience. It will be seen shortly that such an equa
tion yields a mass spectrum which depends on only one 
quantum number n [in the timelike case, the quantum 
number which lables the irreducible representations of 
the compact group 0(4)]. A slight modification of Eq. 
(3.14) could yield an equation giving a mass spectrum 
dependent on both nand s. Such a modification is 
straightforward; for example, add a term proportional 
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to W2 to the wave equation. We will not consider any 
such modifications further. 

We now proceed with an analysis8 of the spectrum of 
Eq. (3.14) for unitary representations of 0(4,1). 

(i) Timelike case: p2 > 0: The standard frame is P~ 
= (Po, 0, 0, 0) for which the little group is 0(3) generated 
by Sk = EiJk Si /2. In the rest frame the second Poincar(! 
invariant W2 is given by P252

, the wave equation (3. 14) 
reduces to 

(3.15) 

The operator 52 + ?z + 1 is the Casimir operator of the 
compact subgroup 0(4) generated by S;, rio Hence, in 
the frame (M, 0, 0, 0) the basis is given by the canonical 
decomposition 0(4, 1):J 0(4b 0(3b 0(2). The spectrum 
of the 0(4) Casimir operator S2 + ~ + 1 is given by 
(n+ 1)2 with n=positive integer. Thus Eq. (3.15) be
comes 

(3.16) 

Hence, in order to have a timelike spectrum, we must 
demand29 

(3.17) 

(ii) Spacelike case: p2 < 0: The standard frame is p~ 
= (0, 0, 0, k) for which the little group is 0(2, 1) generated 
by S3' N I , N2 • In this frame the second Poincarl! in
variant W2 is given by Hfol = k 2 (S~ - m -m) with eigen
values - k2 (1/4 + ;\2), and the wave equation (3.14) re
duces to 

[C(p2) + p2(~ + ~ +S~ - ~ -m -m + 1) cf>(P', 7)=0. 

(3.18) 

The operator in parenthesis is just the Casimir operator 
of the 0(3,1) subgroup generated by rv r2, S3; ro' NI , 

N2 • Thus the basis is provided by the subgroup de
composition 0(4, 1):J 0(3, Ib 0(2, Ib 0(2). The spec
trum of the 0(3,1) Casimir operator is continuous17 with 
n = - 1 + ill, II real, except for a possible additional 
point for certain values of (J as mentioned previously. 
Thus Eq. (3.18) becomes 

(3.19) 

If we wish to avoid space like solutions, we must choose 

C(P2) > 0, p2 < 0. (3.20) 

(iii) Lightlike case: p2 ==0, P" *0: The standard frame 
is P~ = (k, 0,0, - k) for which the little group is E(2) 
generated by S2 + N1, N2 - S1' S3' The Poincarl! invariant 
becomes 

Hfol == k2 [(NI + S2)2 + (N2 - SI)2] 

with eigenvalues k 2K2, K> ° and the wave equation re
duces to 

[co + k2 «ro + r3)2 + (Nl + S2)2 + (N2 - S1)2)] cf>(pl, 7) = ° 
(3.21) 

with Co == C(p2 == 0). The operator in parenthesis in Eq. 
(3.21) is the Casimir operator of the E(3) subgroup 
generated by r 0 - r 3, S2 + N I , SI - N 2 ; r l , r 2 , S3' and 
the basis states are given by the subgroup decomposi
tion 0(4, IbE(3bE(2bO(2). The spectrum of the 
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E(3) Casimir operator is continuous and labeled by a 
nonvanishing real number E. Hence Eq. (3.21) reduces 
to 

In order to avoid lightlike solutions, we must take 
Co"'O. 

(3.22) 

(iv) Vacuumlike case: P,,=O: The little group is the 
entire homogeneous Lorentz group 0(3, 1). Equation 
(3. 14) is satisfied by any cf>(7) in the representation 
space. In order to avoid vacuumlike solutions we must 
have Co*O. 

It is interesting to note that the C(P2) which yields a 
linearly rising trajectory in the discrete quantum nUm
ber n is given by the CGL equation obtained by choosing 

C(p2) = - (3;2p2(p2 - W with (3I > 0, (3.23) 

and thus avoids spacelike and lightlike solutions but has 
vacuumlike solutions. We can get rid of the vacuumlike 
solutions with a slight deviation from linearty of the 
trajectories by choosing 

(3.24) 

with Co small and positive. With such a chOice, the 
mass spectrum has discrete timelike solutions only and 
satisfies the cubic equation in p2, 

p6 _ 2(3p4 + [{l2 _ {l~ (n + 1)2] p2 - (3~Co = 0. (3.25) 

Now in the limit Co - 0, Eq. (3.25) yields the CGL mass 
spectrum 

(3.26) 

To avoid the negative branch completely30 we must take 
{31 > (3. This will provide the zeroeth order solution. 
Let p~, p~, p~ be the roots of Eq. (3.25). They must 
satisfy the following equations: 

p~p~p~ == {3~Co' 

~ + p~ + p~ == 2{3, 

p~p~ + p~p~ + p2~= {32 - {l~ (n + 1)2. 

(3.27) 

Satisfying these equations to first order in Co yields the 
roots 

2__ Co 
Ps - (n + 1)2 - ({3/{:31)2 ' 

~=={31(n+1)+{3+ 2(n+1)(~~1+.B/.B)' 

p~=-{31(n+1)+.B+ 2(n+l)(n~ol-{3/.Bl)· 

(3.28) 

(3.29) 

~ and p~ will be negative for all solutions if we demand 

(3.30) 

Thus it is seen by choosing C(p2) as in Eq. (3.24) with 
the parameters constrained by Eq. (3.30), one obtains 
an infinitely rising mass spectrum with discrete time
like states only given by 

2 2 f.l ( 1) Co P =Mn=fJI n+ +(3+ 2(n+1)(n+1+(3/{31) (3.31) 
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In several ways this is a very desirable spectrum: It 
has discrete time like solutions only, thus avoiding the 
vacuumlike solutions of the CGL equation; it is ap
proximately linear. 

However, our preceding analysis is in many ways 
independent of the specific form of the polynomial 
C(P2); therefore, it is desirable not to specify C(p2) 
except when referring to a particular case. Indeed, 
one ultimately wishes to understand the relationship 
between the completeness problem, which has a direct 
bearing on whether the theory is local or not, and the 
existence of spacelike solutions. For this as well as 
pedagogical reasons, it is desirable to keep C(P2) quite 
general. With this in mind we next write down the single 
particle states for the cases previously discussed. The 
relevant mathematics is performed in Ref. 14. The 
timelike single particle states are up to a normalization 
factor given in the rest frame by 

Insm;a>t -exp(- iPoxo) coshaa tanh&a C~:! (± 1/cosha) 

(3.32) 

The states with arbitrary momentum are obtained from 
the rest frame states by applying the Wigner boost, 
exp( - ia . N), taken here for simplicity to be in the third 
direction, so that the parameter a is defined by 

(3.33) 

with P" = (Po, 0, 0, q). With this prescription we find for 
a state with momentum (Po, 0, 0, q) 

Iq;nsm;a>t 

(3.34) 

tan e' = sinha sine 
± sinha cosha + cosha cosha cose 

It must be remembered that Po and p2 and hence a are 
functions of n through the mass spectrum imposed by 
the wave equation. 

However, for the spacelike and lightlike cases, the 
spherical coordinate system, Eq. (2. 5), does not 
separate the relevant Casimir operators. Hence in the 
space like case we introduce the hyperbolic coordinate 
system defined by 

1)0 = ± cosha coshb, 

1)1 = cosha sinhb sine, 

1)2 = cosha sinhb cose, 

1)3= sinha, 

-oo<a<oo, 

O:s b < 00, (3.35) 

Notice that this coordinate system corresponds to inter
secting the hyperboloid with a hyperplane 1)3 = ± const 
shown in Fig. lb. The single particle states for the 
spacelike case are given in the standard frame by 

Ik; vAm; a>& -exp(-ikx3)sinha a (cotha)-1/2+iX 

x [A C/)·+1/2 ('I'nh) BDlX+1/2 ('I'nh)] -1/2+i"-iA Z S1 a + -1/2+i"-iX Z S1 a 
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XP~1/2+iX (coshb) exp(- imep). (3.36) 

The functions D~~i~~~"-iA are Gegenbauer functions of the 
second kind, and A and B are constants. Both the 
Gegenbauer and Legendre functions appearing in this 
expression are the appropriate analytic continuation of 
the same functions appearing in Eq. (3.32) in both the 
discrete indices nand s as well as the relevant argu
ments of the functions themselves. The explicit details 
of this continuation are discussed in Ref. 14. The states 
with momentum (Po, 0, 0, q) are again obtained from the 
standard frame states by applying the Wigner boost. In 
this case the boost parameter a is defined by 

(3.37) 

Then the states at momentum (Po, 0, 0, q) become 

X P~1/2 +iA (cosh b') exp( - im ep) (3.38) 

with 

tanh b' = cosha sinhb 
± cosha cosha coshb + sinha sinha 

Again it must be remembered that p2, Po, and a are 
functions of v. 

For a discussion of the lightlike case, the parabolic 
coordinates of H3 are appropriate: 

1)0=± (cosha+ ~r2e'), 

1)1 = r e' sinep, 

1/
2 = r e' cos ep, 

1/3 = 'f (sinha - ~ r2 e'), 

O:sa<oo, 

O:sr<oo, (3.39) 

O:s ep <27T. 

This system corresponds to the intersection of the 
hyperboloid with a hYIl-erplane parallel to the light-cone 
defined by 1]0 - 1/3 = const as shown in Fig. 1c. The 
single particle states for the lightlike case are given in 
the standard frame by 

Ik;EKm;a>1 

- exp[ - ik(xo - x3)] exp[a(O' - 1/2) ]J1/2 «~ _ ~)1/2e-') 
xJm(Kr)exp(- imep), (3.40) 

where the J's are Bessel functions. 22 Again by applying 
the Wigner boost parameterized now by 

a=ln(Polk), 

one obtains 

xexp(- imep). 

(3.41) 

(3.42) 

Before ending this section, we briefly mention various 
0(4,2) models obtained by others. 31 For the representa-



                                                                                                                                    

1014 C.P. Boyer and G.N. Fleming: Ouantum field theory 

tions (1= - 2, - 1 of the group 0(4, 1), the 0(4, 1) algebra 
can be extended to O( 4, 2) by considering Lo 
=(§! + f'z + 1)1/2, L, = i[So/> L o], and L 4 ;;; - i[ro, Lo]. These 
operators form an 0(4,1) vector and close weakly with 
the generators of 0(4,1) to form an 0(4,2) algebra only 
for the above-mentioned representations. As an opera
tor on L 2(H3

), 1/L4 is an integral operator whose kernel 
is 1/(11-1],)2 and L", =L411",. Hence, many wave equations 
employing L "" L4 can be written down. 31 Such wave 
equations differ from those like Eq. (3. 14) since they 
have a continuous contribution to the time like portion 
of the spectrum. In the quasipotential approach, 31 the 
above-mentioned kernel is related in an obvious way 
to the Fourier transform of a scalar Coulomb potential. 

4. QUANTUM FIELD THEORY 

In this section the passage from the unquantized to the 
second quantized theory32 is made via the standard rela
tivistic Fock space. That is, the Fourier coefficients 
occurring in the various decompositions in the previous 
sections are considered as the creation and annihilation 
operators for the corresponding single particle states 
of the theory. No rigorous justification in terms of 
smeared fields is provided here, however, and only the 
quantization of timelike states is treated. The quantiza
tion proceeds as 

- t -] .. t +] [a .... m(P), ansm(p') = [b .... m(P) , bn,m(P') 

= Poo nn' 03,,0 mm' 03rP - P' ) (4.1) 

with all other commutators identically zero. The single 
particle states are then defined as 

t + + 
ansm (P) 1 0) = IP;nsm) (4.2) 

and 
t + 1-bnsm (p) I 0) = p;nsm) (4.3) 

for antiparticles. 

Notice the quantization proceeded using commutation 
relations, as opposed to anticommutation relations, 
which is the usual case for bosons. The question arises 
as to whether or not there exists a spin-statistics 
theorem which demands the use of the commutation 
relations. In the usual theory, 32,33 this is a consequence 
of the demand for locality of the fields. The theorem 
states that the fields are local if and only if integer spin 
fields are quantized by commutation relations and half
odd integer spin fields are quantized by anticommutation 
relations, and only applies when finite-dimensional 
representations of the auxiliary Lorentz group are used. 

However, before the spin statistics problem is dis
cussed, we investigate the discrete transformations. 

Discrete transformations 

Up until now, we have not specified the transformation 
properties of the fields under the discrete transforma
tions, charge conjugation C, parity P, and time rever
sal T, except to say that for theories defined over both 
sheets of H 3

, P, and T are members of the complete 
Poincare group. 34 Indeed, on the relativistic Fock space 
of physical particle states, we know up to a phase factor 
what these transformations should do. Furthermore, the 
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transformation properties of the Minkowski space are 
well known; however, there is some ambiguity with 
regard to the internal space H3, especially regarding 
time reversal. If we demand that time reversal is a 
member of the complete homogeneous Lorentz group 
with the representation specified by Eq. (2.1), then 
both sheets of H3 are needed and under T - - ...... xo--xo x-x, 11--1]0,1]-11. 

However, if only a single sheet is used, one can define 
T such that 

110 -710 and 1j - -1j. 

In both cases discrete transformations with the correct 
"'~operties regarding the physical single particle states 

_.n be defined which also yield a CPT invariant field 
theory. The single particle annihilation operators are 
now defined to have the following discrete transforma
tion properties: 

parity: 

Pa .... mrP)P·l=(-1)'l:,an3m(-P), 

Pb .... m('P)P·l=(-l)sl:t b .... m(-P); 

charge conjugation: 

Ca .... m(P)C·1=l:c b .... m(P) , 

C b .... mrP)C·l = l:~ a .... mIP); 

time reversal (both sheets): 

T ansm (j)T'l = (- 1 )n·s.m !; T a ..... m( - P), 

Tb nsm (P)T·1=(-1)n.s.mn bns.m(-P); 

time reversal (single sheet): 

T ansm rP)T·l = (- 1)s.m l: T ans •m (- P), 
Tb .... m rP)T·l=(-l)s.mn b .... m(-P). 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The transformation properties for the creation opera
tors can be obtained from the above. Of course, the 
operators P and C are unitary whereas T is antiunitary. 
It should also be mentioned that the above construction 
of the charge conjugate operator will have the required 
properties when interactions with the electromagnetic 
field are introduced, 1. e., the em current and charge 
change sign under charge conjugation. In addition to 
the above properties, we find explicitly from the 
wavefunctions of Eqs. (3.3) and (3.34) 

<Pnsm (- P; 710' -.ry) = (- l)S <Pnsm (p, 11) 

and for 0(4, 1) theories (double sheet) 

<P~s.m(-P; -110' .ry)=(-l)n.s+m(<P~m(P,1])}* 

'" (- l)n.s.m ¢:sm (p, 11), 

whereas for 0(3,1) theories (single sheet) 

<Pnsm(-P;1]o, -1])=(-l)s.m(<p:*sm(P,1]»* 

'" (- 1 )s.m $:"m (p, 11). 

(4.8) 

(4.9) 

(4.10) 

Equation (4.9) necessitates the doubling of the repre
sentation space to incorporate time reversal in 0(4, 1) 
theories transforming as a member of the prinCipal 
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series, a=-~+ip,P*O, and real and only if a is real 
is doubling unnecessary. Equation (4.10) implies that if 
n is real, no doubling is necessary, but also if n= - 1 
+ iv it is seen that again no doubling is necessary due to 
the re lation22 

P~(z) = P~V_l(Z) 
for Legendre functions. Thus for 0(3, 1) theories 
doubling of the representation space to include time 
reversal is only necessary when n is complex and 
'" - 1 ± iv, i. e., only for certain nonunitary infinite di
mensional representations. Also, Eq. (4.8) implies that 
the parity of the particles alternate with spin. 

The decomposition for the second quantized Poincar~ 
irreducible theories then follows: 

</>~ n)(x, 1') = e~ n),</>(n) (x, 1') 

= 6 - [exp( - zp· x) </>mm (p, 1') a.m(p) · f d
3
p. ... 

m=-s Po 

+ exp( - ip· x) 1>Mm (p, 1') bsm<P)]· (4. 11) 

Under the C, P, and T transformations, one then finds, 
combining Eq. (4.11) with Eqs. (4.4), (4.5), (4.7), 
(4. 8), and (4. 10), 

P </>(x, 1')P-l = I;p</>(xo' - x;1')o' -1'), 

C</>(x,1')C-1= I;c</>t(x,1'), 

T </>(x, 1')T-l = I; T </>( - xo' x;1')o' -1'), 

(4. 12) 

and Similarly for the Hermitian conjugate field with the 
phase factors replaced by their complex conjugates. 

For the 0(4, 1) infinite multiplet fields, one has 

(4.13) 

and similarly one obtains for the C, P, and T trans
formed fields the first two of Eqs. (4.12) with the T 
transformation replaced by 

(4.14) 

Equations (4.14) and (4.12) express the CPT invariance 
of the corresponding theories. However, it is anti
Cipated that only for the finite-dimensional representa
tions of the auxiliary Lorentz group willa TCP theorem 
be valid. 33,35 We will see in the next section that the 
0(4,1) matrix elements are singular when analytically 
continued to the point which wwld correspond to a CPT 
reflection, indicating the invalidity of the TCP theorem35 

in this case. 
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Spin, statistiCS, and locality 

Let us now compute what is usually referred to as 
the causal commutator, 

(4.15) 

The c-number property of this commutator along with 
the covariance of the fields implies that as indicated it 
is a function of x and x' through x - x' only as well as 
the condition 

(4.16) 

for any homogeneous Lorentz transformation A. Com
bining Eqs. (4.1) and (4.11) or (4.13) with Eq. (4.15), 
one finds 

ill.(x;1') , 1')') = f d
3

p (exp(- ip· x) ±exp(ip, x» G(P;1'), 1')'), 
Po 

(4. 17) 

where 

or 

ill.(x;1), 1)') = ~ f d;~ [exp(- ip· x) ± exp(ip, x)] 

XG(n) (P;1'),1)'), 

~ s 

G(n)(p,1'),1)')=6 6 </>nsm(P,1')</>~.m(P'1')'), 
s=O m=-s 

depending on which type theory is used. Also, Eq. 
(4.16) implies for the G functions 

(4. 18) 

(4. 19) 

Consider first the finite-dimensional Poincar~ ir
reducible theories. Now the G-function given in Eq. 
(4.17) can be evaluated using the explicit expression for 
the </>Mm given by Eq. (3,3) along with the well-known 
addition theorem for spherical harmoniCS, 31 yielding 

G(P' ,)=(25+1) IN 12 [(1')'P.\2 -IJ·/2 
,1),1') 41T n,s M J 

X[(1)'~p 2)_ ~ ./2 

X C'+1 (1) • P) CS+l(1')' • P) P (COStl ) n-. M n-s M • t'p (4.20) 

where 

cosi3p=cosepcosej,+ sinep sin8J, cos (</>p- </>1,) 

and the subscripts p on the angular variables indicate 
that the rest frame variables for 1') and 1')' have been 
boosted to momentum p. In general, the function G is 
not a polynomial in p, and fl. cannot be expressed as 
certain derivatives of a causal function; hence the theory 
is nonlocal. However, if the parameter n is a positive 
integer, the theory is local corresponding to the usual 
spinor type theories. 33 This can be seen by rewriting 
Eq. (4.20) after some algebraic manipulations as 

, (25+1) 
G(p;1'),1')= 1T2'+ 2 IN 12 C'+I ('U) Cs+1 ('!i...:.l.) 

n,& n-s M n-& M 
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which can be readily seen as an even polynomial in p .. 
when n is a positive integer. Thus, this case reproduces 
the usual results with the spin statistics theorem re
maining intact. However, when n is not a positive inte
ger the Gegenbauer functions in Eq. (4.20) are not poly
nomials in 1) . P and the theory is nonlocal. To study the 
nonlocal behavior, we extract the polynomial factors 
from the integral for A in the usual manner yielding 

. f. a a ) f d 3p . ZA(X;1),1),)=p\1)' ax'1)" ax p;; [exp(zp.x) 

- exp(- ip· x)] xc~;( \i) c~:;(1)~P), 
(4.22) 

where the function P indicates a polynomial operator in 
1)' a/ax and 1)" a/ax each of degree s and is not to be 
confused with the Legendre polynomials occurring 
previously. 

In order to illustrate explicitly the nonlocal behavior, 
we put n = - 1 and s = 0, in which case the relevant inte
gral becomes 

f d3p [exp(ip, x) - exp(- ip· x)] 
Po 

(4.23) 

If in addition we put 1) = 1)' = (1, 0, 0,0), the integral be
comes much more manageable, reducing to 

f d3p (eXP(iP'X):exp(-iP'X)\, 
Po pa 7 

which can be written, using the usual manipulations, 31 

as 

where 

r= (~+~ + ~)1/2. 

The difference between this expression and the usual 
causal function is the appearance of the k in the de
nominator of the integrand which can be extracted via 
the equality 

I
~ dk sinkr 

sin(k2 + M'l)1/2 Xo 
o (k2 + M'l)1/2 --yw-

1 jr 1'" = r 0 dr' 0 

xo>r' 
ex.!. [r 

r 0 
-r' <Xo< r' 

Xo < - r' 
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with J o the zeroth-order Bessel function. Clearly, the 
above expression does not vanish for arbitrary space
like x, i.e., -r<xo<r. It is not difficult to perform 
the integral for spacelike x, yielding36 

.!. [XO J (M( 2 2)1/2) _ sinM Xo 
A_ ex r 0 Xo - r - r ' r> xO' 

o 
(4.25) 

Hence, we find causal behavior only for xo=O, ±7T/M, 
± 27T /M, "', that is, the function A_(X;1), 1)') vanishes for 
X2<0, xo=O, ±7T/M, "',1)=1)'=(1,0,0,0), but not for 
arbitrary spacelike x, where the period of oscillation 
is of the order of the strong interaction time, 10-23 .sec, 
a curi()us effect indeed. Although the above acausal be
havior removes the light cone divergence present in 
ordinary theories, it exhibits undersirable long range 
features, 1. e., it vanishes only as l/r for large space
like separation. The case for n * integer or - 1 is some
what more tedious, but the net results are the same. 
For example, for s = 0, we find 

iA(X;1),rf)ex f d;: [exp(ip·x)-exp(-ip,x)] 

x sinh~n+ 1) ~P) sinh ~n+ 1) 1)~P) 

x[(~pr _IJ1/2[(1)~p 2~ll1/2. 
(4.26) 

The trick, as in the polynomial case, is to treat the 
divergent factors in the numerator of the integrand as 
derivative with respect to x, although now this proce
dure is very dubious due to the high degree of diver
gence except for n = - 1 + iv. However, in this way Eq. 
(4.26) can be written formally as 

iAjX, 1,1) - cosh (2(n + 1) i d!xJ SinrMXo 

] sinMx = cosh[2(n + 1) 0 • 
r (4.27) 

The crucial point is that the r dependence remains the 
same. It is not expected that the higher spin case will 
change this result much. For the above and aforemen
tioned reasons, we reject such theories transforming 
irreducibly under p or Po ® 0[(3,1). 

It will now be seen that nonlocal behavior in 
Po® 0(4,1) type theories is much more palatable. The 
quantization as in the previous case proceeds via Eq. 
(4.1) with the single particle states given by Eqs. (4.2) 
and (4.3). Of course, the corresponding wavefunctions 
are different according to one's choice; thus the quantum 
number n can have a different meaning, accordingly. 
The decomposition of the fields valid for the 0(4,1) 
theories without space like or lightlike solutions 
satisfying the wave, Eq. (3.14), is given by Eq. (4.13) 
with ¢nom(P, TJ) given in Eq. (3.34). Of course, if there 
are spacelike or lightlike solutions, the sums over n 
and s become integrals and the corresponding wave
functions are given by the appropriate analytic con
tinuation as discussed previously. Also in the case of 
spacelike solutions, the momentum integral is over the 
single sheeted hyperboloid and the standard interpreta
tion of the antiparticle states is destroyed. 37 
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We first discuss the locality of the exact symmetry 
theory, i. e., the fields transform as irreduCible unitary 
representations of Po® 0(4,1) and hence art! mass 
degenerate. It is known3B that such theories mayor may 
not be local and mayor may not enjoy the usual spin 
statistics result. Upon calculation of the commutator of 
the fields, we find 

iA .. (x - x' ;7),7)') 

(4.28) 

where 

OhY" (7) -7)') = o(cosha - cosh a' ) o(cos e - cos e') o(cp - cfl). 

Again the theory is local upon quantization with com
mutation relations only, and if we combine this result 
with the corresponding result from a spinor theory2B 

over /J1® lP, we obtain the usual spin. statistics theorem. 

Notice the above results made used of the com
pleteness of the functions CPnsm(P' 1]) on the hyperboloid 
H3. Such a result is easy to come by for the mass de
generate case, since it just reduces to the completeness 
of the rest frame states; however, when the masses are 
split the completeness problem is much more compli-

cated. 39 Consider now the above commutator for the 
mass nondegenerate case. Now G(n) (P;7), 7)') given by 
Eq. (4.18) can be written with the aid of the addition 
theorems for Gegenbauer polynomials, 22 as 

G(n) (p, 7), 7)') 

[ ( M )2J 1/2 [ (M ~ 2V/
2 l 

+ 1- 7)' Pn 1- 7)" PnJ J cosi3~}. (4.29) 

Again specializing to 1]=1]', Eq. (4.18) becomes 
.. 

iA.. (x;7), 7) = (2rr)-5 ~ (n + 1)2 

-[exp(- ip· x) 'fexp(ip· x)] ~ f d3p ( p )a+a* 
Po Mn 

(4.30) 
Furthermore, taking a = - % + ip [principal series of 
0(4,1)] and 7) = (1,0,0,0) and using the standard tech
niques, Eq. (4.30) becomes, for spacelike x, 

Aix;l, 1)=- t (2rr)-4 (n: 1)2 M~ 
n=0 

with the aid of integral tables. 36 It can be noted that 
taking a= - 1 yields the same result. The series (4.31) 
converge s uniformily for r> E> ° for any inc rea sing 
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mass spectrum and the dominating term is r-1 
Xo 

Xexp(-Mor); hence, we see that, for spacelike distance, 
the commutator of the fields falls off faster than any 
polynomial-the nonlocality is short range. Again the 
theory is causal for Xo = 0, ;2 < 0, 7) =7)' = (1,0,0,0). 

However, it must be emphasized that, in the mass 
nondegenerate case, the above discussion does not ex
clude the possibility of having a causal theory. The 
reason for this is that the demand for causality falls 
upon not the fields themselves necessarily but certain 
bilinear functionals of the fields-currents. In the next 
section, it is shown that the fields are orthogonal with 
respect to a current norm, but not necessarily with 
respect to the 0(4,1) group representation space norm. 
Hence, if the timelike solutions to any of the wave 
equations are complete, it is expected that they would be 
complete with respect to the current norm. As a result, 
the commutator of currents could be proportional to 
o hy" (7) -7)') and thus vanish for x - x' space like, whereas 
the commutator of the fields would not vanish for 
spacelike x - x'. However, this is perhaps too much to 
ask for wave equations without spacelike solutions. 
Indeed, we should expect some sort of nonlocal behavior 
for observables corresponding to a composite system. 
Furthermore, it has been demonstrated by Fronsdal, 39 

in a Similar infinite-component model using the group 
U(3,1), that a wave equation with discrete timelike 
solutions only is not complete. 

5. CURRENTS AND VERTEX FUNCTIONS 

Orthogonality and the current norm 

Although it has been mentioned that the wave equation, 
Eq. (3.14), can be derived by a Lagrangian approach, 
perhaps the easiest method for constructing currents is 
via Takahashi's generalized Ward identity. 40 This ap
proach is very easy to apply in our case and leads di
rectly to a conserved current as well as orthogonality 
conditions on the wavefunctions. 

We begin by defining the wave operator corresponding 
to the wave equation [Eq. (3.14)] 

L(p) =.C(pa) + P"'pv S"..\S\+ p"'pvr".rv+ (a 2 + 3a+ 1)p2. 

(5.1) 

By calculating the difference L(P') - L(p), one can easily 
arrive at the relation 

L(p') - L(P) = (P' - p)". I".{P' ,p) 

with 

I".{P' ,p) 

(5.2) 

= (P' + p)V(g".v [C 1 + Ca(P'2 + p2) + C3{P'4 + p2p'2 + p4) + ... 

+ (n - 1) term + (a 2 + 3a+ 1)] + HS "..\, S~} + Hr"., rJ), 

where the expansion 
(5.3) 

n 
C(p2)=~ C j (p2)i 

j=O 

for the polynomial function C(pa) has been used. Equa
tion (5.2) is of the form of a generalized Ward identity 
previously derived by Takahashi and Kazes40 for or-
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dinary fields. Of course, now the operators L(P) and 
I,.(P' ,p) are differential operators acting in L 2(HS ). 

And as with the usual case, the current operator 
1,.(P'p) is not unique since Eq. (5.2) is left unchanged 
by the gauge transformation 

I,.W ,p)-I,.W ,p)+A,.(P' ,p) 

if (P' - p),. A,.W, p) = O. 

The real Significance of Eq. (5. 2) is that one can use 
it to derive current conservation and orthogonality of 
the wavefunctions. By sandwiching Eq. (5.2) between 
wavefunctions of momentum p' and p, one finds 

(P' -p),.(p, n's'm' I/,.w ,p)lpnsm)=O (5.4) 

which is a statement of current conservation. By putting 
P,. = (P~ ,P) and p~ = (p~, P'> with p~ = (~ + p)1/2 and p~, 
= (M~ + ;2)1/2, one finds the orthogonality relation 

(p~ - P~) <p n' s'm' 1/0$,;) I; nsm)=O, 

which implies 

$ n's'm' I/o(p,p)lp nsm) ex 15.,. 15&,&15""",. (5.5) 

The Kronecker deltas on the quantum numbers s and m 
follows from the fact that the terms which are off 
diagonal in sand m are also off diagonal in n. This can 
be seen in the following calculation, which also demon
strates positive definiteness of the current. Without 
loss of generality we take P in the third direction and 
extract the boost from the expression for the current 
in Eq. (5.5) obtaining 

(J ns'm' I/o(p,p) Ip nsm) 

=(n s'm' lexp(iaNs)Io exp(-iaNs)lnsm) 

with a parametrized as per Eq. (3.33), and the explicit 
expression for 10 is 

10(P, p) = 2Po(a~t2) + (82 + ra + 1») 

- q[ {ro' rs} + {N2' S2} - {N2' SI}]' (5.6) 
where 

:~ (p2) = [C l + C2(p,2 + p2) + CsW4 + p2p'2 + p4) + ... ]p,2.p2 

and 

P,.::= (Po, 0, 0, ). 

Using some automorphisms of the algebra, 14 we find 

exp(iaNs)Io(q, q) exp( - iaNs) 

= 2Po :~ (p2) + 2p(52 + f2 + 1) + q[ {ro' rs} + {N l , S2} - {N2' SI}]' 

(5.7) 
As can be seen from the action of the generators on the 
rest frame states, 14 the last term vanishes between 
states with equal n, hence, 

<p n's'm' I/olp nsm) 

(5.8) 

In order that the operator - 10(P' p) be positive definite, 
we must assure that 
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ac(p2) C(p2) < 0 apr--pr- (5.9) 

for all time like solutions. Indeed, this is the case for 
the models described by Eqs. (3.24) and (3.30). Using 
Eq. (5.8) with the constraint, Eq. (5.9), we can define 
a new Hilbert space with the inner product given by 

dS1J 
- <Pt(P, 1J)Io(P,p) <P2(P, 1). 
1Jo 

(5. 10) 

It is with respect to this Hilbert space that the timelike 
solutions of the wave equation, Eq. (3. 14) are 
orthogonal. Notice that the operator 10 defining the norm 
given in Eq. (5.10) is proportional to Po when sand
wiched between single particle states-the usual result 
for boson field theories. SI Explicit calculation also 
yields the result 

(-; n' s'm' 1/0 I; nsm) ex 15 .. ,15.&,15",,,,,. (5.11) 

Similar type calculations can be used to demonstrate 
for theories containing space like and lightlike solutions 
(treated as the appropriate limit of the space like solu
tions) that such solutions are orthogonal with respect to 
10 norm and have a delta function norm of opposite sign 
to that of the timelike solutions. For example, trans
forming the current Io(P,p) of Eq. (5.6) with a space
like parametrized boost one obtains in lieu of Eq. (5.7), 

exp(i aN3 ) Io(P, p) exp(- iaNs) 

aC(p2) 2 
=2Poapr- +2Po(~+~+Ss-~-~-~) 

- q[{ro' r3}+ {N l , S2}- {N2' SI}]' (5.12) 

which by Eq. (3.18) again yields Eq. (5.8). Thus de
manding Eq. (5.9) for spacelike solutions yields a norm 
opposite in Sign to the timelike solutions. Also it fol
lows easily from Eq. (5.2) that all spacelike, lightlike, 
and timelike solutions are orthogonal for fixed p. 

When constructing a field theory, invariant under a 
certain transformation group, a crucial question to ask 
is whether one can construct the Poincaril generators as 
bilinear functionals of the fields themselves. In this way 
one obtains currents associated with Poincaril invari
ance as well as the charge current associated with gauge 
invariance. Indeed, an important problem associated 
with this construction is to ascertain whether the energy 
corresponding to the field is positive definite. In order 
to write down the currents in the x representation, we 
make the usual identification 

p', --ta ,. ,.' (5. 13) 

and the current operator given by Eq. (5.3) is written as 
1,.(- ta, ia). Thus one obtains the conserved current 

(5. 14) 

as a bilinear functional of the fields. The conservation 
equation, Eq. (5. 4), then becomes 

a"J,,(x,1J)=O, (5. 15) 

yielding the conserved electric charge 
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(5.16) 

One can now make use of the orthogonality relations, 
(5.8) and (5.11) and upon normal ordering obtain Q in 
the Fock space representation as 

(5.17) 

One constructs the Poincar~ generators from the 
fields in the usual way yielding 

Again using the orthogonality conditions, one obtains 
these generators in the Fock space representation. 
Exhibiting this explicitly for P" yields the expression 

whose zeroth component is positive definite only upon 
quantization with boson commutation rules. 

It should be mentioned that using the above machinery 
all the standard derivations go through, that is, M,," 
and P" obey the Lie algebra of the Poincar~ group and 
express the invariance of the theory under arbitrary 
Poincar~ transformations. Moreover, in the exact sym
metry mass degenerate case, one could exhibit all the 
generators of Pof?) 0(3, 1) as conserved quantities, thus 
obtaining the maximal number of metric automorphisms 
of each of the underlying spaces, ftJ and H3. 

Vertex functions 

In the previous section, it was mentioned that the 
integrated charge Q arriving from the conserved cur
rent J" was to be associated with the electric charge; 
hence, J" is the electromagnetic current. Indeed, this 
is the usual interpretation in the analogous infinite 
component field theories. 30.41 However, in our case we 
make the further interpretation that any hadronic inter
action necessarily couples the 1) dependence whereas 
the electromagnetic interaction is independent of the 
internal 1) space. This reflects the fact that the elec
tromagnetic current, Eq. (5.14), is obtained from a 
variational principle in which only the Minkowski 
endpoints are allowed to vary. 14 Consequently, we 
obtain the invariant nonminimal electromagnetic 
coupling 

(5.20) 
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This coupling provides us with the momentum space 
form factors or electromagnetic vertex functions given 
by 

<P' n' s'm' 1-10(p' ,p) Ip nsm). 

To calculate these functions, we notice that without 
loss of generality we can take p~ = (M' ,0,0,0) and P" 
= (Po, 0, 0, q) and normalize the single-particle states 
according to the Poincar~ invariant norm, Eq. (5.9). 
Then, upon extracting the boost, one finds 

(n's'm'll(p',p)lpnsm)=)' (n's'm' ll In"s"m) 
o "~" 0 

x (n" slim I exp( - iaN3 ) Insm). 

(5.21) 

The first term in the sum can be evaluated using Eq. 
(5.3) and the action of the 0(4,1) generators on the 
basis states, 14 yielding 

(n' s'm I -lo(PI ,pi) I nil slim) =In,,.,,(a) = 5n'n' 5.,." (M". +~) 

x[el +e2(~' +M~)+e3(M~,+M~'M~+M!)+'" +(n' + 1)2] 
N(n', n) 

_'1.( _ ")5. (5 S'.S",lA n".s·-5"s"-lAn".-S--1) 
2 ann' .n".l N(n', n) 

-(a+n" +2) 5 (5 s' •• N,lA n-l .-s"-2 -5S'S-'lA n •• l •• -.l )' 
"'.n··l N(n',n) j, 

(5.22) 

where 

A = (n + 2)(S + m + 1)(s - m + 1)(n + s + 3)(n + s + 2»)1/2 n.. 2 (2s + 3)(2s + l)(n + 2)(n + 1) 

and 

[ ( 
Be ~ ( Be ~1/2 

N(n', n) = 4P~M n' BP~ + (n + 1)) BP~, + (n' + 1)2JJ . 

The matrix elements 

D~, s' m.n5m (O!) = (n' s'm I exp( - iO!Ns ) I nsm) 

in Eq. (5.21) can be obtained by group theoretical tech
niques. The above matrix elements can be related to the 
double coset matrix elements, 

(5.23) 

obtained previously as a finite series of hypergeometric 
functions42 and exhibited explicitly in the Appendix via 
the identity 

exp(i7T r3/2) exp( - iO!r 0) exp( - i7Tr3/2) = exp( - iO!N3 ), 

(5.24) 

yielding 

(5.25) 

where the d functions are the 0(4) representation func
tions43 and can be related to the Clebsh-Gordon coef-
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ficients43 for SU(2) by using the local isomorphism be
tween 0(4) and SU(2)® SU(2), yielding finally 

mln(n'n) 

D~,.,,,,;,,.,,,(a)= 6 6 6 C(tn', tn', S';J1.,m-J1.) 
&" z 0 U. u.' 

XC(tn', tn', S";J1., m - J1.) 

x C( tn, tn, s" ; J1.' , m - J1.,) 

XC(tn, tn, S;J1.' ,m - J1.') exp[i(J1. - J1.'hr T~,,,.,,( a). 

(5.26) 

Combining this result with Eqs. (5.21) and (5.22) yields 
the complete expression for the electromagnetic vertex 
functions, 

(n' s'm Ilow, p) Ii nsm) 

(5.27) 

It is easy to relate the boost parameter a to the in
variant momentum transfer t = (p' - p)2, obtaining 

cosha =(M!, +Af,,- t)/2M,/'Jn" (5.28) 

where the physical region is - 00 < t ~ (M' - M)2. Equa
tion (5. 27) thus provides all of the electromagnetic form 
factors as well as transition amplitudes for the particles 
of our theory. We find, using Eq. (A1) of the Appendix 
and applying one of Kummer's identities22 for the 
hypergeometric functions, the asymptotic behavior 

Tn' n.( a) a.:~ A1 exp[ - a( - 0" + s)] + A2 exp[ - a( 0" + 3 + s)] 

(5.29) 

with the exception of 0"= -~, - t where an extra multi
plicative factor of a occurs in one of the terms arising 
from the degeneracy in the hypergeometric functions. 
We thus obtain the asymptotic behavior of the vertex 
functions, e. g., for spin-O particles 

(n'OO IloWp) Ii nOO) 

{
In(- t), 

t-.:.~ (- t)'+1/2 1, 
otherwise. 

(5.30) 

For the 0"= - 1 representation of the supplementary 
series, the asymptotic behavior is (- t )-1/2 and, for the 
principal series with p *0, the asymptotic behavior is 
(- t)-1 multiplying an oscillating term. While experi
mental data44 for boson form factors is scarce, there 
are indications that the pion form factor, for example, 
falls off faster than the simple pole behavior above, 
indeed even faster than the proton form factors. Thus 
this model should be modified to describe the pion. In 
this respect the 0(4,2) models41 are somewhat better. 
Also notice from Eq. (5.30) that, for the supplementary 
series in the range - t ~ 0"< 0, the asymptotic behavior 
of the vertex functions is totally unacceptable. 

One common feature which seems to be shared by all 
infinite multiplet theories9 •41 is that the analytic con
tinuation of the vertex functions into the region 
(M' - M)2 < t < 00 has nothing at all to do with the pair an
nihilation process. This is indeed the case in our theory 
also, as can be seen by noticing that again this Simply 
involves the overlap 
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where now s = W + p)2 is related to the boost parameter 
a by 

cosha = (M!, + M~ - s)/2M ,/'In'' 

and we obtain the same function in this channel exhi
biting no Singularities in the physical region for the an
nihilation process. However, the vertex functions have 
a cut in the complex t plane from (M' - M)2 to 00; hence, 
the form factors and annihilation process cannot be the 
analytiC continuation of one another. This seems to be 
indicative of a composite structure where the branc!h cut 
in the vertex functions refers to an entirely different 
process in terms of the constituents, perhaps; the 
branch point at (M' - M)2 could indicate an anomalous 
threshold. 9,41 

Another common feature of infinite multiplet theories 
is the inapplicability of the TCP theorem. 35 The proof 
of this theorem32 requires the analytiC continuation of 
the boosts to the point a = irr. However, it is not too dif
ficult to see that the vertex functions have a pole at this 
point. In the Appendix the vertex functions are written 
as finite series of hypergeometric functions, F(a, b, c;z) 
of the argument z = 1 - exp( - 20!), with a cut from z = 1 
to z = + 00. Now to implement the above-mentioned con
tinuation, let O! = ifJ/2. Then z = 1 - cos fJ + i sinfJ which 
describes a circle of unit radius with center z = 1. 
Hence, as fJ varies from ° to 2rr, z moves on this circle 
starting and ending at z=O; however, it must pass 
through the branch cut of the hyper geometric function 
at the point z = 2, and the second sheet function exhibits 
a pole at z = 0. (See the Appendix for details. ) 

6. CONCLUSION AND DISCUSSION 

In the preceding pages a relativistic quantum field 
theory mostly at the free field level was formulated 
over the manifold /J1®H3 in an attempt to describe 
hadrons as a relativistic composite structure in a field 
theoretic context. This formulation at the outset is quite 
general enabling one to consider both Poincarl! ir
reducible fields as well as the highly reducible infinite 
multiplet theories. The latter type theories allow one to 
make full use of the available function space and by al
lowing both sheets of the hyperboloid one is led quite 
naturally to the inclusion of an internal 0(4) symmetry 
via the noncompact groups 0(4, 1) and SL(4,R). Realistic 
mass splittings are attained by postulating a wave equa
tion which links in a very complicated way the /J1 and H3 
structure of the fields. 

A viable criterion for selecting between the infinite 
multiplet and Poincarl! irreducible theories was found in 
the locality properties. While the Poincarl! irreducible 
theories that are nonequivalent to the usual spinor 
theories displayed an irritating long range nonlocality, 
the 0(4,1) theories with mass splittings enjoyed a weak 
nonlocality which become local when the masses became 
degenerate. In addition the theories equivalent to the 
usual spinor theories were shown to be local as indeed 
they must; furthermore, these theories afford the 
possibility of providing various nonstandard couplings 
when interactions are introduced. 
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The infinite multiplet theories here are very closely 
related to infinite component theories; however, the 
fundamental objects, fields, are quite different. We 
consider this a distinct advantage, for we deal exclu
sively in the canonical basis where particle properties 
are manifest whereas the infinite component theories 
employ the spinor basis. However, the same general 
features found in infinite component theories are present. 
Indeed, the vertex functions describing the interaction of 
the multiplets with the electromagnetic field were calcu
lated and shown to exhibit the characteristic noncrossing 
symmetric behavior, an apparent indication of a com
posite structure. 9 In this context one of our models has 
many desirable features: It has discrete time like states 
only, a positive-definite metric, a positive-definite 
energy, obeys a spin statistics theorem in the mass 
degenerate limit, CPT invariance, an almost linearly 
rising mass spectrum, decreaSing electromagnetic form 
factors though probably not fast enough, an internal 
space which can be interpreted as the underlying mani
fold for the hadronic interactions. The price we must 
pay-weak nonlocality at the field level and probably at 
the current level. 

It is at this stage that a crucial period in the develop
ment of our theory is reached. The central question here 
is the question of the completeness of the physical states 
in the physical 10 norm. If there exists a complete set 
of states to a given wave equation, then the theory will 
be formally local at the current level and a theory for 
interactions could be developed in the usual covariant 
manner. For example, then the time-ordered products 
of fields at different points should be covariant aside 
from possible contact terms. However, if the wave 
equation does not provide a complete set of states, the 
current commutator will not vanish for all spacelike 
separated points and the theory will be nonlocal as at 
the field level. It is probably not too hazardous to say 
that such a theory would be weakly nonlocal at the cur
rent level as well as the field level, thus enabling one 
perhaps to develop a reasonable physical theory. How
ever, the problem with covariance is manifest; the 

2b 

2C 

FIG. 2. Compton scattering in the s channel. Solid lines indi
cate members of an infinite multiplet; dotted lines indicate a 
simple scalar field; wavy lines indicate the electromagnetic 
field. 
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time-ordered product of currents will be noncovariant. 
The problem is somewhat more confused when spacelike 
solutions to a wave equation are allowed to enter. If 
both timelike and spacelike (possibly lightlike, too) form 
a complete set, it is still not clear that one can develop 
a causal theory even if the current commutator vanishes 
for space like separation and the time-ordered product 
is fully covariant. 

This problem of completeness has been formulated in 
two related works. Mukunda39 has shown that the solu
tions to the Majorana equation form a complete set in 
the current norm. Some of these solutions, however, 
are spacelike and lightlike. This approach is not very 
well suited to our wave equation due to the fact that our 
currents contain bilinear products of the 0(4, 1) gen
erators. A more natural approach for us is that of 
Fronsdal. 39 His technique differs from that of Mukunda's 
only in the evaluation of the resolvent Green's function 
operator. Moreover, his method can handle more com
plicated currents. 

To begin with, consider the simplest nontrivial (in
finite multiplet propagator) scattering amplitude, that 
of s-channel Compton scattering of an ordinary scalar 
field from the ground state of the multiplet as shown in 
Fig. 2a. This can be written down using the resolvent 
operator L -1(P) as the propagator as suggested by the 
generalized Ward identity, Eq. (5.2), 

T(p',p;q)=<y 0001 [l/L(q2)]lp 000). (6.1) 

Transforming L(q2) to the rest frame by 

C(p2) + p2(S2 + r 2 + 1) = exp(- i-; .. N)L(q2) exp(iaq • N) 

(6.2) 

and inserting a complete set of rest frame states one 
finds 

T(P' ,p;q) 

=6 {(ODD I exp(ia~,. N)exp(- i~ . N) Insm) 
Mm q 

x (nsm I exp( ia q • N) exp( - i~~, . lV) 1000) 

x [C(q2) + q2(n + 1)2]-1}. 

(6.3) 

The superscript 0 on O! indicates the state n == O. But the 
bra-ket functions are just the scalar vertex functions 
for the transition of a state nsm to the ground state; we 
indicate these functions as v(O.n) (p . q, q2). Therefore, 

. _ v(o.n)(p' • q, q2) v(n,o)(p' q, q2) 
T(p',p,q)-~ C(q2)+q2(n+1)2 . (6.4) 

The relevant amplitude for completeness in the 10 norm 
is 

T ' . _ v(o.n)(f/ . q, q2) 0gn.o)(p, q) 
!l(P,p,q)-~ C(q2)+q2(n+1)2' (6.5) 

where 

v~n.o) (p, q) == (nsm I exp(ia. N)I,.(q, p) exp(- i-;~. N I 000). 

Similarly for Compton scattering from the electromag
netic field, the full amplitude is 
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Complex z plane 

FIG. 3. The complex z plane of the vertex functions. The cut 
runs from Z= 1 to 00. The circle indicates the path of analytic 
continuation to the point 0/ = i7r as described in the Appendix. 

(6.6) 

Notice that if C(tf) is of the form (3.23), i. e., the CGL 
wave equation, all of the above amplitudes exhibit a 
pole in the complex qo plane at qo=O. We do not try to 
evaluate these amplitudes or solve the completeness 
problem here, but merely indicate what has to be done. 
The vertex functions v<o,n) in Eq. (6.4) are essentially 
Legendre functions and should be manageable. The 
crucial pOints in any further investigation are (i) to 
decide whether Fronsdal's conclusion39 for U(3, 1) that a 
discrete set of timelike solutions is not complete is ap
plicable in our case or not, (ii) to understand the nature 
of the relationship between completeness and space like 
solutions. 

Before closing a few words are in order concerning 
the relationship between our work and that of CGL. 8 

Their approach is toward the saturation of current 
algebra. Indeed they use the canonical quantization 
following from the Schwinger variational principal to 
obtain a current algebra with Schwinger terms, but un
less a completeness relation holds, the Fock space de
composition will be invalid. On the other hand we have 
a Fock space decomposition, but unless a completeness 
relation holds, we will never get canonical commutation 
relations or current algebra: Fock space quantization 
and canonical quantization are equivalent only when a 
completeness relation is valid. 

Note added in proof: Recently the question of com
pleteness of the states in the current norm has been 
resolved for an 0(3, 1) version of the CGL infinite com
ponent wave equation by R. Casalbuoni and G. Longhi, 
Nuovo Cimento A 15, 591 (1973). They have shown that 
the time like states are not complete, and one has con
tributions from states with complex momentum. This 
result is intimately related to the existence of the pole 
in the vertex functions at the point 0/ = irr as discussed 
at the end of Sec. 5. Another recent work related to 
ours is R. Y. Cusson and L. P. Staunton, Nuovo Cimento 
A 17, 303 (1973). 
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APPENDIX: VERTEX FUNCTIONS 
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In Sec. 5 we discussed the vertex functions of our 
theory. They were expressed in terms of the 800(4, 1) 
matrix elements in the double coset SO(4) 800(4,1)/ 
SO( 4). Such matrix elements were calculated for the 
groups SOo(P, 1) in Ref. 42, and so we merely restate 
the results for p = 4 here: 

n-. n'-. (_ l)k+k' exp[ a(O"- n - 2k')] r(s + 1+ k + k') 
=N L: '5: ""oKa k'lkl(n+1-k) 

with 

r(n'+n-s+1-k-k') 
x r(n' +! _ k) r(s +! + k) 

x 2F l(n' - 0"; s +1+k+ k'; n' +n+ 3; 1-exp(- 2a) 
I'(s +! + k') r(n - s + 1- k) r(n - s + 1- k') 

(A1) 

N=(_l)n+. [(n-s)l(n' -s)l(n+s+ 1)!(n' +s+ l)l(n+ 1) 
(n+n' + 2)1 

X(n' +1)]1/2I'(n+1)r(n' +1) 

and, when n = s = 0, they reduce to Legendre functions, 

Ta( )=2 (n+0"+3) ( +l)p~:in(cosha). (A2) 
On a I'(O"+ 3) n sinh a 

From Eq. (A1) it is seen that the functions T~n,.(a) 
have a branch cut taken along the real axis of the 
variable z= 1- exp(- 2a) from 1 to 00. In terms of this 
variable, the momentum transfer t is 

t=M,2 +~ -M'M[(l- Z)1/2 + (1- Z)-1/2]. (A3) 

Choosing the cut for th~ square root function again from 
Z = 1 to 00, we see the physical region 

- 00< t ~(M' _M)2 

corresponds to the range 

l>z;;.O 

and the cut in the t plane runs from (M' - M)2 to in
finity. The cut of the hypergeometric function corres
ponds to imaginary values of t. 

Now consider the analytic continuation necessary for 
the CPT theorem as discussed in the text. We take a 
=io/2; then z= 1- coso +i sino. As we continue a from 
o to irr, z describes the circle shown in Fig. 3. The 
hypergeometric function in Eq. (A1) can be continued22 

into the region about the singular point z = 1. If 0" '" inte
ger, half-interger, this is straightforward. When 0" 

=integer or half-interger, the hypergeometric functions 
are degenerate and care must be taken, but the results 
will be the same. We then continue these previously 
continued functions back to the region about z = O. Upon 
doing this our original function 
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U1(o)=F(n' -(1; s+t+k+k'; n' +n+3;z) 

becomeg22 

where 

-l/J(n' - (1) + l/J(s + t + k + k' + i) -l/J(s + t + k + k') 

-l/J(n' + n + 3 + 2) + l/J(n' + n + 3) -l/J(i + 1) -lj!(1)] 

"' +"+2 

6 
(i -1)!(-n' - n- 3)iZ-i 

i=l 

where 

(a)i = r(a + i)/r(a) 

is Pockhammer's symbol and 

l/J(x) = dIn r(x) . 
dx 

(A4) 

Consequently, T~n'$ has a pole of order z-(n'.n+2) when 
Ct = i1f. 

*Submitted in part for Ph. D. dissertation, The Pennsylvania 
State University, March 1972, by C. P. Boyer. 

tSupported in part by an NDEA Fellowship. Present address: 
C. 1. M.A. S., Universidad Nacional Autonoma de Mexico, 
Mexico 20, D.F. 

lG. Chew, The Analytic S-Matrix (Benjamin, New York, 
1966). 

2H. Yukawa, Phys. Rev. 77, 219 (1950); 91, 415 (1953). 
3A. Kihlberg, Ann. Inst. Henri Poincare 13, 57 (1970); 
Goteborg preprints. 

4H, Bacry and A. Kihlberg, J. Math. Phys. 10, 2132 (1969); 
H. Bacry and J. Nuyts, Phys. Rev. 157, 1471 (1967). 

5G. Fuchs, Ecole Poly technique preprints. 
6D. Finkelstein, Phys. Rev. 100, 924 (1955). 
7F. Lur<;at, Physics 7, 95 (1964). 
8R. Casalbuoni, R. Gatto, and G. Longhi, Phys. Rev. D 3, 
1499 (1971); Nuovo Cimento Lett. 2, 159, 166 (1969). Re
ferred to hereafter as CGL. 

9C. Fronsdal and R. White, Phys. Rev. 163, 1835 (1967); 
C. Fronsdal, Phys. Rev. 168, 1845 (1969); 171, 1811 (1968). 

10L. S. Pontryagin, Topological Groups (Gordon and Breach, 
New York (1966). 

11E. Wigner, Ann. Math. 40, 149 (1939). The specification of 
this freedom is tantamount in the Wigner theory to the choice 
of tensors used. It is also noted that our carrier space does 
not carry half-integer spin short of the use spinor valued 
wavefunctions. 

12H. Joos, Fortschr. Phys. 10, 65 (1962). 

J. Math. Phys., Vol. 15, No.7, July 1974 

13J. Nilsson and Beskow, Ark. Fys. 34, 307 (1967). 
HC.p. Boyer, Ph.D. Thesis, The Pennsylvania State 

University (1972). 
15A. Sankaranarayanan, Nuovo Cimento 38, 1441 (1965); J. 

1023 

Math. Phys. 9, 611 (1968); A. Bohm, Phys. Rev. 145, 1212 
(1966); J. Rosen and P. Roman, J. Math. Phys. 7, 2072 
(1966); A. Chakrabarti, J. Math. Phys. 9, 2087 (1968). 

16M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330, 346 
(1966). 

17C. P. Boyer and F. Ardalan, J. Math. Phys. 12, 2070 
(1971); C.P. Boyer, J. Math. Phys. 14, 609 (1973). 

18A. Kihlberg, Nuovo Cimento 53, 592 (1968). 
li1.M. Gel'fand, R.A. Minlos, andZ. Ja. Shapiro, Repre

sentations of the Rotation and Lorentz Group (Pergamon, 
New York, 1963). 

2<l:r.M. Gel'fand, M.l. Graev, andN. Ja. Vilenkin, Generalized 
Functions (Academic, New York, 1966), Vol. 5; N. Ja. 
Vilenkin and Ja. A. Smorodinski, Zh. Eksp. Teor. Fiz. 46, 
1793 (1963) [Sov. Phys. JETP 19, 1209 (1964»). 

21N. Ja Vilenkin, Special Functions and the Theory of Group 
Representations (Am. Math. Soc., Providence, R.1., 1968). 

22A. Erdelyi, et al. , Higher Transcendental Functions (Mc
Graw-Hill, New York, 1953). 

23A. Aurilia and H. Umezawa, Nuovo Cimento A 51, 14 (1967); 
Phys. Rev. 182, 1682 (1969); C. Fronsdal, Nuovo Cimento 
Suppl. 9,416 (1958). 

24A. Bohm, Lectures in Theoretical Physics, edited by A. O. 
Barut and W. Brittin (Gordon and Breach, New York, 1968), 
Vol. lOB. 

25L. O'Raifeartaigh, Phys. Rev. Lett. 14, 575 (1965); Phys. 
Rev. 161, 1571 (1967); 164, 2000 (1967); R. Jost, Helv. 
Phys. Acta. 39, 369 (1966); 1. Segal, J. Funct. Anal. 7, 1 
(1967). 

26E. L. Ince, Ominary Differential Equations (Dover, New 
York, 1956). 

27A.D. Donkov, V.G. Kadyshevsky, M. D. Mateev, and R. M. 
Mir-Kasimov, Dubna Preprint E2-5339 (1970). 

2BG.N. Fleming, Phys. Rev. D 1, 542 (1970); G.N. Fleming 
and F. Ardalan, The Pennsylvania State University preprint; 
F. Ardalan, Ph. D. Thesis, The Pennsylvania State Universi
ty (1970). There is also a continuum of spacelike solutions 
as well as vacuum like solutions for Eq. (3.12). 

29The case C(p2)=C O+Clp2 must be handled separately. In 
order to have a meaningful time like spectrum, Co< 0 with Cl 
arbitrary. 

30If, for example, we took {31 < {3 < 2{31' we would have another 
single timelike state which one could perhaps fit nicely into a 
scheme describing meson masses; however, it can be seen 
from the analysis in Sec. 5 that such a state will have nega
tive norm. 

31C. Itzykson, V. G. Kadyshevsky, and I. T. Todorov, Phys. 
Rev. D 1, 2823 (1970); 1. T. Todorov, Group Representations 
in Mathematics and Physics, edited by V. Bargmann 
(Springer-Verlag, Berlin, 1970); C. Itzykson and 1. T. 
Todorov, Coral Gables Conference on Fundamental Interac
tions at High Energy, edited by T. Gudehus, et al. (Gordon 
and Breach, New York, 1969); C. Fronsdal and R. W. Huff, 
Phys. Rev. D 3,933 (1970); C. Fronsdal and L.E. Lundberg, 
Phys. Rev. D 1, 3247 (1970); Y. Nambu, Phys. Rev. 160, 
1171 (1967); Prog. Theor. Phys. Suppls. 37 and 38, 268 
(1966); A. O. Barut, D. Corrigan, and H. Kleinert, Phys. 
Rev. 167, 1527 (1968); for a review and complete set of ref
erences, see A. O. Barut, XV-th International Conference on 
High Energy Physics, Kiev, 1970. 

32S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Harper, New York, 1961); R. F. Streater, A. S. 
Wightman, PCT, Spin and Statistics and All That (Benjamin, 
New York, 1964); R. Jost, Theory of Quantized Fields (Amer. 
Math. Soc., Providence, R.1., 1965). 

33S. Weinberg, Phys. Rev. 133, B1318 (1964). 
34y. M. P. Lam, Ann. Phys. 50, 323 (1968). 
35D. Tz. Stoyanov and 1. T. Todorov, J. Math. Phys. 9, 2146 

(1968); A. 1. Oksak and 1. T. Todorov, Commun. Math. Phys. 
11, 125 (1968). 

361. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals Series 
and Products (Academic, New York, 1965). 



                                                                                                                                    

1024 C.P. Boyer and G.N. Fleming: Quantum field theory 

37M.E. Arons and E.C.G. Sudarshan, Phys. Rev. 173, 1662 
(1968); J. Dhar and E.C.G. Sudarshan, Phys. Rev. 174, 
1808 (1968);E. C. G. Sudarshan and N. Mukunda, Phys. Rev. 
D I, 571 (1970). 

38C. Chi, D. vong Due, and N. van Hieu, Ann. Phys. 49, 173 
(1968); C. Fronsdal, Phys. Rev. 156, 1653 (1967); G. 
FeldmanandP.T. Matthews, Phys. Rev. 151, 1176 (1968); 
154, 1241 (1967). 

39r. T. Todorov and R. P. Zaikov, J. Math. Phys. 10, 2014 
(1969); A. 1. Oksak and 1. T. Todorov, Commun. Math. Phys. 
14, 271 (1969); H. D. I. Abarbanel and Y. Frishman, Phys. 
Rev. 171, 1442 (1968); I. T. Grodsky and R. F. Streator, 
Phys. Rev. Lett. 20, 695 (1968); A. I. Oksak and 1. T. 
Todorov, Phys. Rev. D I, 3511 (1970); C. Fronsdal, Phys. 

J. Math. Phys., Vol. 15, No.7, July 1974 

1024 

Rev. 182, 1564 (1969); 185, 1768 (1969); N. Mukunda, Phys .. 
Rev. 183, 1486 (1969). 

411y. Takahashi, An Introduction to Field Quantization (Per
gamon, New York, 1969); Nuovo Cimento 6, 370 (1957); E. 
Kazes, Nuovo Cimento 13, 1226 (1959). 

4fA.O. Barut and H. Kleinert, Phys. Rev. 161, 1464 (1967); 
A. O. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. 167, 
1527 (1968); Phys. Rev. Lett. 20, 167 (1968). 

42C.p. Boyer, J. Math. Phys. 12 1599 (1971). 
43D. Z. Freedman and J.M. Wang, Phys. Rev. 160, 1560 

(1967); M. E. Rose, Elementary Theory oj Angular Momen
tum (Wiley, New York, 1967). 

44C. W. Akerlof, et al., Phys. Rev. 163, 1482 (1967). 



                                                                                                                                    

Lie theory and separation of variables. 3. The equation ftt-fss = "(2f 
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Kalniris has related the 11 coordinate systems in which variables separate in the equation 
h, - fn ="12f to 11 symmetric quadratic operators L in the enveloping algebra of the Lie algebra of 
the pseudo-Euclidean group in the plane E(I,I). There are, up to equivalence, only 12 such 
operators and one of them, LE , is not associated with a separation of variables. Corresponding to 
each faithful unitary irreducible representation of E(1,I) we compute the spectral resolution and 
matrix elements in an L basis for seven cases of interest and also give overlap functions between 
different bases: Of the remaining five operators three are related to Mathieu functions and two are 
related to exponential solutions corresponding to Cartesian type coordinates. We then use these 
results to derive addition and expansion theorems for special solutions of h, -fn ="12f obtained via 
separation of variables, e.g., products of Bessel, Macdonald and Bessel, Airy and parabolic cylinder 
functions. The exceptional operator LE is also treated in detail. 

INTRODUCTION 

In Refs. 1 and 2, Winternitz and coworkers intro
duced a group theoretical method for the description 
of separation of variables in the principal partial dif
ferential equations of mathematical physics. We apply 
their idea in this paper to study several coordinate 
systems in which separation of variables is possible in 
the equation 

(*) (a!_ a~)j(s, t)=- yaj(s, t), y> O. 

The symmetry group of (*) is E(l, 1) the pseudo
Euclidean group in the plane. Its Lie algebra e(l, 1) is 
three-dimensional with basis Ph P a, M and commutation 
relations 

[M,Pd=Pa, [M,PZ]=Ph [PhPZ]= O. 

A two-variable model of e(l, 1) is 

(**) P 1 =as , pz=at , M=-sat-tas 

in which case (*) becomes 

(P~ - P~)f= - yZj. 

According to the prescription in Refs. 1 and 2 one 
should characterize solutions j of (*) by requiring in 
addition thatj is an eigenfunction of an operator L, 
Lj= Aj, where L belongs to the factor space T= s/sn C. 
Here, C is the center of the universal enveloping alge
bra U of e(l, 1) and S is the space of all symmetric sec
ond order elements in U. In our case, S n C = {O!(P~ 
-pm, O! any constant. E(l, 1) acts on T via the adjoint 
representation and we do not distinguish between oper
ators L on the same orbit. 

From the examples presented in Refs. 1 and 2 one 
might expect that each system of equations 

(P~ - P~)f= - yZj, Lj = V 

where Ph P a, M are given by (**), is related to a co
ordinate system in which (*) separates, that all separa
ble coordinate systems can be so obtained, and that 
there is a one-to-one relationship between orbits and 
separable coordinate systems. However, in Ref. 3 
Kalnins has shown that this is· not quite true. In fact, 
there are 12 orbits and 11 coordinate systems in which 
(*) separates. One orbit (with representative LE in this 
paper) does not correspond to a separable coordinate 
system. Of the separable coordinate systems two, 
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Cartesian and spherical polar, have well-known group 
theoretical interpretations (Ref. 4, Chap. V), three 
lead to various types of Mathieu equations, and two cor
respond to other Cartesian-type coordinates. The re
maining four systems are related to parabolic cylinder, 
Bessel, Macdonald, and Airy functions, respectively, 
and correspond to operators L D , L B , L K , LA in T. 

A study of parabolic coordinates with respect to the 
spectral resolution of LD was carried out in Ref. 5. 
Here we undertake an analogous study of LB , L K , LA 
and L E • In Secs. 1 and 2 we compute the spectral reso
lutions of the self-adjoint operators LG , G=B,K,A,E, 
corresponding to each of the irreducible faithful unitary 
representations of E(l, 1). In particular, we compute 
the matrix elements of the unitary group representation 
operators in an LG-basis and we calculate the overlap 
functions relating two different bases. 

In Sec. 3 we show how to construct models of the ir
reducible representations of E(l, 1) in which the Lie 
algebra operators take the form (**) and the Hilbert 
space vectors j satisfy (*). These models allow us to 
apply the results of Sec. 1 to obtain properties of those 
special solutions of (*) which can be obtained through 
separation of variables. (Of special interest here is L E 

which does not lead to separation of variables.) 

Finally, in Sec. 4 we study the spectral resolution of 
LK corresponding to nonunitary representations of the 
complex Euclidean group CE(2) and obtain a series of 
identities for products of modified Bessel and 
Macdonald functions. 

1. THE REPRESENTATIONS OF E(1,1) 

The pseudo-Euclidean group E(1, 1) is the group of 
all real matrices 

A("a'b')=(~:: :;: :) -"",a,b'~. 
It acts on the pseudo-Euclidean plane via the transfor
mation z -Az where 

Copyright © 1974 American Institute of Physics 1025 
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an"d preserves the form (t1 - ta)2 - (S1 - SZ)2. 

The irreducible faithful unitary representations of 
E(l, 1) are well-known to be indexed by a parameter 
y> 0. Each such representation can be defined by oper
ators T(9, a, b), 

T(9, a, b)/(x) = exp[iy(a coshx+ b sinhx)]/(x + 9) (1. 2) 

acting on the Hilbert space L 2(R) of Lebesgue square 
integrable functions/(x) on the real line. The inner 
product is 

The Lie algebra e(l, 1) of E(l, 1) contains a basis 
{Ph P 2, M} with commutation relations 

(1. 3) 

and related to the group via the exponential mapping 

A(9, a, b) = exp(aP1 + bPa) exp(9M). 

The corresponding operators in L 2(R) induced by the 
group action (1. 2) are easily shown to be 

P l =iy coshx, P 2 = iysinhx, M = ax' (1.4) 

Vilenkin (Ref. 4, Chap. V) has studied the unitary 
representation of E(l, 1) in terms of the spectral resolu
tion for the operator 

LM=M2 

(or M) on L 2(R). In particular, he has determined the 
matrix elements of the group operators (1. 2) with re
spect to this resolution. In Ref. 5 the representations 
of E(l, 1) were examined with respect to the spectral 
resolution of the operator 

(1. 5) 

It was shown that LD has a one parameter family of 
self-adjoint extensions L D ,,,,, ° t!; a <2. Each L D ,,,, has 
discrete spectrum -2y(a +2n), n=O, ± 1, ±2,'" and 
normalized eigenfunctions 

I"D ,'" (x) = n::;r exp(x/2)(1 + ie X )",+2n-l /2(1 _ iex )-"'-2"-l /2. 

(1.6) 

(In every example treated in this paper the L -operator 
is initially defined on the subspace of L 2 (R) consisting 
of C" -functions with compact support. One then search
es for all self-adjoint extensions of this symmetric 
operator. ) 

This case was in sharp contrast to that of L M where 
there was a single self-adjoint extension with continuous 
spectrum covering the negative real axis with general
ized eigenfunctions 

f
MC ) _ exp(ih) 
~ x - {'l:1Ti ' _ 00 < A < 00, (1. 7) 

M/~1I = iA/~II, U:, I:> = B(A - /J.). 

The spectral resolution was obtained via the Fourier 
transform. The relationship between these two bases 
was computed in Ref. 5. 

In this paper we study the spectral resolutions in 
L 2(R) of self-adjoint extensions of the symmetric oper-
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LK=M2 + (PI +p2)2, 

LE=M(PI-Pa) +(Pl-Pa)M, 

LA=M(P1-Pa) +(Pl -P2)M + (PI +Pa)2. 
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(1. 8) 

For each resolution we compute the matrix elements 
of the unitary operators (1. 2). In addition we determine 
the unitary transformations which allow us to pass from 
one spectral resolution to another. 

A. The Bessel function or 8 basis 

It follows from (1. 4) that 

d d 
v=exp(x), Dx= dx' Dv= dv • 

(1. 9) 

This operator is symmetric on L 2 (R) with deficiency 
indices (1,1). Thus there is a one-parameter family 
L B,,,," ot!; a' <27T, of self-adjoint extensions of LB' The 
domain of each extension is 

where [) L* is the domain of the adjoint of LB in L 2(R) 
and B 

where .Jv(z) is a Bessel function. (All special functions 
in this paper are defined as in Ref. 6.) 

Each LB ,,,,' has discrete spectrum and an orthonormal 
basiS of eigenfunctions 

I"B·"'(V) = v'2(a +2n)J",+2n(YV), 

v = exp(x) , n=0,1,2,' ", (1. 10) 

where 0< at!; 2 and the fixed parameters a, a' are re
lated by 

tan (7Ta _....!!-.) _ (1+exp(1T/v'2») tan~ 
2 2v'2 - 1 - exp(7T/v'2) 2 • 

(Our computations of spectral resolutions for first and 
second order ordinary differential operators, while 
certainly nontrivial, are straightforward,7 so we omit 
the details. ) 

The relationship between different bases is easily 
computed: 

I/;' "'l(V) = ~ U:''''l, I"B ''''2) I"B ''''2(V), 

U:''''1,I"B''''2) =2 v'(a1 +2m)(aa +2n) 10'" .J"'1+2",(V).J"'2+2n(v)d; 

The matrix elements of the unitary operator T(O, a, a), 
a >0 are 
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_ 2.J(CL + 2n)(CL + 2m) (4a2)"'+m+ne-h("'+m'n) 

- r(CI! + 2n + l)r(CL + 2m) 

X4F3 CI! +n+m +1 I p 
'(CI! +n+m,CI! +n+m +~,CI! +n+m +~, 1) 

, ,CL + 2m + 1, CI! + 2n + 1, 2C1! + 2m + 2n + 1 \ a 

(1.12) 

where r(z) is the gamma function and pFq is a general
ized hypergeometric function. 

Further, 

TB,,,,(O -a _a)=TB,,,,(O a a). 
mn " nm' , 

The integral in (1.12) is evaluated with the help of 
Lebesgue's dominated convergence theorem and the de
vice of expanding Ja>2n(V)J",+2m(V) into a power series in 
v and integrating term by term. There is a similar 
unenlightening expression for the matrix elements 
T!~"'(O,a,-a) which we omit. 

The matrix elements of the operator T(8,0,0,) are 

_( +2 )8.J(CI!+2n)(CI!+2m)r(CI!+n+m) -e '" m - r(CL + 2m + 1)1'(1 +n -m) 

~
CI!+n+m,m-n 

X 2Fl 
CI! +2m + 1 

for 8e;. 0. 

e-~) 
(1.13) 

[This is a Weber-Schafheithin integral (Ref. 6, Vol. 
II. )] Furthermore, 

TB,,,,(_ 8 ° 0)= TF;Ci(8 ° 0) mn " nm"· 

Note that the matrix elements (1.13) vanish if me;. n + 1. 

B. The Macdonald function or K basis 

From (1. 4) it follows that 

(1.14) 

This operator is symmetric on L?(R) and has de
ficiency indices (0,0). Thus LK has a unique self-ad
joint extension (which we also call L K ) and a complete 
set of orthonormal eigenfunctions of L K , j~, which 
form a basis for the representation space. The spectral 
resolution of L K can be obtained from the known form 
of the Lebedev integral transform (Ref. 6, Vol. II). 
The spectrum of LK is continuous and an orthonormal 
basis of eigenfunctions is (shz = sinhz, chz = coshz) 

jK(v)=!..J2zSh7TzKi (YV), O<z<oo. (1.15) 
Z rr • 
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These basis functions satisfy the delta function 
normalization 

The matrix elements of the unitary operator T(O,a,a), 
a > 0, are in this basis 

T:;'(O,a,a)= (expa(P l +P2)j:,t:> 

=o(x-y) 

+ 4~ .Jxyshrrxshrry ~a(Chrrx - chrry) 

x F (1 + ix+ iy 
4 3 2 ' 

1 + ix - iy 1 + iy - ix 
2 2 

1-ix-iy.1. 1 %,' -ta2) 
2 ' 2, , 

l+ i (x-y) l+ i (x-y) 
2' 2' 

(1.16) 

This integral is evaluated by expanding the exponential 
in a power series in v and integrating term by term. We 
omit the evaluation of the matrix elements of the opera
tor T(O,a, -a). 

The matrix elements of the operator T(8,0,0) are 

for 8>0. 

= cos (8y )0 (x - y ) 

1 
+ 4rr2 .Jxyshrrxshrry 

[ 

iy8 1'(1 - iy) 
X e 1'[ (ix _ iy -1)/2]r[ (- ix - iy -1)/2] 

(
iX - iy - 1 - ix - iy - 1. ,\ 

x 2F 1 2 ' 2 ; -ly;exp (-28)j 

. , 1'(1 + iy) 
+ eXP(-ly8)r[(ix + iy -1)/2]1'[(- ix + iy -1)/2] 

X 1<' (iX + iy -1 
:?"" 1 2 ' 

- ix+ iy -1 )] 2 ;iy;exp(-28) 

(1.17) 

For 8 < 0 the matrix elements can be obtained from 
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the relation 

T~)- 9,0,0)= T! (9,0, 0). 

C. The exponential or E basis 

The basis defining operator in the realization (1.4) 
has the form 

LE = iy(2e-XDx - e-x )= iy(2Dv - V-I). 

Solutions of the eigenfunction equation L EF(V) = AF(v ) 
then are 

F(v)= CV l
/
2 exp (_ ~AyV) • (1.18) 

These eigenfunctions do not form a complete set 
on the Hilbert space H+ on which the representation 
(1. 2) is defined, i. e., the space of functions j(v) for ° ,,; v < 00, v = eX. The correct groupS in which to realize 
this basis is E' = E(l, 1) Ell {R, I} where R is the reflection 
operator in the pseudo-Euclidean plane and I is the 
identity operator. R acts on the generators of E(l, 1) 
according to 

(1. 19) 

The Hilbert space H on which the irreducible represen
tation labelled by y is realized is now the direct sum of 
two Hilbert spaces_H= H+Ell H- with H- the space of 
functions j(v) for - 00 < v ,,; ° which are square integrable 
with respect to the measure dv/v and transform under 
the group E' according to (1. 2) with v = eX (remember 
R: eX - - eX). In fact, we can write symbolically H-
= RH .. Accordingly, each j(v) E H (- 00 < v < 00) satisfies 
the integrability condition 

1:1 j(v)12
d
; <00 (1.20) 

with the group action given quite generally by (1. 2) with 
eX = v. The operator LEis then essentially self adjoint 
and the eigenfunctions correspond to a form of the ex
ponential solutions of the momentum operator. The 
spectrum of LE is the real axis and a complete set of 
orthonomal eigenfunctions is 

jE(V)=_ =- exp --v 1 ( v) 1/2 (iA) 
~ 2 21T 2y 

(1. 21) 

where 

=15(A-A'). 

In (1. 21) we make the consistent convention that the 
square root (- V)1/2 for v positive be taken as + 1 v 11/2 0 

The matrix elements in the E basis can be easily 
calculated. 

The matrix element for the unitary operator T(O,a,a) 
is 

(1. 22) 
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For the operator T(O, a, - a) we have the result 

-11." ( i )v iYa) T~~,(O,a, -a)=-4 exp -2 (A' -A +- dv 
1TY _.. Y V 

= 15 = 15 (A - A') + yv'2a/(A' - A) sign(A' - A) 

(1.23) 

This matrix element can be evaluated by expanding 
exp(iya/v) in a power series then integrating term by 
term in the sense of generalized functions. 8 Alterna
tively, contour integration of the regular part of the 
matrix element will give the same result. 

The matrix element of the operator T (9, 0, 0) is 

T~~,(9,0,0)= 4-1T~ £ eXP(;y(A' -e9A)v)dV 

=15(e9A-A'). (1.24) 

D. The Airy function or A basis 

In the realization (1.4) LA has the form 

LA = iy(2e-x D X - e-x ) _ re2x 

The solutions of the eigenfunction equation L AF(V) 
=AF(v) are 

(1. 25) 

(1. 26) 

As with the E basis these eigenfunctions do not form a 
complete set on the space H+ of functions j(v) with 0,,; v 
< 00. This space is extended in exactly the same way as 
for the E basis. A complete set of orthonormal eigen
functions on H = H+Ell H- is then 

1 (_V)1/2 (i i A ) j A = _ _ exp - '}'V3 - - -v 
~ 2 1TY 6 2 y 

(1. 27) 

with 

The matrix elements in this basis can be easily calcu
lated. For the translations T(O,a,±a) the results are 
the same as for the E basiS, viz., (1. 22) and (1. 23). 
For the matrix element of the operator T(9,0,0) we 
have a new result: 

TA (9 ° o)--=- exp .!:..Y(e39 _1)v3 +-z_(A'_A)v dv lfOO (. .) 
~~' , , - 41TY _00 6 2y 

= ;: (~) l/S (eM _1)-1/3 Ai((2y2(~~ -_\)]173) (1. 28) 

for 9> ° and where Ai(z) is an Airy function. The 
matrix element for 9 < ° can be obtained by USing the 
result 

T~~.(- 9,0,0)= T~~(9, 0,0). 

2. OVERLAP FUNCTIONS 

In this section we compute functions of the form 

uG•H = /.,G jH) =- J 00 jG(x)J11 (x)dx· 
n,m V n' m .. 00 n m 

(2.1) 
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which allow us to pass from the {fG} basis to the lr} 
basis via the expression 

(2.2) 

(For H=M,K,A.E the sum should be replaced by an 
integral. ) Note that 

[jG,H = fi1!, G (2. 3a) 
71,," m,"' 

rr:,';=l5 n,m' n,m discrete, 

= l5(n -m), n,m continuous, (2.3b) 

(2.3c) 

In the following we compute the various 0;:: by sub
stituting the explicit expressions for I:(x), I!(x) from 
Sec. 1 into (2.1) and evaluating the integral. In case 
both LG and LH have continuous spectrum then expres
sions (2.1), (2.2) must be interpreted in the sense of 
generalized functions. 

First we relate all bases to the standard M basis: 

The results are 

..fa +2n i~ UB,M=I.B,,,, IM)= - J (YV)V-1- IXdv n, A. V n , ). 0: +271 
1T 0 

(2.4) 

= ,a+2n (Y/2)IX r(a+n-iX/2) (' )1/2 
-1T - --2- r[1 +n + (a +iX)/21' 

U~:: = <1: ,/~) 

+ 4~ (xs~1Tx)(irX rex; iX) rex; iX), (2.5) 

UE,M - i 1~ -iX-I/2 (iK.\ d 
K,>. - 21T(2y)1/2 0 v exp - 2y v) v 

= _ r(~x) eE(h/4+~>'/2) \!£ \-1/2+iX 

21T 2y 2y (2.6) 

where E=+1 if K<O and -1 if K>O. We have 

UA M i I" -iX-I/2 (iY 3 iK \ d 
K:>. = 21T(2y)I/2 0 v exp 6"v - 2YV) v 

= i (.2:.) (2IX-l) /6 f, r[ (n - iA)/3 + i) 
21T(2X)I/2 6i n=O n! 

(2.7) 

This expression can also be written as a sum of three 
IF 2(a;b, c;z) hypergeometric functions. 
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It should be mentioned here that the overlap coeffi
cients which we have given relating the E and A bases 
to the M baSis are not the complete coefficients with 
respect to the group E' and hence are not unitary. The 
coefficients we have calculated only relate these bases 
on the Hilbert space H+. A similar calculation for the 
space H- can be made but we do not do this here. For 
the unitary irreducible representations of E' in a B, K, 
or M basis we have basis functions labelled by an addi
tional discrete label corresponding to the eigenvalues 
± 1 of the reflection operator. This is because R com
mutes with the operators LB , L K , and L M • For the A 
and E bases however R does not commute with LA or 
LEO Hence no such labels are required. For the pur
poses of this paper we have not introduced this discrete 
label, it being understood whenever we give an overlap 
function. 

We now give a number of further overlap functions of 
interest: 

u~:/ = <1~'''' ,g) 
1 

== 21T ..f(a + 2n)xsh1Tx 

x r[n + (a + ix)/2]r[n + (a - ix)/2] 
r(l + a + 2n) 

(a+ix a-ix ) 
X 2F 1\n+-2-, n+-2-; 1+a+2n;-l , (2.8) 

Nxsh1Tx (2y)2!:<-1/2 U::: = - 1T (2y2 + iX)lx+l/ 2 r (~ + ix)r(~ - ix) 

x F (1 +. 1 . 1 2y2 + iX) 
2 1"2 tx, "2 + zx; ; 2y2 _ iX . 

3. A TWO-VARIABLE MODEL FOR £(1,1) 

(2.9) 

As mentioned in Sec. l, E(l, 1) acts as a transforma
tion group in the pseudO-Euclidean plane. We choose 
t his action in the Sot plane so that the Lie derivatives 
corresponding to the Lie algebra basis {Pl'P2,M} are 

(3.1) 

We now construct models of the irreducible repre
sentations of E(l, 1) where the Lie algebra acts via the 
operators (3.1) rather than (1.4). In particular, we 
construct the two-variable analogs of the basis functions 
{j~}. 

In the one-variable model we have (~- p~) I: = y2/~ 
for each baSis function I, so we would expect the same 
equation to hold in the two-variable model, i. e. , 

(a~ - a~).z;;;(s , t) = y2 ~(s , t) , 

where ~ (s, t) is the two-variable function corresponding 
to I~(x). In the following we will define a mapping j{x) 
- F(s, t) from L 2 (R) to functions on the pseudo-Euclidean 
plane such that (a: - a~)F= y2F and such the eigenfunc
tions I; (x) of LG map to eigenfunctions F~ (s, t) of the 
corresponding operator Lc constructed from (3.1). 
Because of the close relationship between separation of 
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va.riables and operators LG we can find simple expres
sions for the {p;; (s, t)} in terms of the coordinates as
sociated with LG • (The Single exception to this state
ment is the case G =E where there is no associated 
coordinate system in which the variables separate.) 

To make our construction precise we introduce the 
functions 

h.,t (x) = exp[i,,(scoshx + tsinhx)], s, tEe. (3.2) 

which belong to La(R) for Im,,(s ± t) > O. Given l(x) 
E L 2 (R). we define a function F(s, t) by 

F(s, t) == (f, h •• t ) = r>(x)h •• t (x)dx. (3.3) 

In particular, corresponding to a basis {.f,;} for L 2(R) 
we obtain functions 

F;(s,t)=={f~ ,h •• t )· (3.4) 

The action (1. 2) of E(l, 1) on L 2 (R) induces an action on 
the F(s, t) which satisfies the homomorphism property: 

[T(6, a, b)F](s, t) ='(T(6, a, bU, hs •t ) 

=(f, T(6, a, b)-lhs •t ) 

=F«s + a)cosh6 - (t +b)sinh6, 

(t + b)cosh6 - (s + a)sinh6). (3.5) 

It is easy to check that the Lie derivatives correspond
ing to the group action (3.5) coincide with (3.1). Thus 
the operators (1.4) acting on I correspond to the 
operators (3.1) acting on F. 

On the other hand, for I a basis vector I~ we have 

(3.6) 
==6T~n(6, a, b)~(s, t) 

m 

where the ~" are the G-basis matrix elements. It fol
lows from (3. 5) and (3. 6) that the {.fG} transform under 
E(l,l) exactly as the basis vectors (/~}. In particular, 

(3.7) 

[where Pl,P2,LG are expressed in terms of the opera
tors (3.1)], provided LG/~ == An/~. Relations (3.6) also 
hold even for Im,,(s ± t) == 0 if the t/~} belong to Ll (R). 

If hs•t E La(R) it follows immediately that 

(3.8) 

where the right-hand side converges in La(R) and also 
pointwise. (As usual, if LG has continuous spectrum we 
replace the sum by an integral.) We can consider (3.8) 
as the expansion of a plane wave in a {.fGJ basis of solu
tions of the Helmholtz equation. 

It follows directly from the definition of hs •t (x) that 

J. Math. Phys., Vol. 15, No.7, July 1974 

1030 

On the other hand, use of (3.8) yields 

(3.10) 

Comparison of (3.9) and (3. 10) yields another generating 
function for the {~. 

The overlap functions computed in Sec. 2 carryover 
immediately to the two variable model. Indeed, expres
sion (2.2) relating the bases {/~} and {I!} yields 

(3.11) 

with the same overlap functions V?::'. 
It follows from these remarks that the functions {P,;} 

will necessarily satisfy the identities (3.5)-(3.11) 
where the matrix elements ~mn(6,a,b) and overlap 
functions u,;,.:. have already been computed from the 
one-variable model. Moreover, due to the relationship 
between the operators LG and separation of variables 
for the Helmholtz equation we can find simple expres
sions for the function {P,;} in terms of the coordinate 
system related to L G • Indeed, evaluating the integral 
(3.4) in each case, we find 

s = pcosh6, t == p sinh8, 

XD a+2".1/2(";- 2" 1/), 

s =i~1], t= (112 - ~2)/2, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

s u2 + tl'v2 
- v2 

U 
t 2uv ,Ivl >1, 

F~[ t] -100 (i,,(S + t) + i,,(s - t)jIE( ) dv x s, - exp 2 v 2 x v _ v v 

s +t> ll/yZ, t> s, (3.16) 

i cos ";,,(S2 - j2) - (A/y)(S - 0, 
2..f2')1"(s + t) - 2A 

s+t>>../yZ, s>t. 

Similar expressions can be given for the other ranges of 
s and t: 

Fc4/" ]-100 (i,,(S+t) +i,,(S-O)IA ( )dv 
il.Xl>X2 - exp 2 v 2 x v 

o V V 
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(3.17) 

where 

cf>1(Y) =OFl (j, hV, cf>2(Y) =OF1(f-, &-yV· 

The coefficients are given by 

A= r(t-) (~)1/6 B=- 2iy 5/2(~)2/3 
6fiiY y' 3 y , 

C= - r-16iyll/2(6)5/6 (5) 
3 y 6 ' 

sand t are given by the relations 

and 

The expression we have given for the A basis functions 
in the two parameter model can also be written as a 
sum of products of Airy functions. One comment should 
be made here concerning the F'i [s, t] functions. These 
functions indicate that for the two variable model the 
E basis functions do not afford a separation of vari
abies. This is in agreement with an earlier result. 3 

4.~ REPRESENTATIONS OF CE(2) 

For the purpose of relating Lie group theory to 
special functions it is imperative to study group repre
sentations which have no Hilbert space structure, in 
particular representations defined on spaces of analytic 

. functions. Some example of these were given in Refs. 
5 and 9. For such representations one can always as
sume that the group is complex and we shall do so here 
by allowing the parameters e, a, b in (1.0 to take ar
bitrary complex values. Thus, we shall consider rep
resentations of the complex Euclidean group CE(2). 

The Lie algebra ce(2) of CE(2) consists of all complex 
linear combinations of the generators M, P l' P 2 with 
commutation relations 

We consider a model of this algebra in which the gen
erators are given by 

d 
M=z dz' P+=pz, P""=pZ-I, 

(4.2) 

acting on the space J~ of functions j(z) analytic in the 
domain I z I > 0 with periodicity f(e2rl z) = e27ivf(z). Here 
VEe is not an integer. The eigenfunctions of the opera
tor LK=M2 + (PI +p2)2=M2 + (p+)2 on this space are 
easily seen to be 

f~(z)=J~.,,(Pz), n=O, ± 1, ••• , 
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(4.3) 

to within a constant factor. Moreover, as shown in Ref. 
10, p. 204, every fEJv can be expanded as an infinite 
series in the eigenfunctions f~ 

.-
f(z) = ~ cnJv.,,(pz) , 

n=.oo 
(4.4) 

where the coefficients en are given by 

1 1T(V +n) f dz 
cn = 21Ti sin1T(v + n) f(z )J_v_n (Pz)-;- (4.5) 

and the pointwise convergence in (4.4) is uniform on 
compact subsets of the annulus. The path of integration 
in (4.5) can be chosen as a circle centered at the origin 
with radius r> O. 

It follows from (4.2) thatthe action of CE(2) on J~ is 
given by operators T(e,a,b), 

[T(e, a, b) f](z) = exp ~ [(a + b)z + (a - b)/ z ]f(e8z) , 
(4.6) 

and that JV is invariant under this action. Thus, we can 
use expressions (4.4) and (4.5) to compute the matrix 
elements of the operators M, P and' T(e, a, b) in the 
{J~} basis. It is straightforward to show 

... 
p+ f~ =L:: (-1)m(v + n + 2m + 1)f~+2m+I' 

m=O 

~
l l-l 1-~ !._l 

(2a)/r(v+m +1) F -2' -2-' 2' 2 2 

r(v+n+1)Z! 43 1-l -v-m+l v+n+1 , , 

if m-n=l~O, 

ifm-n<O, 

(p2 a/2)n- mr (v + m + 1) 
T(O, a, - a)m.n =r (v +n + 1)r(n - m + 1) 

(4.7) 

-4) 
7' 

(4.S) 

XOF3(-v-m+l, v+n+1, n-m+1; 

_ p4a2) 
4 ' 

T(e, 0, O)m.n 

(-1)le(~+n)8r(v + m + 1) (-l, v + m -l 
l!r(v+n+l) 2FI 

v+n+1 

if m - n = 2l, l = 0,1,2, ... , 

o otherwise. 
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FIG. 1. Contour of Integration. 

Note that in our model Pi _ p~ = p+ P- = p2. 

Next we construct a model of this representation in 
terms of functions F~ (s, t) in the complex s - t plane. 
Here, 

(4.9) 

so the basis functions F~(s, t) analogous to f~(z) must 
t'iatisfy the equations 

(a: - a;)F~(s, t) = - p2F~(s, t), LKF!(s, t) 

= (v + n)F~ (s , t) . (4.10) 

In analogy with a similar construction in Ref. 5 and 
(3.3), we set 

F~(s,t)= i exp~[z(s+t)+z-l(s-t)]g(z)d:, 
Re(s+t)<O, (4.11) 

where C is the contour in the complex z plane (see Fig. 
1). By differentiating under the integral sign in (4.11) 
and integration by parts it is easy to show that the gen
erators (4.2) acting on f~(z) correspond to the genera
tors (4.9) acting on F:(s,t). Thus Eqs. (4.10) must 
hold. This suggests that the ~(s, t) are Simply express
able in terms of the u-v coordinates, 

u2 + U2V 2 + v2 u2 _ u2v2 + v2 
t=----:---

2uv' 2uv 
s 

Jndeed, a direct computation yields 

F:[u,v] 

=4i expi(1T/2)(n - v) sinlTll'/2(v +n) Iv.,,(- pu)Kv+n(- pv), 

lu/vl < 1. (4.12) 
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From (4.9) it follows that the action of CE(2) on the 
basis F~(s, t) is given by 

[T(6, a, b)F~](s, t) = F~«s + a)cosh6- (t + b)sinh6, 
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(t + b)cosh6 - (s + a)sinh6). (4.13) 

On the other hand, by construction we have 

.. 
[T(6, a, b)F~](s, t) =~ T(6, a, b)mnF!(s, t), 

m=-ao 

Re[(s + t + a + b)e-8 ] < 0, (4.14) 

where the matrix elements T(6,a,b)mn are given by 
(4.8). Comparison of expressions (4.12)-(4.14) yields 
addition theorems for the basis (4.12) whose direct 
derivation is not at all obvious. Other choices of the 
contour C in (4.11) will yield different bases satisfying 
(4.13) and (4.14). 
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Hamiltonian description of relativistically interacting two-particle 
systems· 

H. P. Klinzle 
Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1 
(Received 26 October 1973) 

The state space of an isolated system of two massive point particles (without spin) in instantaneous 
action-at-a-distance theory is provided with a Poincare invariant symplectic (Hamiltonian, canonical) 
structure. This is possible in such a way that the position coordinates commute with respect to the 
Poisson brackets, and for a nontrivial interaction, if the state space is chosen as the set of initial 
data not for spacelike, but for lightlike separation of the two particles. The conserved total 
4-momentum and polarization vector of the system can be explicitly calculated and used to define a 
center of momentum frame in which the relative motion is most conveniently described. Under some 
mild additional restrictions it is shown that the possible invariant Hamiltonian interactions are all 
obtained by choosing arbitrarily one function of three Lorentz invariant scalars on the state space. 
Some evidence is presented for the conjecture that for given equations of motion the symplectic 
structure on the state space is determined up to arbitrary values for the rest masses of the two 
particles. It also follows that the relative motion of the particles can be described in a plane 
orthogonal to the 4-momentum and polarization vector. A simple example is given that seems 
physically interesting, since to first order in the coupling constant the obtained equations of motion 
agree with those derived from the advanced-retarded Lienard-Wiechert potentials. 

1. INTRODUCTION 

In spite of the no-interaction theorems l
-
4 proved some 

ten years ago interest in the instantaneous action-at-a
distance theory of the classical dynamics of Poincare 
invariant isolated particle systems has not subsided. 
While Wheeler-Feynman type action-at-a-distance the
ories5 may be fairly acceptable as an alternative to the 
field theoretical description, the Newtonian or Laplacean 
causality concept inherent in instantaneous action-at-a
distance theories (or predictive relativistic mechanics6) 
is not easily reconciled with the relativistic causality ax
iom that any event can only influence other events to its 
own future. Nevertheless, since the description of the 
particle motion as a dynamical system on a finite-di
mensional manifold (the state or phase space) is so much 
Simpler technically than by means of field theories or 
hereditary action-at-a-distance theories (e. g., based 
on the Fokker action principle) it seems still worthwhile 
to continue the study of this approach. In particular, if 
the state space can be equipped with a natural canonical 
structure a statistical mechanics and quantum mechanics 
for relativistic particle systems can be developed in 
complete analogy to the respective Galilei invariant 
theories. 

Even if not all the premises of this approach should 
be directly acceptable phYSically the study of such in
stantaneously interacting systems could be relevant from 
a different point of view. It has recently been noted that 
there is a great analogy between quantum mechanical 
and classical elementary systems (i. e., irreducible pro
jective representations and transitive symplectic actions 
of an invariance group7) such that at least for these free 
particle systems the quantum mechanical wave equations 
can be reconstructed from the "mechanical" particle mo
dels according to the methods of Souriau8 and Kostant. 9 
Elementary classical systems have been classified for 
different invariance groups by Souriau, 10,8 Renouard, 11 

Arens,12 Rawnsley. 13 Such a purely group theoretical 
approach is probably not (yet) feasible for interacting 
multiparticle systems. The problem is still to find a 
sufficiently simple but physically not too unreasonable 
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interacting system that can be described in terms of a 
finite-dimensional state manifold on which the Poincare 
group acts by symplectic transformations. For a suffi
ciently simple model a larger symplectic symmetry 
group might then be found and studied along the lines of 
the recent discussions of the nonrelativistic Kepler 
problem 0 14,15 

The conditions for a system of n point particles that 
is supposed to be fully described by 3n second order or
dinary differential equations (and 6n initial data) to be 
invariant under the Poincare group have been studied by 
many authors in various formalisms. 16-24 For n = 2 they 
have been explicitly solved and resulted in expressions 
for the acceleration components in terms of several ar
bitrary functions of three invariant scalars. 23,24 

Casting this dynamical system into a canonical form 
such that the canonical structure is also Poincare in
variant is considerably less straightforward. The first 
attempts to introduce a Poisson bracket on the set of 
dynamical variables that was invariant under the Poin
care group in a seemingly natural way lead to the so
called no-interaction theorems. 1-4 It was, however, 
soon realized25- 28 that some of the conditions needed to 
derive these theorems may not be entirely justifiedo In 
fact, the crucial condition, namely that the "position co
ordinates" commute with respect to the Poisson bracket, 
depends on the way these position coordinates are de
fined, which as it turns out, is not completely unambi
guous. For example, if the most straightforward defini
tion is adopted that is possible in the completely covari
ant multitime formalism and a vanishing commutator is 
required for all these covariant position coordinates 
then a no-interaction theorem results independently of 
any group invariance requirements, in particular also 
for Galilei invariant systems. 29,24 On the other hand, it 
has been argued3o,31 that without this commutation rule 
the principle of relativistic invariance becomes vacuous. 

The situation is not quite so bad, however. At least 
in the covariant multitime formalism the action of the 
Poincare group on the evolution space of the system can 
be naturally and unambiguously defined and then induces 

Copyright © 1974 American Institute of Physics 1033 
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an action on the state space /!1. It is thus clear what rel
ativistic invariance of the symplectic form w on /!1 
means. The remaining problem is simply that there are 
too many invariant canonical formalisms (or w' s) that 
are compatible with a given set of invariant equations of 
motion. More relaxed conditions have therefore been 
proposed to make w less arbitrary. Hill 'and Kerner26 

imposed an asymptotic condition, Bel32 suggested that 
only the commutators of the differences of position co
ordinates should be required to vanish. 

The aim of this paper is to show that even the original 
requirement that all pOSition coordinates of the particles 
commute is compatible with nontrivial (in fact, quite re
alistic) Poincare invariant interactions of a two-parti
cles system. But the position coordinates are not de
fined on a surface of equal world time for the two parti
cles, but are supposed to be measured when the two par
ticles are in lightlike separation. Thus rather than re
laxing the commutator condition-which after all works 
perfectly for Galilei invariant systems (being implied in 
the one-time Lagrangian formalism24) where the surface 
of constant world time has an intrinsic meaning-we im
pose it on a surface that seems more natural in a rela
tivistic space-time. This approach has the added advan
tage that on a thus defined state space the expreSSions 
for known equations of motion like the one derived from 
the Liemard-Wiechert potentials become particularly 
simple. Moreover, there are several indications that to 
a given set of equations of motion there exists at most a 
two-parameter set of compatible symplectic structures 
satisfying the commutator condition in this sense (the 
two parameters being the rest masses of the particles). 
On the other hand our approach introduces a certain 
asymmetry between the two particles which may, how
ever, be only apparent. 

Instead of investigating systematically the possible 
Poincare invariant force laws and canonical structures 
on the state space of instantaneously interacting systems 
it is possible to arrive at similar models starting from 
a Fokker-type variational principle33 which also leads to 
the conservation laws associated to the generators of the 
Poincare group action. In order to obtain instantaneous 
interaction (and thus a finite-dimensional state space) 
the Lagrangean must be suitably restricted. No attempt 
seems to have been made to deduce the full symplectic 
structure on the state space from this type of variational 
prinCiple. 

In Sec. 2 we review the multitime formalism of Ref. 
24 in which relativistic invariance is most conveniently 
defined. The relation of this description with the equiv
alent one as a dynamical system on the chosen state 
manifold ~ is explicitly exhibited. In Sec. 3 an invariant 
symplectic form is assumed to be given on ~ and the in
tegrals of motion that can be obtained by means of 
Noether's theorem are calculated. We see in which 
sense one can conclude that the relative motion of the 
two particles takes place in a plane under some fairly 
general assumptions. The effect of the commutator con
dition is studied in the fourth section. It is shown with 
some simplifying assumptions that invariant symplectic 
forms satisfying the commutation rule are in one-to-one 
correspondence with functions of three invariant scalars. 
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A particularly simple example is given that agrees to 
first order in the coupling constant with the electromag
netic interaction. This example is probably the best pos
sible Poincare invariant analog of the classical Kepler 
problem (if no infinite mass ratio is assumed). An ex
plicit study of the possible orbits will be made 
elsewhere. 

2. A SUITABLE STATE SPACE FOR THE] POINCARE 
INVARIANT TWO·PARTICLE SYSTEM 

In this section we review the basic assumptions of 
instantaneous action-at-a-distance theory in the form 
developed in Ref. 24 without assuming the existence of 
a canonical structure. A motion of the two-particle sys
tem is supposed to be fully described by a pair of world
liI'''''' ;1" space-time V that are determined as solutions 
of a system of second order ordinary differential equa
tions with the initial data consisting of twelve real num
bers giving poSitions and velocities at one time f,gr each 
particle. Thus the configuration space-time is V = V x V 
and the evolution space its tangent bundle E = TV,., TV 
x TV, a 16-dimensional manifold. The possible motions 
of the system are now obtained as the leaves (= maximal 
connected integral manifolds) of a second order system 
t that is spanned by vector fields of the form 34 

2 

X = 2:[ak(v:a '" + ~:a. ) + bkv:a. ) 
k=l k "k "'k 

(2~ 1) 

for arbitrary functions ak and bk on E where the "accel
erations" ~: are given functions on E, subject to the 
, conditions 

v:a. ~:=2~:+(lkV:, (2.2) 
Pk 

(2.3) 

and 

(2.4) 

for some functions (l k' f3kl , and Y kl on E. 24,35 

The advantage of this homogeneous multitime formal
ism is not only that the description of the motion is four
dimenSionally covariant, but also that Poincare (or 
Galilei) invariance of the equations can be easily and un
ambiguously formulated. There is a unique action of the 
Poincare group on V which leaves its Lorentz structure 
invariant (we assume now that V is lI:!inkowski space) 
which induces the product action on V = V x V and then an 
action on the tangent bundle TV = E. Explicitly, the in
finitesimal generators corresponding to the ten basis 
vectors of the Lie algebra 9 of the Poincare group G are 

and 

T", = ~ a "'k (translations) 
k 

(2.5) 

(homogeneous Lorentz transformations). 36 

(2.6) 
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Now, if <p: G XE- E: (a, p)- <PaP denotes the action of 
the Poincare group on E, the second order system C is 
invariant under this action if the (tangent map of) <Pa maps 
the subspace C p of TpE onto the subspace C ~aP of T~ pE, 
for all aEG, or if L XEC for any vector fieldXEt 
(i.e., XpEC pVPEcf and for all infinitesimal generators 
~ of the group action. 

The general form of a Poincare invariant second or
der system on E has been calculated in Ref. 24 (and in 
a different formalism by Arens 23). We state here only 
the results. Instead of using the fiber coordinates (x:, 
v:l in E, let 

7 • - (U02 _U2)1 /2 
k' - k k , 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11)' 

(2.12) 

where k'" 1 = 1, 2, 3. We will also write Cl!u Cl!2' Cl!3 for 
Cl!23' Cl!3H Cl!12' respectively, and Similarly for 13k !" Then 
z''', vi, vi, Uk' 13k , and 7k (k=1,2,3) from a new coordi
nate system on an open and dense set of E, where Cl! k 

and 7 k are invariant scalars that label the group orbits 
in E. 

Poincare invariance of the second order system now 
implies that the quantities ~: in (2.1) must be of the 
form 

(2.13) 

where the ~f (2; = 1, 2, 3, 4) are arbitrary functions of Cl! m 

and 7 m (m = 1, 2, 3) and u~ is defined by 

(2.14) 

Equations (2.2) and (2.3) imply that 

~! = 7 k 7i
l ~:(7, Cl! m) 

(2.15) 

where from now on 7= 7 3, The functions ~: are com
pletely arbitrary and not required since the ~: need only 
be known up to a term parallel to v:. The conditions 
(2.4) cannot be solved but only restated in terms of the 
~~. 24 If the latter's dependence on Cl!m is known, (2.4) 
yields a highly coupled nonlinear system of six ordinary 
differential equations in 7 for the six quantities ~~ (A'" k). 
It is easy to see that this system determines the 7 de
pendence uniquely35 (except in pathological cases), but 
it seems to be a most inconvenient starting point for try
ing to find physically interesting nontrivial equations of 
motion. 23 

Instead, it is preferable for many purposes to switch 
to a description of the motion as a dynamical system on 
a suitable state space as has always been customary in 
nonrelativistic mechanics. However, for relativistic 
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systems this second type of formalism is somewhat am
biguous, since there is no really distinguished choice of 
such a state space nor is it obvious what the time param
eter should be for a multiparticle system. But since we 
have clearly established the physical meaning of the co
ordinates and the relativistic invariance in a space
time framework we will now at least be able to identify 
the specific assumptions that are necessary for a de
scription as dynamical system. 

The state space can be defined abstractly as the set of 
all motions according to Souriau, 8 that is the set of all 
leaves of the foliation defined by C on the evolution space 
E which has a natural differentiable structure as a quo
tient manifold;11 =E/C if some global condition is satis
fied. 37 Equivalently;11 can be considered as the set of all 
initial data necessary to determine a motion uniquely, 
once an equation of motion is given, or, more precisely 
(since these initial data do not necessarily have to be 
taken at the same "time") there exists a (possibly only 
local) diffeomorphism of /!1 onto a 12-dimensional sub
manifold 2; of E that intersects each leaf of C in exactly 
one point. Such a surface 2;, which can be chosen highly 
arbitrarily, will be called a Cauchy surface. While less 
fundamental than /!1 for purposes of studying and classi
fying all motions of a particular system a Cauchy sur
face has more structure than the state space. For ex
ample, it makes sense to distinguish between position 
and velocity coordinates on 2; since 2; is still fibered by 
the restriction of the projection map of the tangent bun
dle E = TV onto V. 38 Moreover, for most practical cal
culations one must introduce specific coordinates on/!1 
and therefore might as well work on a suitable 2;. 

Considered as set of motions or initial data neither /!1 
nor 2; describes the dynamiCS of the system. But any in
variance group G of C on E induces an action ~ : G ></!1- /!1 
on/!1 or Similarly on any 2;. In particular, anyone-pa
rameter group of time translations on E induces a time 
flow on/!1 whose infinitesimal generator X makes /!1 into 
a dynamical system. 39 There is a slight ambiguity in the 
choice of the time translation spbgroup-instead of the 
generator To one could choose To=ad7o=agT" (aEG, 
agTJ"tflg= -l)-but this would lead to an equivalent dyna
mical system on/!1 related to the previous one by the dif
feomorphism ~ of /!1 onto itself. a 

If, however, we want to construct this vector field X 
explicitly on a particular 2; where we want to distinguish 
position and velocity coordinates it does make a differ
ence which 2; we choose. While for a Galilei invariant 
system the surface 

(2.16) 

is distinguished in terms of the space-time structure40 

this is certainly not so for a Poincare invariant system. 
If the space-time has a Minkowski structure it would 
seem at least as natural to choose the surface 

(2.17) 

[in terms of the coordinates introduced in (2.7) to (2.12)], 
where for simplicity we will also assume that ~, v~ > 0, 
although that destroys somewhat the symmetry between 
the two particles, the second one being required to be 
on the future null cone of the first. 41 We will from now 



                                                                                                                                    

1036 H.P. Kiinzle: Hamiltonian description 

on work on this particular Cauchy surface and show la
ter that on it nontrivial dynamical systems can be 
brought into a canonical form in such a way that the po
sition coordinates (as measured on L:) commute. The so
called no-interaction theoremsl

- 4 state essentially that 
this is impossible if the position coordinates are defined 
on the surface L:o. 

In the rest of this section we calculate explicitly the 
form of the generators of the action ~ of G on the Cauchy 
surface L: given by (2.17), thus, in particular, the form 
a Poincare invariant two-particle interaction takes as a 
dynamical system on this advanced-retarded state 
space. 

Let the surface L: be parametrized as follows: 

t r:: '2:- E: (x-:;v:)- (x~ =x~: = ( _l)k tr, x: =xt; 

v~ =v~: = (1 +ii~)1/2, v: = v:) 
(2. 18) 

where 

(2.19) 

We consider '2: as a surface of initial data. Thus there 
will be one leaf C of C going through each point (x, v) of 
'2:, namely the 4-manifold generated by all curves t
(x:(t), v:(t» in E that satisfy 

(2.20) 

where ak and bk are again arbitrary functions on E. We 
wish to calculate the tangent 1Tr:* of the projection map 
1Tr:: E- '2: that takes a point pE'E into the point of inter
section of the leaf C containing P with '2:. Since only the 
restriction of 1Tr:* to points on '2: C E will be needed, p 
can be chosen arbitrarily near to '2: so that it will be 
enough to solve Eq. (2.20) to first order in t which gives 

(2.21) 

where all barred quantities are to be evaluated on '2:. We 
need the differentials of x1 and v: expressed in terms of 
dX: and dvr 

Using (2.18) and (2.21) we find on '2: 

(2.22) 

dv~ = dv~ + ~~d(a/) + ii~d(bkt), dV: = dV: + ~td(akt) + v1d(ljkt). 

(2.23) 

Elimination of d(akt) and d(bkt) from the first of (2.22) 
and (2.23) and substitution into the second gives equa
tions involving only the differentials of x:, v:, ;:, and 
i1 that can be solved for the latter two, yielding, again 
on '2:, 

(2.24) 
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and 

+ t( _l)k(V~>-l ~tdr, 
where 

and 

tA • _ tA (O)-l.A to 
"k . - "k - vk Vi; "k' 

dV~=V~VAdV: -u~dv~ - VA ~(dx~ - t( -l)kdr) 
k k 

with 

The expressions on '2: for 

and 
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(2.25) 

(2.26) 

(2028) 

(2.29) 

can now be read off (2.24) and (2.25). Together with 
(2.5) and (2.6) Qne finds the following expressions for 
the generators TO/.: =1Tr:*TO/. and nO/.s:=1Tr:*S"20/.8 of the 
Poincare group action on '2:: 

(2030) 

(2.31) 

(2.32) 

(2.33) 

where now ~:= ~t + vtvB~! = ;t - v 0/. ;~v: = ;: - ~:v: [see 
k k 

(2. 13)]. In particular, the "time" flow in terms of the 
coordinates x: and 11 on '2: follows from the equations 

(2.34) 

Sometimes it will be more convenient to use on '2: the 
coordinates r-t and ZA : = text + X1) instead of the xt. 
Also, the bars will be dropped when there is no danger 
of confusion. 

Finally, we recall the form of the invariant coordi
nates on '2: as introduced in Ref. 24. Note that T1 = T2 = 1 
and T 3 = T = 0 = ZO on '2: while the coordinates a k in E tend 
to infinity as the point approaches L But we can use ZA, 
v~, vi, v~, f3u 82 , f3 3 , and 
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instead of ai' a 2 , a 3 • More explicitly, it follows from 
(2.35) that on ~ 

(2.36) 

(P k is just the luminosity distance between the two parti
cles, as measured by the kth particle.) From (2.15) we 
know that the ~~ (A *" k) are given functions of x, PH P2 

only and from (2.13) we find explicitly24 

(2.37) 

Sometimes it will be more convenient to replace the 
coordinates {3H {32' (33 by r and v~. Then we find from 
(2.29) 

and for the "time" derivatives [j =. df/ ds =. X (f)] of the 
various coordinates42 

v~ = 2N"lpk[(V~ - Xv~H~ + (r - v~P1H~ + WO ~!], 

~= -2N-1[P1(a ~~ +P2W +p2(a ~~ +Pl~~)]' 

Pk = 2N-l[ ( - l)kpk - PkPl ~~ - P'!Pl ~n, 

where 

(2.38) 

(2.39) 

(2.40) 

(2041) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

If the functions I:,~ (X, Pu P2) are explicitly given, this 
system of ordinary differential equations can be inte
grated in principle at least, but in all but the simplest 
cases it is technically not very easy. 43 The symplectic 
structure on ~ to be introduced in the next section will 
be helpful as it enables us to find first integrals via 
Noether's theorem. 44 

For the free particle system, where all ~~ = 0, Eqs. 
(2.39), (2.42), and (2.43) imply that v: and X are cons
tants of the motion and it is then not very hard to find 
explicitly 

(2.46) 

where 

J. Math. Phys., Vol. 15, No.7, July 1974 

1037 

Thus the orbits in the "configuration space" )t3X )ta, 
parametrized by (xt, X:), are straight lines according 
to (46), as expected, but the dependence on the "time" 
s is complicated except for very special initial 
conditions. 

3. CANONICAL STRUCTURE AND INTEGRALS 
OF MOTION 

The general idea and technique of equipping E with a 
presymplectic structure w such that 

[ =kerw (3.1) 

(ker pW : = {XET pE I X J(J.) = O}) has been discussed at length 
in Ref. 24. It is equivalent to giving a symplectic form 
C;; on the state space!l1 that is refated to (J.) by 

W=7T*C;; (3.2) 

where 7T: E-!I1 is the canonical projection map. More
over, if t I: : ~ - E is a Cauchy surface then 7T 0 t I: is a 
(possibly local) diffeomorphism and the induced 2-form 
eLi on ~ satisfies w:=ttW=tt7T*W=(7TOtl:)*C;;, thus (ft1,w) 
and ('6, eLi) are (locally) symplectomorphic. A presym
plectic (J.J satisfying (3.1) always exists locally24 and need 
not be very interesting or useful except if some addition
al requirements are met. Here we are only interested 
in canonical structures that are also invariant under the 
Poincare group, 1. e., satisfy </!a*w = w 'r/ a E G or LAW = 0 
'r/ A f o. Then also L. A W = 0 and L. A eLi = O. Conversely, *- I:*_ 
if!l1 or ~ carry a symplectic form wor W, respectively, 
invariant under the induced group action, then w on E, 
defined by (3.2) is invariant. 

For the construction of a Poincare invariant 2-form 
w on E one can proceed by a technique similar to the one 
used for the second order system. 24 But the solutions of 
dw = 0 are rather cumbersome to determine, in general. 
Fortunately, for Poincare invariant systems phYSically 
interesting second order systems (among them the one 
for the noninteracting case) exist for which (J.) = - de with 
a 1-form e that is itself invariant under the group ac
tion. 45 We will only investigate this case here. It has the 
added advantage that Noether' s theorem then takes a 
particularly simple form, namely the functions 

(3.3) 

on E are integrals of motion, 1. e., constant on each leaf 
and hence of the form J.l A = 7T* i7 A with (1 A :!11- lR • [The 
map J.l : E-O *, the dual vector space of the Lie algebra 
II, such that J.l(x)(A) = J.l A (x) is called a moment accord~ 
ing to Souriau. 8] 

The most general invariant 1-form on E can be given 
in the form24 

e = "L,(P"dx: + Q "dv:) 
k k k 

(3 .• 4) 

with 

(3.5) 

where (U~) is the inverse matrix to (u~) and PA and QA 
k k 

are arbitrary functions of T m' am (m = 1, 2, 3). Since we 
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are only interested in the restriction of () to ~ we can 
regard FA and QA as functions of A, P1 and P2 on ~. 

" " 
We calculate the integrals of motion according to (3.3) 

in the covariant space-time formalism (working, how
ever, at a point on ~ where 7'1=7'2=1, 7'=0). The 4-
vector of total momentum becomes 

(3.6) 

The matrix U! is rather awkward to calculate directly. 
Instead observe that if 

(3.7) 

and 

K"':=1)",aKa=KAU't (3.8) 

then j{A_UAK"'-UATiI",aK -UA1)",aUr:.j{ The symmetric - '" - '" a- '" a r:.' 

matrix 1)Ar:. = U!1)",aU~ is easily seen to be the inverse of 

on ~ [in view of (2.14) and (2.36)] where 

M: = w"'w", = - p~ -P~ +2AP1P2' 

Thus 

(3.9) 

(3.10) 

(3.11) 

The contravariant components of the 4 -momentum 
j,A = rtr:. Pr:. turn out to be often simpler as is seen in the 
case of no interaction where 

(}=l:()" and (}"=m,,7'i.1 1),,,av:ctx: 
" 

(3.12) 

(m" = const) is the only invariant 1-form that defines a 
second order equation on E" = TV" for the one -particle 
system24

• Then, simply p"'=l:"m"v: or pt.. =l:"m/)~ on ~. 

The conserved quantities corresponding to the invari
ance under the homogeneous Lorentz group become 

(3.13) 

They depend on the origin of the coordinate system x:. 
We will only evaluate the more useful polarization 4-
vector 

(3.14) 

(which is manifestly orthogonal to POI). If again 

(3.15) 
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then (3.13) and (3.14) give 

W" =M-1{P,,(PJS4 -F3~) + (-1)k[P,(p,Q4 +P"Q4) 
k' I " k I 

(3.16) 

Ws =M-1{ - P1(PJ~ - p)~) + p2(11~ - ~~) + ~Q4 - F4Q2 
12 21 12 21 1 1 

- P,.Q4 + ~ Q1 - A(P,.Q4 - ~Ql - ~Q4 + P4Q2)} , 
2 2 1 1 2 2 

(3.17) 

and 

W4=M-1{Pl(P1P3 -P1P3) - P2(P2P3 -P2P3) - P2Q3 + P3Q2 
12 21 12 21 1 1 

+P1Q3 - P3Q1 +A(P1Q3 -P3Ql -P2Q3 +P3Q2) 
2 2 1 1 2 2 

(3.18) 

Note that if P4 =0=Q4 then only W4 does not vanish. In 

" " particular, for the noninteracting system 

(3.19) 

The two 4-vectors pa. and W'" are indeed integrals of 
motion (corresponding to the conservation of energy, 
momentum and angular momentum) in the strict sense 
of commuting with the Hamiltonian in the description on 
L 46 For, if the Poisson bracket on ~ is defined by47 

{f,g}: =Lxi with XiJw:=dJ, 

then XI! A = 1Tr:.*A =:J and {itA> tlB }= tl[A,B 1 for all A, B E"O. 
But, in particular, 

(3.20) 

Thus, we identify P' with the Hamiltonian H. Then pA 

=PA =LXPA={H,PA}= -{po, PA}=- iJ.[To, T
A

] =0, since 

all translations commute and 

-'!'E",Ill.I!P /I - E"'&I!P 1) P -0 
- 2 a.-[T. n ] - - a o~ I! - • 

0, ~I! 

For the description of the orbits in ~ it is therefore 
convenient to introduce "center of momentum" coordi
nates. Since it is the relative motion of the two particles 
that is of main interest we can choose coordinates with 
respect to a (fixed) Lorentz. frame {r} such that 

and 

P"'=me'" (m > 0) 

° 

W'" = mse: (s?c 0) 

(3.21) 

(3.22) 

where m can be regarded as the total mass-energy of 
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the system and s as the magnitude of the total styin (the 
case W'" = 0 must be treated separately). Then, if 

(3.23) 

W'" = W'w'" = mSf'" and since r'" and v: are orthogonal to 
w'" the relative position vector rA is confined to the Plane 
spanned by e and e, orthogonal to the spin vector se3 • It 
is not obvio~s tha~ only plane motions are possible for 
Poincare invariant interactions that do not satisfy (3.23). 
But we will see in Sec. 4 that (3. 23) is implied by the 
proposed commutator rule. 

For the Hamiltonian description of the relative motion 
one would expect to need a six-dimensional state space 
~r' parametrized by the coordinates yA and, for 
example, 

(3.24) 

[then, by (2.40), drA Ids = vA]. Such a space can be con
structed by solving equations (3.24) and 

Put + pat{ + p3rA + }>4wA = pA = const (3.25) 

for vt, obtaining vt =.r:{~, vB), say. Then let 

(3.26) 

define the submanifold ~rc ~o There is an induced vec
tor field X r on ~r' namely the one giving the derivatives 
-0 and 0, as well as a symplectic structure Wr = t: w 
and an induced action of the rotation group (not of the 
whole homogeneous Lorentz group, however). This con
struction is just an explicit form (using submanifolds as 
local representatives of quotient manifolds) of the gen
eral reduction of dynamical groups introduced by 
Marsden and Weinstein. 48 (Dividing out the spacelike 
translations reduces the 12-dimensional symplectic 
manifold ~ to the six-dimensional "reduced phase space" 
:0r • ) Their theorem 1 shows that the construction is in
dependent of some special choices made, like putting 
ZA = 0 in (3. 26), though the symplectic structure wr may 
depend on the total momentum pA, 

Geometric studies of (~r' wr)-with time translations 
and 50(3) still acting on it-can be made and compared 
with those of the Kepler manifold. l5 First, however, we 
need to find a simple and still physically not too unrea
sonable Poincare invariant Hamiltonian interaction. 

4. THE CONDITION OF COMMUTING POSITION 
COORDINATES 

In Sec. 2 the general form of a Poincare invariant vec
torfield X giving the time flow on ~ was constructed in 
the form [see Eqs. (2.30), (2.38), and (2. 39)] 

X =2N-l ~ Pk{vtaA + ~a. ) k k Ak 

with ~: given by (2.37) and involving the six arbitrary 
functions ~~(:\, Pi> P2)(A * k). It is not quite obvious that 
a e of the form (3.4), (3.5) can be found such that (3. 20), 

(4.1) 
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holds with w = - de = - dt te for arbitrary ~~. If further 
conditions are imposed on w this is even les~ so. H,gw
ever, Eq. (4.1) for given w and H or given ~ and Q~ 
determines X. We could thus choose these quantities on 
:0 and calculate w andX from (4. 1). But in practice this 
procedure is extremely tedious and it seems that the 
space-time approach developed in Ref. 24 is a little 
more effiCient, mainly because the differentiation with 
respect to the Poincare invariant scalars is somewhat 
easier in the four-dimensional formalism. 

The aim is to find nontrivial Hamiltonian systems on 
:0, i. e., quantities W, X, and H that are Poincare in
variant and satisfy the condition that the Poisson brack
ets of the position coordinates commute, namely that 

(for all k, 1 = 1, 2). This is equivalent to saying that w 
contains no term in dU: 1\ dv~ or that it satisfies w/\ dil 
dX~l'\dx~l\dX~l\dX~l\dX~=O. 49 The simplest way to 
achieve this for w = - de would be to assume that "8 
= L, P A dX:. We will eventually consider only this case. 

k k 

However, in order to calculate W = - de in E rather than 
in ~ only, it cannot be assumed that the Q", in (3.4) van-

k 

ish identically because that would imply that {x: , xf} = 0 
not only on ~ but also for any other Cauchy surface, 
which is only possible for noninteracting systems. 24,29 

Invariant win E 

Adopt therefore again for e the general form (3.4)
(3.5). Then u) = - de is of the form 

(4.2) 

with 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Contracting Eqs. (4.3) to (4.8) with uf~ gives the in
variant compone~ts of w_directly in terms of the invari
ant components P A and QA: 

k k 

(4.9) 
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+ ( -1)"[ - al Qrr + QA c5A + c51 c5~Q4 + c51 c5~M3r:Qr:]' 
k k k k 

(4.10) 

- - - -
ITA = - 201A Qrrl - 20~A (QrrJ - c5~ IQ4)' (4.11) 
k k k k 

~Arr = a~PA - c5iPrr - c51 ~P4 - c51 c5~Mkr: Pr: 
k , , I , 

+ ( -l)k(al Qrr - QA c5~ - c51 c5~Q4 - c51 c5~M3r:Qr:], 
k k k k 

(4.12) 

(4.13) 

+ c51 c5~(M1r:Qr: -M2r:Qr:) (4.14) 
2 1 

where24 

Algebraic conditions on w 

What the condition (3.1) means for an invariant w has 
also been derived in Ref. 24. First, from dw=O it can 
be deduced that 

where r, c.. = 1, 2, 3,4 and T r = c5~T1 + c5~T2 + c5~T1 T2 and 
all the Krt;,. are functions of T:; T3 and am (m = 1 , 2,3) only. 
Then (3.1) gives 

(4.15) 

and 

(4.16) 

(4.17) 
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(4.18) 

PAr:~f=A2M ~fOr:A=-A1A. (4.19) 
1 2 

Substituting the expressions (4.9) to (4.14) into (4.15) 
and noting that applied to invariant scalars24 

where 

and m;lo n= 1,2,3, we find that 

QA = ai Q + T~1TA QM Qk=O, 
k k k 

and 

- - -
PA=(-l)kolQ+7"APA 
k k 

(4.20) 

(4.21) 

M.22) 

(4.23) 

(4.24) 

where Q is an arbitrary function of 7' '" and a m and P A and 
k 

QA do not depend on 7"1 and T 2 • 

k 

Restriction to ~ 

Next we wish to calculate the components of w expli
citly on ~ in order to impose there the conditions that 

(4.25) 

Note that if near ~ again the coordinates A, Pk are 
used instead of am [cf. (2.35)] then any sufficiently reg
ular invariant scalar cP can be expanded in the form24 

(assume T1 = 7"2 = 1) 

(4.26) 

m m 
with cP= CP(A, P10 P2). Moreover, since a "k = tr2p;10 Pro' 

OIl3=tA-10~, and a~=T30T3=7"OT+P10P1 +p20P2 we find 

from (4.21) and (4.22) that 

7"a~ = 7"k[P 'aT + 7"(AO Pk + 0 p,)]. 

If these operators are applied to the expanSion (4.26) of 
an invariant scalar, they give (again restricted to 7"1 = 7"2 

=1) 

(4.27) 

(4.28) 



                                                                                                                                    

1041 H.P. Kiinzle: Hamiltonian description 

1 

1'O~= ttJAj + t1'~/cfJ +0(1'2) (4.29) 

and 

(4.30) 

with 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

Substituting Eqs. (4.23) and (4.24) into (4.9) to (4.14) 

one can express the components of w restricted to ~ in 
m m 

terms of the P" and Q" given on ~ as functions of A, Pu 
k _.k 

and P2' Actually they involve only the restricted func
tions P" and ii" and the combinations 

k k 

x 1 2 x 1 2 

P":=1'-lp,,+P,, and Q":=rlQ,,+Q,, (4.35) 
k k k k k k 

of 1'-derivatives which must be assumed to be regular 
on ~. The explicit expressions are listed in an appendix. 

Effect of the commutator condition 

Note that in view of (4.15) the conditions (4.25) simply 
amount to 

7Trll. =O=Pra on~. 
k 

A simple way of assuring this is by requiring that 

(4.36) 

-
which will be assumed from now on. We also let Q in 
(4.23) and (4.24) be zero since this quantity does not 
affect Wo 

Then, substitution of the expreSSions for the invariant 
components of w in the Appendix into Eqs. (4.16) to 

(4.19) enables us to eliminate the P" and Q" and to find 
k k 

the following relations between the P" and the ;~: 
k 

and 
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(4.43) 

(4.44) 

Z : = PlP1 + P2 P2 = t(P1Pl + P2P2 - P1P1 + P2P2), (4.45) 
1 2 

and 

(4.46) 

x x 

The P" and Q" (which are needed to compute w) then 
k k 

become 

Pk = - PiloklPk + ( -1)kpi1[(o IPk - APk + P,H~ 

+(~/Pk -PIPk +P3H~], (4.47) 

x 

P3 = p;l[ - Ol2PS + P1 - i;~02P3 - ;r1l'2PS]' (4.48) 

(4.49) 

x x 

P2P 2 - PlPl = - 02lPl - Ol2Pa + 02lPl - Ol2P2 

(4.50) 

(4.51) 

x 
Q/ = tpil[( _l)k( - a IPk + APk -PI) - '0 rPk + APk -PI)' 
k 

(4.52) 

x 
Q3= tp;l[( _l)k( - 'dIPk +pJ5k -P3) -/j'rPk +pJ5k -Ps), 

k 

(4.53) 

(4.54) 

We can interprete these equations as follows: The 
function Z = Z(A, Pu P2) can be arbitrarily chosen. It then 
determines P3 and Pk by (4.39) and (4.40), respectively, 

k 

and then also Pl Pl -PaP2 by (4.45). Next, Eqs. (4.41) to 
(4.43) determine (at a generic point) the four unknown 
components ;k and i;~ uniquely. The combination Pl Pl 

+ P2P2 remains undetermined, if it is chosen arbitrarily, 
x x 

all P" and Q" are obtained from (4.47) to (4.54), except 
x k x k 

Pl Pl + PaP2' However, it turns out that these quantities 
do not enter into the expressions for w, nor into those 
for the interesting integrals of motion, namely pOI. and 
W"'. Thus, under the simplifying assumptions w=-d8 
in E with 8 invariant and QOI. = 0 on ~ just one invariant 

k 

function on ~ determines the equations of motion as well 
as the canonical structure of the state space uniquely. 
The function Z is not the Hamiltonian, but it seems like
ly that prescribing the Hamiltonian would have a similar 
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effect, except that it is somewhat less convenient since 
H= Pl =u~ TjAC Pc [cf. (3.8) and (3.11)] does not depend on 
the invariant scalars A, Pu P2 only. 

That one function determines equations of motion and 
the symplectic structure of the state space comes as 
little surprise to anyone familiar with Lagrangian me
chanics. Here, however, while it is not immediately 
clear whether the whole formalism can be brought into 
Lagrangian form, 50 we can also solve the converse prob
lem,51 namely for given equations of motion there seems 
to exist at most a two-parameter set of such functions Z 
and hence a two-parameter set of invariant compatible 
sympl ectic structures on the state space. We will not 
attempt to prove this here in general, but Simply look 
at the case of no interaction, where ~~ = O. Then the op
erator D given by (4.46) has a very simple form and a 
straightforward though tedious analYSis of the integra
bility conditions of the system (4.39) to (4.43) of first 
order partial differential equations shows that 
necessarily 

(4.55) 

for two arbitrary constants m 1 and m2-which is precise
ly the expression one gets for the noninteracting system 
starting with a e of the form (3.12). It thus follows that 
in this case at least the conditions we have imposed on 
w determine it for given equations of motion just as 
much as desired, namely up to arbitrary values for the 
masses of the particles. It seems likely that for nonzero 
~~ the symplectic form is similarly determined, a con
jecture that is confirmed by an analYSis of Eqs. (4.39) 
to (4.43) for weak interactions (small ~~). 

It has turned out that the invariant 1-form e on 2: is 
not fully determined by the equations of motion even if 
condition (4.37) is imposed, although w and the integrals 
of motion P" and W" are. It would seem not unlikely that 
the more natural conditions (4.36) alone determine w as 
much as desired while e then contains even more arbi
trary terms. The calculations for this case unfortunate
ly become considerably more involved; however, it can 
be seen easily [directly from (4.36) and the expressions 
in the Appendix] that Q4 = 0 = P4 and hence also ~: = O. 

k k 

According to Sec. 3 the relative motion therefore takes 
place in a plane orthogonal to the spin vector. 

A simple example of a Hamiltonian interacting ,system 

It is already clear that there exist interacting systems 
that are Hamiltonian according to our definition because 
Eqs. (4.39) to (4.43) will lead to ~~*O for any choice of 
Z=:Z(A,PUP2) other than (4.55). The problem is to find 
a simple interacting system that seems physically not 
too unreasonable and can be studied more explicitly. In 
Ref. 24 the electromagnetic interaction obtained from 
the Liemard-Wiechert fields by neglecting the accelera
tion terms52 was cast into the present formalism. It 
corresponds to 

mk~~= (_1)kgp;3 pp mk~:= - (_1)kgAp~3, ~!= 0 

(4.56) 

where g=e1e2 is the coupling constant (if ek is the charge 
of the kth particle). We can now try to solve (4.39) to 
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(4.43) for this choice of the ~~' s, but this does n~t seem 
to lead to very simple expressions for Z and the PA• To 

k 

first order in g, however, Z takes the Simple form 

(4.57) 

Adopting this as a new starting point one can now calcu
late i;~ and w, exactly obtaining 

(4.58) 

mki;== - ( _1)kgp~3~-1[A + gm~lpkP~3pl - i'm;lmiIp~2], 

(4.59) 

(4.60) 

where ~ =: 1 - g2miIm;lpilp;l. Thus the equations of mo
tion agree to first order with the LiEmard-Wiechert 
equations only and are somewhat complicated. 53 On the 
other hand-what is more important-the symplectic 
structure and the integrals of motion are very simple, 
for example, 

and 

(4.62) 

Recalling that PI and P2 stand for the luminoSity dis
tance between the two particles, one notes a certain sim
ilarity of the Hamiltonian H= P! with the one for the non
relativistic Kepler problem. A further investigation of 
this system may therefore be quite interesting. 

5. CONCLUSION 

It was shown that a consistent Hamiltonian description 
of a great variety of nontrivial relativistic instantaneous 
two-particle interactions is possible. The dynamical 
system on the state space 2: can be discussed with the 
full apparatus of analytical mechanics, in particular, all 
the integrals of motion arising from the Poincare invari
ance can be explicitly given in terms of no more than 
three variables and can be used to find the orbits. 

If the commutator condition is imposed on 2: there 
seems to correspond only a two-parameter set of sym
plectic structures to a given equation of motion, namely 
the two particle rest masses emerge at this point as the 
parameters that characterize the possible symplectic 
structures to a given equation of motion-just as mass 
and spin do for an elementary (free) one-particle system. 
Moreover, the result that the relative motion can be de
scribed as taking place in a fixed plane (whose orienta
tion is determined by total momentum and spin vector) 
depends on the commutator condition. 

A drawback of the proposed formulation seems to be 
that it does not treat the two particles symmetrically, a 
difficulty that becomes more serious for systems with 
more than two particles. However, the imbedding of the 
asymmetrically defined state space into the fully sym
metric evolution manifold is known explicitly. It is 
therefore possible to check in the space-time formalism 
whether the introduced asymmetry is in fact physical or 
only apparent. In view of the remarkable symmetry of 
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all the equations obtained the latter seems just as likely. 

Apart from a clarification of this point the method 
used to find the general invariant Hamiltonian systems 
is clearlyeapable of improvement. A somewhat more 
efficient formalism should also help to determine the 
status of the conjectures arrived at in Sec. 4. 

APPENDIX 

The nonvanishing invariant components of w on ~ in 
terms of PA and QA (see Sec. 4) become if 

~ ~ 

x 1 2 x 1 2 

PA :=r1PA +PA and QA :=T-lQA +QA 
k k" k "" 

are assumed regular on ~ (for k,* 1 = 1, 2) 
x x 

w,,' = ( _1)"[ - ouP, + o,,,P,, - p,P, + p"p,,], 

" """" 
x 

w"s = ( -1)"[ + ooP" + P" - o",Ps - p,ps], 
" """" 
w's= (-1)"[ + ooP, + P, - o ,,,Ps - p"ps], 

" """" x 

wk4 = - ( -1)"[0",P4 + p,P4], 
" "k 

x 

"14 = - (-1)k[o,kP4 + P"P4J, 
k k" 

W34= - (-l)"ooP4> 
k " 

x x 

Ku = Ol2(P1 + P1) + P2(P1 + P1), 
1 2 1 2 

x x 

K12 = 021P1 + 012P2 + P1P1 + P2P2' 
1 2 1 2 

K1a = oOP1 + 012PS - P1 + P2Pa, 
1 222 

x 

K14 = K41 = 012P4 + P2P4' 
2 2 

_ _ x x 

K22 = 021 (P2 + Pz) + P1(P2 + Pa)' 
1 2 1 2 

x 

K2S = OOP2 - Pa + 021PS + PIPS' 
1 2 2 2 

KS1 =OOP1-P1 +012Pa+P2Pa, 
2 1 1 1 

K33 = oo(i\ + Pa) - (Ps + Ps), 
1 2 1 2 

K34 = oOP4 -(P4 +P4), 
2 1 2 

K 4s = Oop. - (P4 + P4), 
1 1 2 
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K44 = - P1(P1 + P1) - P2(P2 + P2) +O! (Ps + Ps), 
1 2 1 2 1 2 

x 

0'", = - o'Pk +AP" - P, - (-1)"[0",Q, + p,Q,J, 

" """ "" 
O'u = -If,P,, + p,P" - Ps - ( -1)"[0",Qa + p,QsJ, 
" " "" "k 

0'k4 = - p. - ( -1)"[0",Q4 + P,Q4J, 
"" "k 

x 

0'1/ = - o,P, - ( _1)k[0 'k Q, + p"Q,J, 
"" k k 

x 

0'13= - o,P, - (-1)"[o,,,Qs - Q, + p"QsJ, 

"" """ 
0"4 = - ( -1)"[0 ,,,Q4 + P"Q4]' 

" "" 
O's, = - o,Pa - ( -1)kooQ" 
" k k 

0'33 = - 'tf,Pa - ( - 1)"[ooQa - QsJ, 
k k "k 

0'34 = ( _1)"[ - ooQ4 + Q4J, 
k k k 

0'4' = - o'P4 + AP., 
k ~" 

O'.a = -If,P4 + P,p. + ( _1)kQ4, 
k "" ~ 

0'44 = + P:Pk - pkp,P, - p"Ps + (_1)k[ -O! Qa + ti,Q,J, 
k k "k "" 

A", = - 0 'Pk + AP" - P, + ( _1)k[ok,Q, + P,Q,J, 
" '" k k 

Au = -If,Pk + P'Pk - Ps + ( -1)"[0 k,Qs + P,QaJ, 
" " "k 

x 

Au = - p. + ( _1)"[0 ",Q4 + p,Q4 J, 
'" "" x 
AI/ = - o,P, + (-1)"[o,,,Q, + p"Q,J, 
k' "k 

x 

A,a= - ~,P, + (-1)k[O,,,Qs - Q, + p"QaJ, 
k , k k k 

Ass = -If,Pa + (_1)k[ooQa - QaJ, 
" , "k 

A34 = + ( -1)"[ooQ. - Q4]' 
~ " " 
A., = - 0IP. + AP4 , 

" , 
A.a = - 0 ,p. + P,p. - ( -l)"Q., 
" " k 

A44 = + p:P" - p"p,P, - fj,.Pa + (- 1)"[ O!Qa - p,Q,], 
" " "" 
1T,S= - ~,Q, + o,Qa -p,Q, +AQa, 
" " " " k 

1T'4=O,Q., 
" k 
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P31 = ~2Q1 - a1 Q3 + Q3 - p2Ql> 
2 1 2 2 

P41 = - a1Q4 + XQ4 + Q4. 
1 1 2 

P43== - OlQ4 + PIQ4' 
1 1 
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The high energy, small angle Glauber-Moliere scattering amplitude of spherical symmetric 
potentials, which are expandable in ascending even powers of r and singular in coordinate space, is 
calculated. The singularities are poles of order n( = 1,2, ... ) off the real axis. As in the 
nonsingular case the amplitude decreases like exp ( - q b) as a function of the momentum transfer q. 
However, the dependenc of b on q is quite different. Unlike in the nonsingular case it reaches a 
finite value at infinite energy. Also, in contradistinction to the nonsingular case, the first Born 
approximation under certain conditions holds in the whole range of validity of the scattering angles. 

1. INTRODUCTION 

In a previous paper l the high energy scattering ampli
tude of spherical symmetry potentials, expandable in 
ascending even power of r and nonsingular in coordinate 
space, has been calculated. 

In the present paper we shall discuss potentials which 
are also even in r but are singular in coordinate space. 
The singularities considered are poles of order n 
(= 1, 2, .•• ) off the real axis. For simplicity we have 
chosen them to be on the imaginary axis. We calculate 
the corresponding amplitude by making use of the well
known Glauber-Moliere impact parameter representa
tion. 2,3 Our result is thus valid for small scattering 
angles only. Large angle scattering amplitudes due to 
even power Singular potentials will be examined in an
other paper, 4 where use will be made of the Landau
Lifshitz approach discussed extensively in I. 

~ 

The scattering amplitudes calculated in the present 
paper turn out to have an exponential decrease as func
tion of the momentum transfer q, similar to the be
havior of the scattering amplitudes due to potentials 
which are nonsingular in the finite coordinate plane 
discussed in I. There are however some well-defined 
differences to which attention should be given. In both 
cases the dependence of the amplitude on q is of the 
form exp(- qb), where b may be considered to be the 
effective range of the interaction. In both cases b de
pends on q. However, in the nonsingular case, b in
creases slowly (as the square root of the logarithmic 
function) but indefinitely when q- "", whereas in the 
singular case b approaches a definite limit roo Here ro 
is the distance of the Singularity of the interaction from 
the origin. Another important difference between the 
nonsingular and the Singular interaction is that in the 
former case the first Born approximation never holds, 
except for very small scattering angles. In the latter 
case, however, under certain conditions, the first Born 
approximation holds essentially in the whole range of 
validity of the scattering angles allowed by the Glauber
Moliere representation. 

We assume throughout the paper that the coupling 
constant has a power law dependence on the momentum, 
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i. e., g(k) =gokm. The m = 1 case is equivalent to an en
ergy independent potential in which the relativistic de
pendence of the mass has been taken into account. It is 
important to point out that the Glauber-Moliere 
representation is a valid small-angle, high energy ap
proximation of the scattering amplitude if I g(k) I /~ 
« 1. 1

-
3 We shall therefore always assume that m < 2. 

The Born approximation, on the other hand, is valid 
only when m < 1. 

In Sec. 2 the conditions for the validity or nonvalidity 
of the Born approximation are discussed. In Sec. 3 the 
scattering amplitude is evaluated by the saddle point 
method when the Born approximation breaks down. The 
main points of the paper are summarized in Sec. 4. 

Throughout this paper, we use 1'i = c = 2m = 1. 

2. THE BORN APPROXIMATION 

As pointed out in the Introduction, we wish to cal
culate the high energy, Glauber-Moliere scattering 
amplitude due to an even-power potential function V(r) 
which has poles of order n in the r plane excluding the 
real axis. There are many functions which satisfy this 
condition. Probably the Simplest function is of the form 

( 
1 1 \" 

r+iro - r-iroJ' 

It is, however, rather difficult to deal with, as far as 
calculation of the amplitude is concerned. 

A better choice turns out to be the function 

V(r) =g(r 2 + ro2)-n, 

g=!g!exp(-iy), O,;;y';;1T, n=1,2,3, .. •• 
(1) 

We assume, for Simplicity, that ro is real. It is well 
known that the Glauber-Moliere amplitude is represent
ed by 

A=ik fa'" pdpa(p)Jo(qp) 

a(p)=1-exp[2i6(p)] (2) 

1i(p) = -l/kfo"'v(.fjj2+?) dz, 

where q=2ksin,'}/2 is the momentum transfer, and the 

Copyright © 1974 American Institute of Physics 1045 
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variable of integration p is the impact parameter. The 
evaluation of the phase shift is straightforward: 

6( ) __ c:. {OO dz 
p - k J

o 
(Z2 + p2 + r02)n 

where5 

= _ ! G (p2 + r:;)-n+l/2 k nO, 

Gn=g[1T(2n - 3)!! /2 n(n -1)!]. 

(3) 

(3') 

The singularity of the interaction in coordinate plane 
thus gives rise to a singularity of the S matrix in impact 
parameter plane at the same point iro' Substituting for 
6(p) and expanding the exponential function in powers of 
Gn yields for the amplitude 

[

oo oo ~ G~"( 2+r: 2)-(n-l/2)" 
A=ik 6 pdpJo(qp) -2i kn POI 

o lId ~ 

(4) 

The integral over the impact parameter p is known, 

('" pdpJo(qp) I. q )V-l 1 
)0 (p2+r02)v =\2ro r(v) K.(V-l) (roq) , (5) 

where K,,(x) is the modified Bessel function of the third 
kind. Thus we obtain for the amplitude, using the rela
tion K.v(x) = Kv(x) 

A=-ik6A("), 
",=1 

(6) 

where the /-L's order Born amplitude is given by6 

A(")- _2i-n ...!L (n-l/21f!-1 0 
( 

G 
)
"'( ) (n-l/2),,-1 K (r:q) 

- k 2ro r(~ + l)r[(n -1/2)~] . 

(6') 

The ratio I A (2) /A (1) I represents a measure for the con
dition of the range of validity of the Born approximation_ 
We have 

Kv(x) is independent of II when x» 112. We therefore get, 
in the region of large momentum transfer, roq» n2, the 
condition for the validity of the Born approximation 

I
A(2)\ r(n-1/2) IGnl !.q)n-l/2 
A (1) = r(2n -1) -k- \2ro «1. (8) 

For fixed momentum transfer q, the above condition is 
always satisfied, provided the dependence of the cou
pling constant on k is such that 

19(k)l/k«l, 

i. e. , under this condition AU) is a good approximation 
to the amplitude. In the framework of the Glauber
Moliere theory this statement is true, in general, pro
vided the amplitudes A (1) and A (2) are definable. If the 
coupling constant has a power law momentum depen
dence, i.e., if g=gokm then the above condition holds 
for m < 1. For m > 1, Eq. (8) cannot be satisfied (for 
fixed q). 

For large but fixed k, Eq. (8) yields an upper limit 
on the scattering angle,'). We find 
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,'}« u(k), (9) 

where u(k) expresses the explicit dependence of the 
upper limit on k 

u(k) a: (kr
o
)"(n-s/2+ft,)/(n-l/2) • (9') 

We must, however bear in mind that in the Glauber
Moliere theory,') is confined to small values, ,') 
«(kro)-1/2. Hence the upper limit on,,} is given by 

-3 «Min[u(k), (kro)-1/2]. 

Call 

p=m +~n-1-, (10) 

then for p> 0, we have u(k) < (krO)"1/2, and for p < 0 we 
have u(k) > (kro)-1/2. Therefore, when p < 0 the first 
Born approximation is valid for all angles which satisfy 

(11) 

The lower limit is derived from the requirement, roq 
» n2

, as already mentioned. On the other hand, when 
p> 0, we have to distinguish between two cases: 

(i) m < 1. In this case the first Born approximation is 
valid for angles which satisfy 

n2/kro«'') «u(k), (12) 

and is not valid for angles which satisfy 

u(k) «-3 « (kro)-1/2. (12') 

It is easy to show that in the extreme forward direction, 
,,) « 1 /kro, the Born approximation always holds as long 
as m < 1. This follows immediately from the small 
argument behavior of the :gJ.odified Bessel function, 
Kv(x) -~r(II)(2/x)v. 

I 

(ii) m ;;. 1. In this case the first Born approximation 
breaks down in the whole angular range -3« (kro)-1/2. 

As to the amplitude itself, when condition (11) or (12) 
holds, it is well approximated by A (1), Eq. (6'), 

A .. - ikA (1) = - [..f1i Gn/r(n -1/2)ro](q/2ro)n-2 exp( - roq). 

(13) 

Here we have made use of the asymptotic expansion of 
Kv(x) , 

Kv(x) = ..fii72x exp(-x)[l + (4112 -1/8x) + ... ]. (14) 

When the Born approximation is not valid [case (i), 
Eq. (12'), and case (ii)], the amplitude can be evaluated 
by the saddle point method. This will be done in the 
next section. 

In the extreme forward direction, ,,} «l/kro, the 
amplitude is given by 

A .. - ikA (1) = - Gn/(n - 3/2)r~n-S, (15) 

provided m < 1. The method of the present paper does 
not provide a satisfactory solution for the amplitude in 
the extreme forward direction when m ;;. 1. 

3. THE SADDLE POINT METHOD 

In this section the scattering amplitude will be cal
culated by the saddle point method 0 Our starting point 
is again the Glauber-Moliere impact parameter repre-
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sentation, Eqs. (2), (3), (3'). For 8,* 0 we have 

'k i oc 

A=- t2 0 pdp[HJl)(qp)+HJ2>(qp)] 

xexp (_ 2i~n (p2+r~)-n+l/2). 

ro is taken to be real. The integrand has two branch 
points on the imaginary axis at ±iro, and therefore 
two cuts, one from + iro to + i oo , and the other from 

(16) 

- iro to - i oo • Now, in order to evaluate the amplitude 
the original paths of integration along the real axis will 
be opened in such a way that the contours of the HJl) and 
HJ2) integrals will be along the positive and negative 
imaginary axes, repectively. Both contours are on the 
right-hand side of the cuts. It is very easy to see that 
there are no contributions from the paths which connect 
the real axis at infinity with the imaginary axis at in
finity. As the Hankel functions satisfy the relation 
Hril)(z) = -Hri2)(-z), and 1i(p) is an even function of its 
argument, the two integrals along the imaginary axis 
from the origin to iro and - iro, respectively, cancel 
each other. Therefore the contour of the Hril

) integral 
consists of a contour parallel with and to the right-hand 
side of the cut from iro to i oo , and a small semicircle 
which connects this contour with the imaginary axis in 
the immediate vicinity of the branch point. The contour 
of the Hri2) integral is the mirror image of the Hril

) con
tour through the real axis. NOW, because of the above 
relation between the two Hankel functions, it is con
venient to make the transformation p - - p in the HJ2) 
integral and thus convert it into a HJl) integral along 
the left upper cut proceeding from i oo to iro. In conclu
sion the scattering amplitude will be represented by 

A= - (ik/2)f pdPFal)(qp) exp[- (2iG/k}(p2 +~)""+l/2], 
e 

(17) 

where C is a path of integration which starts from i oo , 

proceeds along the imaginary axiS, describes a small 
circle counterclockwise around iro and returns to ioo 

along the imaginary axis. Given the fact that the square 
root (p2 + r02)l/2 is positive on the real axiS, its phase 
on the right side of the cut will be + i, and on the left 
side - i. 

So far everything is exact in the framework of the 
Glauber-Moliere theory. However, when we are in the 
large momentum transfer region, roq» 1, it is advant
ageous to make use of the asymptotic expansion of the 
Hankel function7 

Hril )(pq)= ..J2/rrpq exp[i(pq - rr /4)]. 

Thus the amplitude becomes 

A == - ik..J 1/2rrq exp[ - i(rr /4)] Ie ,;p dp 

Xexp {i[pq - (2GJk)(p2 + r02)-n+l/2)}. 

(18) 

(19) 

Next, let us make the transformation p = i( r 0 + S / q), then 
the amplitude assumes the form 

A == (ro~ /2rrq3)l/2 exp(- roq)I
e 

(1 + s/ roq)l/2 ds 

( 
2iGn/k ) 

x exp - s - (_ 2ros / q)n-l/2(1 + s / 2roq)n-I/2 • (20) 

The cut is now along the positive real axis. The path of 
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integration starts from infinity, proceeds along the real 
axiS, describes a small circle counterclockwise around 
the origin and returns to infinity along the real axis. 
The left and right side of the cut in the p-plane trans
form to the upper and lower side of the real axis in the 
s plane, respectively. Therefore the phase of r-s on 
the positive side is (- i), and on the negative side is 
(+ i). It follows that - s = I s I exp[i(a - rr)]. 

Let us make the scale transformation 

s=f..I.ot. (21) 

We shall determine the parameter f..I.o in such a way that 
the location of the saddle pOints in the t plane becomes 
practically independent of q, k, Gn , and roo With this 
in mind we find 

_ [2iGn (....!l...)n-l/2]<n+I/2)-1 

f..I.o- k \2ro ' 
(22) 

and the amplitude will be of the form 

A = ..Jrok2 /2rr q3 f..I.o exp( - roq) Ie ..J1 + (f..I.o!roq)t dt 

xexp[f..I.ofn(t)] (23) 

with 

fn(t) = - t - (- t)-n+I/2{1 + f..I.ot/2roq)'"f1+l/2. 

If we now make the assumption 

I f..I.o I /2roq« 1, 

(23') 

(24) 

then the saddle points are fixed pOints in the t plane. 
Before we proceed with the actual calculation of the am
plitude, let us find out what the physical implication of 
Eq. (24) is. The impact parameter Po at the saddle 
point is given by 

Po = iro[l + 2 (f..I.o/2roq)to]. (25) 

We show below that I to I '" 1. Hence Eq. (24) implies that 
the saddle points are in the vicinity of the pole (iro) of 
the potential function. In other wordS, the relevant val
ues of the impact parameter are complex, even when 
the potential function is real (y = 0, rr). This means that 
the scattering phenomena are of nonclassical nature. 
Thus it turns out that the condition of Eq. (24) brings 
about the fact that the region of angles discussed in the 
present paper will be inaccessible for a classical parti
cle. The reason why Eq. (24) gives rise to nonclassical 
scattering can be seen directly from the relationship 
between impact parameter p and scattering angle ,<). It 
is determined by 

d 
dp [± qp + 21i(p)] = O. (26) 

Thus by Eq. (3), 

8 = Gno(2n _1)[p/(p2 + ~)n+l/2]km-2. (27) 

With condition Eq. (24) in mind, this gives rise to com
plex values of p. 

In order to apply the saddle point method, the expan
sion parameter Eq. (22), has to be a large number. It 
is easy to verify that it is large when 

(28) 

where 
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,,) I = u(k)/ a~n+l/2) / (n-l/2) (28') 

and 

a - (I G 123 /2-n/1': 2". .... 2) (n+1 /2)-1 ,.- no 0 • (28") 

u(k) is given by Eq. (9'). Thus the saddle point method 
is complementary to the Born approximation as far as 
the range of the scattering angle is concerned. This 
follows from the fact that the Born approximation is 
valid when.l)« u(k), as explained in Sec. 2. Also Eq. 
(24) gives rise to a lower limit on the angle, 

(29) 

where 

(29') 

When m« 1, the lower limit is determined by Eq. (28). 
When m S 1, then the relevant lower limit on.l) is deter
mined by Eq. (29), although,') I >,')~. The reason is that 
in Eq. (29) both sides of the inequality' are raised to the 
power l/(n+t). When m> 1 then,'),<.I)~, and the lower 
limit on ,,) is of course given by Eq. (29). The angle,,) 
is always smaller than the Glauber limit, .1)« (kro)-l /2, 
therefore there is an upper limit on m, namely m < 3/2. 

We return now to the expreSSion of the amplitude, Eq. 
(23). The saddle points are defined by 

d!n(t) I = O. (30) 
dt to 

Taking Eq. (24) into account, they are the solution of 

:t [- t - (- ttn+1 /2] = 0, 

-t= It I exp[i(a -1T)J. 

We find 

to= (n _1/2)(n+1 /2)-\ _1)(n+1 /2)-1 exp(i1T). 

(31) 

(32) 

Note that I to I is of order one. Thus, the omission of the 
factor (11-0/2roq)t in the equation of to is a consistent 
approximation. 

It is obvious that more than one saddle point exists on 
the same Riemann sheet. Let us put 

-1=exp[i1T(1-2j)], Ijl=0,1,2, ... 

then the phases of the respective saddle points are, 
according to Eq. (32), given by 

a ,= [(2n + 3 - 4j)/(2n + 1)]1T. (33) 

Our Riemann sheet is defined by 0 < a < 21T, which gives 
rise to upper and lower limits on j 

- 2n - 3 < - 4j < 2n -1. 

It follows that the number of saddle points is equal to 
(n + 1) for odd values of n, and equal to n for even val
ues of n. One-half of these points (j> 0) are in the up
per half -plane. The other half (j:S;; 0) in the lower half
plane are the corresponding complex conjugate points. 
Their respective phases are a, and a1- r 

We shall now discuss in detail the contour of integra
tion through the saddle points. Let us first consider the 
special case of a purely absorptive potential, Y=1T~. 
Then by Eq. (22) the expansion parameter 11-0 is real, 
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and the contour are determined by Im!n(t) = Im!n(to) , or 
explicitly, taking Eq. (24) into account, by 

I tl sin(a) + It l-n+1 /2 sin[(n -1/2)(1T -a)] 

=(n+ 1/2){n _1/2)-(n-1/2)/("+1/2) sina" (34) 

together with the requirement that 

Re!(t)=-Itl cosa -ltl-n+1/2cos[(n-1/2)(1T-a)] 

(34') 
decreases monotonically from its peak value at to to 
(- 00) on both sides. 

Equations (34), (34') permit solutions at infinity for 
a .... 0, and at the origin for a .... 1T. There are no solu
tions for finite I t I and a = 1T. Therefore the contour 
should Pass through the positive imaginary axis in 
order to proceed to infinity. However, this is not al
ways possible. The contours through the saddle points 
with j = 1 cannot pass the positive imaginary axis if 

{sin[(n -1~)1T ~1}(n+l /2)-1> sin{[(n -l~)/(n + 1/2)]1T}, 

and (35) 

sin[(n -1/2)1T~] > O. 

This follows from Eq. (34). For example, when n=5 the 
contour through the saddle point, a 1 = 91T /11, satisfies 
the above condition. The conclusion therefore is that it 
returns to the origin, or, in other wordS, it forms ~ 
closed loop. On the other hand, for all values of n for 
which sin(n - t)1T ~< 0 a solution can be found on the 
positive imaginary axiS, which means that the contours 
will either proceed to infinity or return to the origin in 
the first quadrant. 

In Appendix A we discuss the contours of integration 
through the saddle points in detail. The contours in the 
upper and lower half-plane are mirror images of each 
other through the real axis. In addition we prove that 
the condition for the contour defined by saddle point a, 8 

to be a closed loop is 

(sinfl ,)n-l /2> (sina ,)n+1 /2, (A 7) 

where fl, and fl ,-1 are the exit and entrance angles of the 
loop at the origin, respectively. The angles fl, are 
defined by 

fl,=[(2n-1-4j)/(2n-1)]1T, n;;,2ljl +1. (A1) 

Application of the above result shows that there is no 
loop for n= 3. For n=4, 5, 6, 7 there is one loop, for 
n=8, 9,10,11 there are two loops, etc. According to Eq. 
(A7) all saddle points which appear in the second 
quadrant give rise to loops, provided the corresponding 
angles fl, are larger than 1T ~. Furthermore, saddle 
points which appear in the first quadrant do not give 
rise to loops but to open contours. Finally, in those 
cases in which the saddle points are in the second 
quadrant, but fl, < 1T ~, there will be either loops or open 
contours according to whether Eq. (A 7) holds or does 
not hold. 

Suppose now that for given n there are altogether N 
loops through the saddle points au' .. , aN' Then accord
ing to the above the original contour in the upper half
plane can be split up into N loops plus one open contour. 
The N loops "cover" the range 1T;;' a ;;, f3N , and the open 
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contour covers the range f3N ~ a ~ O. The remaining sad
dle points do not contribute to the scattering amplitude. 
They can, therefore, simply be ignored. For example, 
for n = 8, the loop through a 1 = 151T /17 covers the range 
1T ~ a ~ l11T /15, the second loops through a 2 = l11T /17 
"covers" the range l11T /15 ~ a ~ 71T /15, and the remain
ing part 71T /15 ~ a ~ 0 is "covered" by the open contour 
which goes through a 3 = 71T /17. The fourth saddle point 
a 4 = 31T /17 covers only the range 31T /15 ~ a ~ O. Its con
tribution to the amplitude is already included in the 
contribution from a 3' 

Until now we have discussed saddle pOints and corre
sponding contours for a purely absorptive potential, 
y = 1T /2. In the more general case the phase X of the ex
pansion parameter lJ.o, Eq. (22), is given by 

X = (1T - 2y)/(2n + 1) 

-1T/(2n+ 1).,; X.,; 1T/(2n+ 1). 

(36) 

The location of the saddle pOints is of course indepen
dent of X. However, the contours depend on it. The 
relevant function in the exponent of the integrand of the 
amplitude, Eq. (23), is now exp(ix}fn(t). Thus the con
tours are determined by 

1 t 1 sin(a + X) + 1 t I-n+l /2 sin[(n -1/2)(1T - a) + X] 

=[(n+ 1/2)/(n -1/2)](n _1/2)<n+l/2)-1 sin(a ,+X), 

(37) 

together with the requirement that 

Re[exp(ix}fn(t)J=-ltl cos(a +x.)_ltl-n+1/ 2 

Xcos[(n -1/2)(1T -a) +X] (37') 

decreases monotonically from its peak value at to, to 
( - 00) on both sides. The above expressions are valid for 
any X given by Eq. (36), whereas the corresponding ex
pression Eqs. (34), (34') are valid only when X = O. 
From the expreSSions of a J and X, Eqs. (33) and (36), 
respectively, it follows that the right-hand side of Eq. 
(37) is positive for all saddle points in the upper half 
plane (j> 0), and is negative for all saddle points in the 
lower half -plane (j.,; 0). Consequently, the cut and the 
contour of integration e are moved into the direction 
( - X). Thus the Riemann sheet is defined by - X .,; a 
.,; (21T - X). The contours determined by the upper saddle 
points will approach the cut at infinity asymptotically 
from above, and the contours determined by the lower 
saddle points will approach the cut at infinity asymptoti
cally from below. We have pointed out before that for 
the special case, X = 0, the contours in the upper and 
lower half -plane are mirror images of each other. A 
glance at Eq. (37) reveals that, in general, when X'" 0, 
this statement is no longer true. However, Eq. (37) is 
invariant under the transformation a - 21T - a, X - - X. 
This follows Simply from the fact that the saddle points 
in the upper and lower half-plane are complex con
jugates of each other. This invariance is no more than 
another way of expressing the relationshipl 

Al (y) = -A:f(1T - y), (38) 

where the two amplitudes are defined by 

(38') 
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In the Glauber-Moliere representation, Eq. (38) is an 
exact statement for all interactions for which the phase 
is independent of the coordinate. The contours of in
tegration for the general case (X'" 0) are also discussed 
in Appendix A. We find that for saddle points in the 
upper half -plane (j> 0), the condition for closed loops 
is 

(A14) 

and for saddle points in the lower half-plane (j< 0), the 
condition is 

(A14') 

The exit and entrance angles, f3, and ",-u are deter
mined by 

(A13) 

Our conclusion is, therefore, that the scattering am
plitude, Eq. (23), breaks up into a sum of (L +2) in
tegrals, where L is the number of closed loops. Each 
integral is estimated by the standard method of steepest 
descent. Hence the amplitude will be of the form 

A = (rok2 /rI)l /21J.o exp( - roq) L) [llJ.of;'(to,) 1 ]-1 /2 , 
(39) 

where CP, is the inclination of the contour at saddle 
points a J" Call f;' = If;' I exp(i09,), then CP, is determined 
by 

coS(09,+2CP ,+X)=-1. 

The functions fn(to,) at saddle points a, are according to 
Eqs. (23') and (32) given by 

fn(to) = (- to,){l + [l/(n -1/2)][1 + (lJ.o/2roq)to,]-n+1 /2}. 

(40) 

Note that these functions appear in the exponent multi
plied by lJ.o» 1. Therefore the small term (lJ.oto/2roq) 
cannot be neglected. In the expression of the second 
derivatives, on the other hand, it is negligible. We thus 
find 

(41) 

In order to check the reliability of the saddle point meth
od the next term has been calculated. We find that in Eq. 
(39) each term has to be multiplied by (1 + e n/2IJ.o), 
where the parameters en, are defined by the functions 
fn(to,) according to Ref. 1, Eq. (A7'). For the problem 
under discussion it is equal to 

e n,= (1/6to,)[(n2 + 9n/2 + 3)/(n + 1/2)] exp( - iX). (42) 

Equation (39) is thus a reliable representation of the 
scattering amplitude if 

len/2IJ.ol«1. (43) 

This inequality measures the accuracy of the saddle 
point method. It gives rise to a lower limit on the scat
tering angle. We find 

.')>>,')7, 

,,) 7 = (e n/2an) < .. 1/2) / <n-l /2)u(k), (44) 

where en = I en,l, and u(k) is given by Eq. (9'). It re
places Eq. (28) which was derived earlier by requiring 
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simply I /Lo I »1. Note that as a function of n, an does 
not depend much upon it, whereas Cn increases with it 
linearly. This means that there is an upper limit on n 
keeping all the other quantities at a fixed value. 

Let us show now that the main contribution to the am
plitude' Eq. (39), comes from the two saddle points a 1 

and ao' The rest of the saddle points contribute very 
little under conditions which are Similar to those out
lined above. Obviously, the contribution of saddle point 
a 2 is negligible if 

(45) 

and we have a corresponding condition for the omission 
of a_1 in comparison with ao' The contribution from the 
other saddle points are even smaller than from a 2 and 
a_I" From Eq. (45) we get 

I Re[/Lo(fn(t01) -fn(t02»] I »1, 

which by Eqs. (40) and (36) becomes 

I /Lo I »t I c:, I , (46) 

IC'I_(n-1/2) ~ 2 
n - n+1/2 Itol[coS('!2+X)-cos(a 1+x)] (46') 

This condition is very similar to that of Eq. (43). It is 
easily verified that I C~I increases with n, when n» 1, 
like n2

, and that for n? 5 

IC~I >Cn• 

Thus the only change to be made is that for n? 5, Cn is 
replaced by I C~ I in the expression of ,9 i', Eq. (44). 

Consequently, the amplitude Eq. (39) assumes the 
form 

A = - (rok2 
/ q'l)1/2/Lo exp( - roq)[ I /Lof:'(to) I ]-1/2 

x {exp[/Lofn(t01) + i<P1] +exp[/Lofn{too) + i<PoJ}, 

which by Eqs. (40), (41), (33) becomes 

A = - {(rok2 /q'l)[(n -1/2)/(n + 1/2)]1/ (n+1/2) I /Lo IY /2 

Xexp(ix/2) exp( - roq){exp[ I /Lo I F(x;a 1) + ia 1/2] 

-exp[l/LoIF(x;-a)-ia/2]}. (47) 

Here au and X are given by Eqs. (33) and (36), respec
tively, F(x;a) is defined by 

F(x;a) = - I to I exp[i(x +a )](1 + [l/(n -1/2)] 

X{l + (\ /Lo 11 to 1 /2roq) exp[i(x +a )]}-n+1/2), 

(48) 

and I /Lo I is the absolute value of /Lo, Eq. (22). 

In the immediate neighborhood of X = ° (1. e., Y = 1T /2) 
both saddle points contribute equally, as far as the 
magnitudes are concerned. When X> ° and not very 
close to zero, the main contribution comes from saddle 
point a 1 • When X < ° (and not very close to zero) the 
main contribution comes from saddle point ao' Clearly 
the condition that only one saddle point contributes sig
nificantly is given by 

l/Lol·1Re(F(x;a 1) -F(x;-a 1»1 »1, 

or equivalently 

21 /Lo II to II sinx I sinal» 1. 
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(49) 

For X *0, this condition is essentially the same as that 
of Eq. (46) for the omission of the rest of the saddle 
points, a 2 , a 3,···. Therefore when Eq. (49) is satis
fied, the amplitude Eq. (47) assumes the Simplified 
form 

A = 'f {(rok2 /q'l)[(n -1/2)/(n + 1/2)](n+1/2)-1 I /Lo 1}1/2 
xexp[-roq+ l/LoIF(x;±a1)+i/2(Ua1)], (50) 

where the upper Sign is to be taken when X> 0, and the 
lower Sign when X < 0. 

4. SUMMARY 

We have calculated the high-energy Glauber-Moliere 
scattering amplitude of potentials VCr) which are even 
powered and Singular in coordinate space. The Singu
larities of V are poles of order n (= 1, 2" •• ) off the 
real axis. For Simplicity we have chosen them to be on 
the imaginary axis. The coupling constant g is assumed 
to have a power law energy dependence go:: k"'. It is 
well-known that the Glauber-Moliere representation of 
the amplitude is a small angle scattering theory. The 
scattering angles,<j have an upper limit,9 G = (.fliYo)-l • 
Only scattering through angles for which,<j »,9 mtn '" l/kro 
has been considered. 

In Sec. 2 the conditions for the validity of the Born 
approximation as function of n, m, and ,9 have been 
found. The result is, loosely speaking, the well-known 
fact that the Born approximation is valid when the effec
tive interaction is weak. In the problem under discus
sion this means, small values of n, m, and ,9 (small 
angles correspond to big impact parameters, thus weak 
interaction). The exact result established is that if the 
parameter p=n +m - 5/4 < 0, then the Born approxima
tion is valid in the angular region ,9 m1n «,<j «,<j G' How
ever, for p> ° one has to distinguish between the case 
m < 1 when the Born approximation is valid for ,9 m1n «,9 
«u(k) and the case m :;;, 1 when the Born apprOximation 
is not valid in the whole angular range, ,9 »,<jmtn' u(k) is 
given by Eq. (9'). The condition for the validity of the 
Born approximation thus depends critically on m. The 
dependence on n is much weaker and smoother. When 
n becomes very large, u -l/kro and the angular region 
of the Born approximation shrinks to zero. 

The amplitude itself, when the Born approximation is 
not valid, has been calculated in Sec. III. It has been 
evalued by the saddle point method. Although the total 
number of saddle points is equal to n for n even, and 
(n + 1) for n odd, the number of saddle points which con
tribute dominantly is very much smaller. For an ab
sorptive potential (Y'" 1T /2) there are only two saddle 
pOints of importance and for Y"* 1T /2 only one saddle 
point contributes dominantly. The corresponding ampli
tudes are given by Eqs. (47) and (50), respectively. 
Note that 

cos(lxl +(1 )<0, 

cos{lxl +( 1 )<0, 

for n:;;,2, 

for n=l 

and 

and 

(51) 

{
0':;;Y<1T14 
31T/4 <y.:;; 1T. 

It follows that ReF(x; ± a) > 0, and therefore the differ
ential cross section, decreases much more slowly than 
exp{ - 2roq). 9 The factor exp{ I /Lo I F), which measures 
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FIG. 1. The contours of steepest descent in the upper hail 
plane through the saddle points 011 for the absorptive (y = 7T/2) 
potentials n = 1 and n = 2, respectively. The arrows show the 
direction of integration. 

the deviation from the exponential law, contains most 
of the information concerning the interaction, namely, 
the coupling constant g{k), including its energy depen
dence and phase Y, and the order of the singularity n. 
As 

I Mol ex [(Igl /k)qnol/2]<n+l/2)o1 

we conclude that the stronger the singularity of the in
teraction and the greater the strength of the interaction 
itself, the larger the elastic cross section. Further
more, for given n and given Igl, the elastic cross sec
tion increases with decreasing absorption (y - 0, or 
Y - 1T), i. e., the smaller the number of open inelastic 
channels, the greater the elastic cross section. How
ever, when n=l, and 1T/4<Y<31T/4, we have cos(IXI 
+ a 1) > O. In this case the elastic cross section as func
tion of,~ decreases faster than exp( - 2roq). It also de
creases with increasing Igl. 

The calculation of large angle scattering amplitudes 
due to potentials of the same kind as those discussed in 
the present paper, will be dealt with in a later 
communication. 
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APPENDIX 

In this Appendix we investigate the question of loops 
systematically. First we discuss the contour in the up
per half plane. The contours in the lower half plane are 
their mirror images through the real axis. We first 
consider the contours for n = 1 and n = 2. In both cases 
there is only one saddle point; for n = 1 it is at a 1 = 1T /3, 
and for n = 2 it is at a 1 = 31T /5. Both contours start at 
the origin with a=: 1T and end at infinity with a=: O. They 
are sketched in Fig. 1. 

For n = 3 we have two saddle points at a 1 = 51T /7, and 
at a 2 = 1T /7. The contour through a 1 is similar to the 
contours of n = 1 and n = 2. The contours through a 2' 

however, is different. It emerges with the origin at an 
angle {31 = 1T /5. The two contours are given in Fig. 2. It 
is obvious that the contour C1 through a 1 is the correct 
one, because the original contour can be deformed into 
it. In other words, the contour through a 1 "covers" the 
original contour C. On the other hand, the original con-
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FIG. 2. The contours of steepest descent C j and C2 in the upper 
half plane through the saddle points 011 and 012, respectively, for 
the absorptive potential n = 3. C1 'covers' the original contour 
C, wheras C2 does not. 

tour cannot be deformed into the contour C2 through a 2 

simply because the segment of the circle in the neigh
borhood of the origin, 1T> a > 1T /5 is not "covered" by it. 

Next let us consider the case of n=4. There are again 
two saddle points, at a 1 = 71T /9 and a 2 = 1T /3. Exact 
analysis reveals that the contour through a l is a closed 
loop, which begins and ends at the origin in directions 
1T and 31T /7, respectively. The other contour emerges 
from the origin in the direction 31T /7 and proceeds 
through the saddle point, a 2 , to infinity. The two con
tours are given in Fig. 3. It follows that the original 
contour C is covered by the sum of the two contours C1 

and C 2 • 

We shall now consider the question of loops in gen
eral. The first loop emerges from the origin in direc
tion 1T, proceeds through the saddle point a 1 and returns 
to the origin at an angle (31' This angle is determined by 
Eq. (34) and the condition Ref(t) - _00. Thus by Eq. 
(34') we have (n - t)(1T - (31) = 21T, or 

{31 =:[(2n - 5)/(2n -1)]1T, n~ 3, 

from which it immediately follows that no loops exist 
for n = 1 and n = 2. By the same argument, the next loop 
which goes through the saddle point a 2 emerges from 
the origin in the direction {31 and returns to it at an 
angle {32' determined by (n - t)( 1T - (32) = 41T, i. e. , 

{32=[(2n - 9)/(2n -1)]1T, n~ 5. 

ty I 

t--..s 
I I 

FIG. 3. The same as in Fig. 2. for the absorptive potential 
n = 4. C1 is a closed loop. The original contour C is "covered" 
by the sum (C 1 +C2). 
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FIG. 4. This figure shows schematically a closed loop C i 
through the saddle point a i with exit and entrance angles fJ i and 
fJ i-I' respectively. at is the angle of the tangent to the loop on 
the right-hand side. 

In general, the jth loop emerges from the origin at 
angle {3, and returns to it at angle {3'_10 where 

{3,=[(2n-1-4j)/(2n-l)]lT, n;;.2ljl +1 (A1) 

However, not all contours are closed loops. Let us 
find the condition of closed loops. Suppose we are in the 
vicinity of direction (3,. We then define a small positive 
angle I) by 

(n -1/2)(lT - a) = 2lTj + I). (A2) 

Therefore the contour in this region is according to Eq. 
(34) determined by 

I tl sin{3, + It l-n+1/2 sinl) = [(n + 1/2) /(n -1/2)] 

x (n _1/2)(n+l/2)-1 sina J" (A3) 

Keeping the angles constant, this expression becomes an 
equation for I t I. Call the left -hand side g( I t I ). It is 
always positive. Its minimum occurs at 

Po = [{n -1/2) sinl)/sin{3,](n+1/2)-\ 

and we have 

g(po) = [(n + 1/2)/(n -1/2)](n -1/2) (n+1/2)-1 

X (sinl)(n+1/2)-1(sin{3 ,)(n-1/2) / (n+l/2) . (A4) 

It follows that if a range of angles I) can be defined, such 
that 

(sinl)(n+1/2)-1(sin{3 yn-l/2) /(n+1/2) > sina i' (A5) 

there will be no solution to the above equation. In other 
words we have a loop through the saddle point a J" 

Let the tangent to the loop on the right hand side be in 
the direction at (see Fig. 4). Clearly, the correspond
ing angle I) t is determined by 

sinl)t = (sina i)n+l/2 /(sin{3 i)n-l/2, (A6) 

from which, by Eq. (A2), a t can be calculated. We 
therefore conclude that if the condition 

(sin{3l-1/2> (sina i)n+l/2 (A 7) 

is fulfilled, there will exist a loop through saddle point 
a , with exit angle {31" To complete the picture we have 
to determine the angle at which the contour returns to 
the origin. It is not difficult to show that this angle is 
equal to {3J-l' The proof is as follows: First, we notice 
that it cannot return to the origin at an angle smaller 

J. Math. Phys .• Vol. 15. No.7, July 1974 

than {3 ,-1' This follows from Eq. (34'). Next, we show 
that the contour cannot pass the direction (3 J-l' At this 
angle the value of I tl is according to Eq. (34) 

I tl1 = bn(sina /sin{3,_l) , (AS) 

where 

bn = [(n + 1/2) /(n -1/2)](n _1/2)(n+1/2)-1. (AS') 

The corresponding value of Re!(t) at this point is ac
cording to Eq. (34') 

- bn sina ,ctg{3 ,-1 - (bn sina /sin{3 '_1)-n+l/2. (A9) 

This should be compared to Re!(t) at the saddle point 
a J," We have, according to Eqs. (32), (33), 

Re !(toi) = - bn cosa 1" (A 10) 

Clearly, 'the contour cannot cross the direction (3 J-l if 

Re!(t1 ) > Ref(to,), (All) 

which by Eqs. (A9) and (A10) can be put in the form 

sin({3 !-l - a i) > ( Si~{3 j-l )n+1/2. (A 12) 
sma

i bnsma , 

This inequality always holds. For n, not small, the left
hand side of Eq. (A12) becomes essentially independent 
of n, whereas the right-hand side decreases like l/n. 
We conclude that if Eq. (A7) is satisfied, there will be a 
loop, emerging from the origin at angle {3 J and retu:r:ning 
to it at angle {3j-l' On the other hand, if Eq. (A7) is not 
satisfied the corresponding contour will start from in
finity, proceed through the saddle point a" and end at 
the origin at angle {3 j-l' 

We now proceed to determine the condition for the 
existence of loops when X *0. Let us define the angles 
{3jby 

(n-1/2)(lT-{3J)+x=2lTj, n;;.2Ij! +1, (A13) 

which is a generalization of Eq. (A1). The exit and en
trance angles of the loop through a, are again {3, and 
{3J-l> respectively. The same reasoning which led to Eq. 
(A 7) will give rise to the condition for the existence of 
loops in the general case. For saddle points in the up-

FIG. 5. The contour of steepest descent for the repulsive ('Y = 0) 
potential n = 7. There are three loops and two open contours. 
The original contour C is "covered" by the sum (C3 + Cz + CI 
+ Co + C_ 1). The cut is in the direction - X = -71'/15. 
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per half-plane (j> 0), we obtain 

(sin(i3 J + X»n+1/2 > (sin(a J + X»n-1/2, (A14) 

and for saddle points in the lower half plane (j < 0), we 
obtain 

(I sin(i3 J + X) I )n+1/2 > (I sin(a J+l + X) I )n-1/2. (A14') 

Application of these conditions shows that for X = Xmax 
= 1T /(2n + 1), the first loop appears in the upper half
plane when n = 3 and the second loop appears when n = 7 . 
For the same value of X the first loop in the lower half
plane appears when n=5, and the second loop appears 
when n=9. 

From the equations of the contours, Eqs. (37), (37'), 
it follows that the contour (loop or open contour, as the 
case may be) through a 1 enters the origin at angle 130 

which by Eq. (A13) is given by 

130 = 1T + 2X/ (2n -1). (A15) 

The contour through a o in the lower half-plane leaves 
the origin at the same angle. As to all the other con
tours, it can be shown that in the upper half -plane the 
contour through a J' (j> 0), enters the origin at i3J-l> and 
in the lower half-plane the contour through a J' (j < 0) 
leaves the origin at 13 J" These conclusions follow from 
arguments which are similar to those which preceded 
Eq. (A12). The generalization of Eq. (A12) for X'" 0 is 
straightforward. For saddle points in the upper half
plane it is 

sin(i3 J-1 - a J) /sin( a J + X) > [sin(i3 J-1 + X) Ibn sin(a J + X) ]n+1/2, 

j> 1. (A16) 

and in the lower half -plane it is 

sin(i3 J - a J) /sin(a J + X) > [sin(i3 J + X) Ibn sin (a J + X) ]n+1/2, 

j ~ 1. (A16') 
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These inequalities hold for all saddle pointS. Our above 
statement is therefore correct. In Fig. 5 the contours 
for n=7 and X=Xmu =1T/15 are shown. We have two 
loops, C1 and C2 in the upper half-plane and one loop C4 

in the lower half-plane. It is obvious, from the figure, 
that the three loops and the two additional open contours 
C3 and Cs "cover" the original contour C completely. 

*This article is based in part on a chapter of the thesis sub
mitted to the Technion by A. P. in partial fulfillment of the 
D. Sc. degree. 
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In other words the Born series converges faster than the ex
ponentiallaw. 

7Further on we show that the main contribution to the ampli
tude comes from the vicinity of saddle points for which 
I p I ""ro. Therefore the evaluation of the amplitude by this 
method is consistent with the assumption roq» 1. 

8From now on most of the time the saddle points will be de
noted by their phases O! J' 

9This factor measures the location of the singularity of the 
interaction; in other words it gives the effective range at in
finite energy. 
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It is demonstrated that in a Wightman quantum field theory with a denumerable set of field 
operators over the test function space9'(R4), transforming covariantly among themselves under a 
unitary representation U (A, a) of the covering group of the Poincare group, the domain Do of 
vectors generated by the polynomial ring over the field operators applied on the vacuum state 
contains a dense invariant set of analytic vectors for U (A, a). 

1. INTRODUCTION 

Regular vectors for Lie-group representations have 
been studied extensively in the literature. 1,2 For a uni
tary representation U(q) of a real Lie group q with Lie 
algebra g in a Hilbert space H one knows, e.g., that 
both the COO domain D"(U(q», the Gl1rding domain 
DG(U(q» and the domain D"'(U(q» of analytic vectors for 
U(q) are dense in H. 

On all these domains the differential dU(g) of U(Ci) de
fines a representation of g by operators essentially 
skew-adjoint. The domain D"'(U(q» also admits free 
passage between the Lie-algebra representation dU{g) 
and the Lie-group representation U(q) by 
exponentiation. 

These results are extremely useful in quantum phys
ics, where the invariance groups of the systems under 
consideration are implemented by unitary representa
tions in the Hilbert space of states, but where the cor
responding Lie-algebra representation has a more di
rect physical interpretation in terms of observables. 

In the Wightman formulation of quantum field theory 
one assumes the existence in the Hilbert space of states 
of a unitary representation of the universal covering 
group fJ: of the restricted Poincarb group P!. In the 
present paper we are going to discuss analytic vectors 
for this representation and for definiteness we formu
late below the axioms. 3,4 

A 0: The space of states is a Hilbert space H over the 
complex field a:. 

AI: The test function-space S(]R4) [or D (]R4)] and the 
set of fields A ={cpj(x); iE 1} are mapped into linear 
operators CPj(CP); CPE S(R4) over H. The operators are 
defined on a common invariant dimse domain D. For 
<J.>, WE D, (<J.>, CPj(')W)ES'(]R4) [orD'(]R4)]. 

A 2: There exists a continuous unitary representation 
U(A, a) of the universal covering group fJ! = T 4 18 S L(2, C) 
of the restricted Poincarb group P: on H such that 

U(A,a)Dc D, (1. 1) 

A3: There is one unique state o,EH (up to normaliza
tion and a phase factor) which satisfies 

U(A, a)o,=o,. (1. 2) 

0, E D and the generators of translations, pI', have their 
spectral support in the set Sp{pU} = {O} U {p;p2 = ~ - if 
~u~> o}. 
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A 4: The fields transform covariantly under U(A, a), 
i. e., 

U(A, a)cpj(cp)U+(A, a) = ~Si:' (A)cpj' (CP(A.O)' (1. 3) 

where CP(A O)(x)=cp[A-1(x-a)] and S is a representation 
of S L(2, a:) which is at most a direct sum of finite-di:.. 
mensional irreducible representations. 5 

A 5: Let I be a denumerable infinite index set. Then 
the polynomial ring 180 over the smeared fields applied 
on 0, is dense in H. The space,lBoo, is denoted Do' 

A6: Let CPl and CP2ES(R4), and let supp CPl be space
like relative to supp cP 2' Then one of the two relations 

cP j(CPl)CP J(CP 2) ± cP icp 2)CP j(CPl) = 0 

holds. This axiom as well as the spectral condition in 
A3 will play no further role in this paper. 

NOW, let cP =CPl(Xl) ® ... cP k(Xk) E®k S (:1t4) [or o,,0 (:ot4)]. 
Then by A 1 the mapping 

cP- CPjl(CP1)"'CPjk(CPk)0, EH 
can be shown to be a strongly continuous mapping of 
®.S (:ot4) into H. 3,4,6 

By using Schwartz nuclear theorem 7 and the fact that 
®kS (:ot4) is dense in S (:ot4k) (the same is true for the D 
spaces), the domain Do can be extended to a domain DIO 
generated by the *-algebra 18 of all quasilocal (or strict
ly local) operators of the form 

MEm, ikE!, with cp(xv •.. ,Xm)ES(]R4m) [orD(m.4m)] 
applied to 0,. 'I:he mapping 

cp(xu ... ,x .. ) 

- f d4xl ••• d4xmcp(xu ··· ,Xm)cf>jl(Xl )'" CPj",(x .. )o, 

is again strongly continuous and the domain Dl =580 is 
dense in H since by construction DoC Dl cH and Do=H. 

Both Do and Dl are Coo domains for the field operators 
and can be shown to be invariant Coo domains for U(A, a) 
in H. In this paper we furthermore show that the quasi
local domain Do, generated by 18 0 with test functions 
from S (:ot4), contains a dense invariant domain of analy
tic vectors for U(A, a), i. e., D"'(U(A, a» n Do is dense in 
H. The same result does not however seem to apply for 
a theory defined on D .8 

The proof that DW(U(A, a» n Do is dense in H does not 
involve A 6 and utilizes only the infinitesimal form of 
Eq. (1. 3) on Do. The result therefore immediately 

Copyright © 1974 American Institute of Physics 1054 
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raises the question of how to formulate a nontrivial gen
eralization of the Wightman axioms A O-A 5 to a 
Poincarl! algebra covariant field theory. Some remarks 
on this problem are contained in Sec. 3. 

2. ANALYTIC VECTORS FOR THE 
POINCARE GROUP 
A. Preliminary discussion 

Let us consider for simplicity a Wightman theory with 
a denumerable set of spinless field operators satisfying 
axioms A O-A 5. The transformation properties of the 
field operators under U(A, a) are then given by 

U(A, a)cfJ If)U+(A, a) = cfJ 1{f(A,a»' fE 5 (:JR.4), (2.1) 

where f(A,a )(x) = f(A -l(X - a». 

The action of U(A, a) on a vector cfJ 1 (fl)'" cfJlk{fk)o, 
E Do is thus given by 1 

U(A, a)cfJI1{fl) ••• cfJlk{fk)o, = cfJ 1l (fHA,a»' •• cfJ Ik{fHA,a»o, 

(2.2) 

and since f(A,a) again belongs to S(R4) [or D (:JR.4)] this 
shows that Do is invariant under U(A, a). Equation (2.2) 
also shows that U(A, a) is C~ on Do (the same is true for 
D l ) since the right-hand side is Coo in any local coordi
nate system around the identity in T4(il, 5L(2, C). For 
the translations we have, e.g., 

k 

= '?;cfJ1l{fl)'" cfJlm(io"fm)'" cfJ1k{fk)0,· 

The generators PI' and M"v of U(A, a) can thus be applied 
freely any number of times on Do. 

By differentiating relation (2.1) applied to any vector 
>II E Do, we get 

[PI', cfJk(f)]>J! = cfJ k(io "f)>II 

[M"v, cfJk(f)]>J! =cfJk(i(x"ov -xvo")f)>II, 

where kE I. 

(2.3) 

(2.4) 

In the following we shall show that Do contains a dense 
invariant domain of analytic vectors for U(A, a). We re
call that an analytic vector for a continuous unitary one
parameter group U(t); tE:JR. in a Hilbert space H is any 
vector >II EH such that U(t)>II is analytic in t. By Stone's 
theorem9 we have U(t) = eftA, with A self -adjoint. Thus 
the analyticity of U(t)>II is equivalent to the convergence 
of the series 

for some I tl > O. 

The vectors in Do have the form 

<1>= 'tocfJil(CPh) ••• cfJim(CPlmH1, ME N,CP1kES(:JR.4), 

i k E I, with <I> = c .0, (c E CC) for M = O. 
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(2.5) 

(2.6) 

We shall work with a particular basis of these vectors 
formed by 

(2.7) 

where >II = co, (c E 0::) when m = O. H(:JR. 4) is the space of 
Hermite functions in four dimensions and nk is the cor
responding multi-index. Evidently D~C Do and the linear 
hull of D~ is dense in Do as well as in H . 

Now from A 3 and the fact that 0, E Do it follows that 

(2.8) 

If A is anyone of pI' or M"v and if <I> is a vector in D~ of 
degree k which we want to prove to be an analytic vector 
for the unitary one-parameter subgroup of U(A, a) gen
erated by A, then from Eq. (2.5) we see that we will 
have to estimate expressions of the form 

IIA~II = IIAmcfJI1(CPnI1)'" cfJ1k(CPnlk)0,1I 

= II [Am, cfJ1l(CPnll)'" cfJ 1k(CPnlk)]o,II, 
(2.9) 

for all mEN. Lemmas for estimating such expreSSions 
are collected in the next section. 

Finally, an analytic vector for a continuous unitary 
representation U'fj) of a real Lie group g inH is any 
vector >liE H such that the mapping g 3 g - U(g)>II is 
analytic. 

B. Lemmas for Hermite functions 

Let us recall that the Hermite functions cP n(x) are de
fined by 

(2.10) 

We define two operators A and B that act as follows on 
the system H(:JR.l ) of Hermite functions: 

ACPn(x)=.Jn+ 1CPn+l(x), (2.11a) 

(2.11b) 

These operators satisfy (AB - BA)cp n = cP n and are re-
1ated to the operators x and 0 = d/ax as follows: 

ocp n = [(A + B)/I2]cp n' 

xCPn = [(-A + B)/I2]cp n' 

By introducing the functions 

cP In)(x) =cP (no,nl,n2,n3)(xO
, xl, X2, x 3

) 

(2. 12a) 

(2. 12b) 

= CPno(XO)cp nl (Xl )CPn2(X2 )cpn3(X3) E0 H( Rl) == H( :JR.4) 
4 

and the operators A" and B"" defined as in (2. lla) and 
(2.11b) for x=x""; /l=0, 1,2,3, we can write 

o""cP In} (X) d(A" + B"")/I2]cp In}(X)' 

(x "OV -xvo"")cp In} (X) = - (A" U _AvB"" )CPln}(x), 

where CPln}(x) E H(:JR.4). 

(2. 13a) 

(2. 13b) 

Now, by A 1 the Hilbert space norm of the vectors 
<I> = cfJ1l (CP1)' •• cfJ1k(CP k) in D~ defines tempered distribu
tions over 0 2kS (R4). The basis in 0 2kS (:JR.4) shall be tak
en to be 0 2~( :JR.4) and we need some estimate for these 
norms. The follOwing lemma due to SimonlO is useful. 
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Lemma'2.1: Let TE S~(:R~) and CPnl(X) E H()tl). We then 
have 

(2.14) 

for some eE JR+ and some P,: sE N. For the norm of the 
vectors in Do we then have 

'Lemma 2.2: Let tPh(CP1)" .tPlk(cpk)nEDo' Then for 
cP Inil E H(JR4) and 1..; j..; k we have 

IItP l l(CPlnJ)' .• tP'k(CP{n l)n/l..; e(l +{nJ)~ll ••• (1 +{n"})II>,,I, 
" (2.15) 

where 
3 

(1+{n})II>JI =TI (1+n )I>J," and eE JR. 
i ,.=0 J," + 

Proof: We have 

/ltP '1 (CP1)' •• tP I,,(CP ,,)n/l 

= I (n,tPj,,(cp,,) •.. tPh(cP1)tPh(CP1) ... tP,,,(cp,,)n) I 1/2, 

(2.16) 

where cP i is the complex conjugate of cP r From the sym
metry properties of the right-hand side of (2.16), the 
reality of the CPlnll: s and by use of (2.14) we get (2.16). 

QED 

Next we are interested in test functions of the type 
or;:cpn and (X,.0v -XvO,.)"'Cpn expressed in terms of the op
erators A,. and B,.. For tempered distributions over 
such test functions we have the following lemmas. 

Lemma 2.3: Let TES'(:otk). Then if CPn,EH{Jl.1) we 
have 

(2.17) 

= (-/2")- 1m II T«A"1 + B"I) mtcP nl1 ••• , (A,." + B .. k)m"CPn,,) I 
..;(v'2)lmle ii (nJ+m J)!)1/2(1+n +m )I>J 

i=1 nJ! J i' 

where eER+, Iml ="T,mJ , andPJEmfor l";j..;k. 

Proof: Since T is separately linear in each variable 
we see from (2.14) that it is enough to prove (2.17) for 
k= 1. The first equality follows from (2. 13a). Thus we 
need to prove the relation 

IT«A +B)"'cpn)l..; e ·2m[(n+m)1 In!]1/2(1 +n+m)l>. (2.18) 

Now (A +B)mcpn can be expanded in a noncommutative bi
nomial series, each term of which has the form Ccp n' 
where C is a monomial of degree m in A and B. By us
ing the triangle inequality after insertion of the expan
sion into (2.18) we see that we have to estimate the 
terms I T(CCP n) I. From (2.14) we get I T(cp n) I..; I T{cp",) I 
for n"; m. By using this and (2.11a) and (2. llb) we find 
that I T{BCCPn) I ..; I T(ACCPn) \ for any monomial C, since 
CCPn=fnCPn' withfn~ O. Thus if C is a monomial of de
gree m we find by induction 

I T(Ccp n) I..; I T(A"'cp n) I..; d(n + m)! In! ]1/2(1 + n + m)I>.(2. 19) 

Since there are 2m terms in the expansion the estimate 
(2.18) follows. QED 

Lemma 2.3 can be combined with Lemma 2.2 to give 

Lemma 2.4: The following estimate holdS: 

J, Math, Phys., Vol. 15, No, 7, July 1974 

IItP
'
l«A,. +B,.)m1CPlnrl)" .tPI~«A,. +B")"'~ln~ln/l 

..; e. 21m I (nl, ,. + ml)! • •• (n~ ... + m~) 1)1/2 
nr,,.I •• • n",,.! 

X,(1 + [m i]muj+ [n i , ,.l.ax),t1t>i1mu, (2.20) 

where I m I ="T,m i' JJ. = 0,1,2,3, and [m i]mu is the maxi
mum of the m , : sand [n i , ,.]mu is the maximum of the 
n i , .. : s. 

Entirely similar techniques, especially estimates of 
the type in (2.19) are used to prove 

Lemma 2.5: The following estimate holdS: 

/ltP'1[(AvB .. +A .. BY'ICPlnll] 

X ... tPl,,[(Afi,. +A,.B)-"CP In"I]n/l..; e· 21ml 

x!({n1, .. + ml) I ... (nk, ,. + mIl) ! (nr.v + ml)! ••• (n",v + mIl) !)1/2 
, nl, .. ! ••• n",,.!n1,v!···n,,,v! 

x (1 + [n i , ,.l.ax + [m i]max)k!Pi, .. Imu 

'X (1 + [ni,Jmax + [m i]max)klP J,v1max. 

C. Analytic vectors for one-parameter 
subgroups of U(A,a) 

(2.21) 

On the basis of the estimates in Sec. 2B we now show 
that the set of vectors in D~ defined in (2.7) are analytic 
vectors for the unitary one-parameter groups of U(A, a) 
corresponding to the generators p,. and M"v. 

Theorem 1: Given a Wightman field theory with a de
numerable set of field operators over the test function 
space S(R4), satisfying axioms AO-A 5 and transform
ing as scalar fields under a continuous unitary repre
sentation U(A, a) of the universal covering group of the 
restricted Poincar~ group in the Hilbert space H, then 
the domain Do defined in A 5 contains a dense invariant 
domain of analytic vectors for the unitary one -parame
ter groups of U(A, a) corresponding to P" and M"v, 
where p,. and M"v are the usual infinitesimal generators 
of U(A,a). 

Proof: I. We start by showing that the vectors in D~ 
are analytic vectors for the translation subgroup U(1, a). 
Since the generators p,. are defined and commute on Do 
it is sufficient to consider JJ. = 1, say. Let us first treat 
the simplest nontrivial case of a vector tP icp Inl)n E Do. 
ff a1 E JRl we have, using (2.3) 

.., 1 .., 1 
IIBm_1 (ia1)m~tPJ(CPlnl)n/l..; ~m! I ~ I m/ltP prcp Inl)n/l 

(2.22) 
.., 1 

= ~ m! I all m( v'2)-m/ltP i[(Al + Bl)"'Cp Inl ]nll 

..;eto~! lv'2allm(nl~~)!y/2(1+nl +m)Pt, 

where the last inequality is given by Lemma 2.4 for 
k = 1. The power series converges by the root test, 
since for m > tlr the coefficient of the mth power does 
not grow faster than 

.!.-(nl +m)l)l/2(2m)Pt..; 1 (v'2)"l+2i>l (..fm)n1+2Pt (m > n
1
). 

m I nr! "Tn;T rmi 
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The case of an arbitrary vector 4>ll(CP{nl')" • 4> Ik(CP{nk')O 
E Db is only slightly more complicated. USing Lemma 
2.4 we have 

X.{II4> 11 (ailcp (nl')' •• 4> Ik(a~kcp Ink,)OIl} (2.23) 

., e ~ --"!....I v'2 ka,.1 m([nj,l]",ax + m) IV /2' 
"",om! [nJ)maxl ") 

x(1 + [nJ.l]max +m)kIPJ,llmax. 

For m > [n J• 1 ]mu we have for the coefficient of the mth 
power: 

(
[nJ.dmax + m) !)1/2 (1 + [nJ.1]max + m)kIPj.1 Imu (2.24) 

[n j • 1 JDlax! m! 

m k1p j Ilmax+ 1n J Ilmu/2 
"" ([n 1 ,)-1/22kIPJ·llmu+lnlllmax/2 • . 
-..,;;: j,lJmax • " Tmi' 
which again shows by the root test that the series con
verges. This concludes the proof for the translations. 

II. Next we treat the subgroups corresponding to rota
tions (with generators Mil' i,j= 1, 2, 3.) and Lorentz 
transformations (with generators MOl' 1 = 1, 2, 3.) simul
taneously. From Eqs. (2.4) and (2. 13b) we see that the 
same formalism and the same estimates will hold for 
both cases. Let us choose for definiteness M12• Again 
we start with the vector 4> j(cp In')O E D~. With 8 E Btl we 
have 

(2.25) 

x (1 + n1 + m)P1(1 +n2 + m)p2. 

The last line follows by use of Lemma 2.5. For 
m > max(nl> ~) the coefficient of the mth power behaves 
as 

-l,(n1 + m) ;(n~ + m) !)1/2 (1 + nr + m)Pr(1 + ~ +m)P2 
m. n1 .n2 • 

., 2Pl+P2+(n1+n2) /2mPr+P2+(nl+n2) /2(n1 !n2 1)-1/2. 

By the root test, this shows that the series converges 
for 1 81 <~. 

Next, consider the series 

II E ~ ! (i8)mMr24> it (cp (nl')' •• 4> ik(CP Ink,)OII 

., e'. t --"!.... (21 8 1 k)m/([nl.1 ]max + m)! ([nl.21ax + m) !)1/2 
m=om I \ [nl.r1IlaXt[nl.21mu! 

x (1 + [n.] + m)kIP; llmax(l + [n ] + m)klPI 21max ,,1 max ' i,2 max ' 

:5 e" t 128 k 1 mmk(IPj.llmax+IPj.2Imax)+1/2 ([nl.llmax+1nj. 2Imax). 
m::: O 

(2.26) 
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which converges for 181 < 1/(2k). 
Hence Db consists of analytic vectors for the unitary 

one -parameter subgroups corresponding to PI' and M"V 
and the same holds for the linear hull of Do which is 
contained in Do. Furthermore the set ~ = linear hull 
of {U(A, a)l/J; (A, a) E P t and l/J E DJ is an invariant dense 
domain of analytic vec·fors for PI' and M"v contained in . 
Do' QED 

D. Analytic vectors for U(A,a) 

The following stronger version of Theorem 1 holds • 
Theorem 1': Under the same assumptions as in Theo

rem 1, Do contains a dense invariant set of analytic vec
tors for U(A, a). 

We shall prove that the vectors in Do are analytic for 
U(A, a). For this proof we need four lemmas. 

Lemma 2.6 (Goodmanll
): Let the Lie group g be a 

semidirect product of the two subgroups gland Cj 2 and 
let U'(j) be a unitary representation of Cj in the Hilbert 
space H. If U'(j 1) and U'(j 2) are the restrictions of U'(j) 
to Cj 1 and Cj 2' respectively, then 

DW(U'(j» = DW(U'(j 1» n DW(U'(j 2»' 

This is a special case of Lemma 2.7 (Flato, Simon12): 
Let Cj be a Lie group with Lie algebra g and let Cj 1 and 
Cj 2 be two subgroups of g with Lie algebras gl and g2 
such that g is a unif{cation of gl and g2' Let U(g) be a 
unitary representation of Cj in the Hilbert space H. If 
u(g 1) and U(g 2) are the restrictions of U(g) to gland 
Cj2' respectively, and if DW(U(Cj» n DW(U(~) is dense 
in H, then 

DW(U(Cj» = DW(U'(j 1» n DW(U'(j 2»' 

Lemma 2.8 (Flato, Simon12): Let Cj be a Lie group 
with Lie algebra g and let U'(j) be a unitary representa
tion of Cj in H. Let {Xl' ••• ,xn} be an arbitrary basis for 
g and let U(Gj(t», tE lR be the unitary representations of 
the one -parameter subgroups et" I, i = 1, ..• ,n. Let 
DW(U(Gj(t))) be a dense invariant domain of analytic vec
tors for U(GI(t». Then ifCj is compact 

DW(U'(j» = n DW(U(GI(t))). 
1=1 

Lemma 2.9 (Goodmanll): Let Cj be a solvable Lie 
group with Lie algebra g. Let {x J~=l be a Jordan basis 
for g, i.e., a basis such that £1 =span{xiL"1 is a sub
algebra of g with £1 an ideal in £1+1' Let U(Cj) be a uni
tary representation of Cj in the Hilbert space H and let 
U(G /t» = U(etx j), t E 1R. be the representations of the uni
tary one -parameter groups e t" J of Cj for j = 1, •.. d. 
Then 

Proof Of Theorem 1': The representation U(A,a) of the 
universal covering group ']'418 SL(2, <1:) of the Poincar~ 
group in H is composed into 

U(A, a) = U(T4)C5 U(SL(2, <1:» . 
The representation U(SL(2, <e» is further decomposed 
according to Iwasawa in 

U(SL(2,<I:» = U(K)U(R), 
where K is a compact Lie group and R is a solvable one. 
The generators of U(K) are M 23 , M 31 , and M12 and those 
of U(R) are M03 ' M 23 +M02 ' and - (~3 + MOl), which is 
easily seen to be a Jordan basis for the Lie algebra of 
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U(ll). Now, the domain Dt is a dense invariant set 
of analytic vectors for P'" and M"'v according to Theorem 
1. Let us assume for a moment that the vectors in DfJ 
are also analytic for the one-parameter groups corre
sponding to Ma3 + Moa and - (Ml3 + MOl)' Then by Lemma 
2.8 and Lemma 2.9 the domain Dt is also a common 
dense invariant domain of analytic vectors for U(K) 
and U(R). By Lemma 2.7 the domain Dt is therefore a 
dense invariant domain of analytic vectors for 
U(SL (2, C», and finally, by Lemma 2. 6 and the fact that 
the translation group is Abelian, it is a dense invariant 
domain of analytic vectors for U(A, a). 

It remains to show that the vectors in D6 are analytic 
for the unitary one -parameter groups corresponding to 
Mas + M02 and - (M13 + MOl)' 

I. We consider first Mas + Mw The vector cfJ j(qJ In)O 
ED6 and with bE It we have 

11.to~ I (ib)"'(Mas + M02 )"'cfJj (qJln,)011 

~ 1 
,.; L; -, I b I "'lIcfJ j«X203 - XS02 + XOo2 - xaoo)"'f/J In,)OIl 

",=om. 

~ 1 
= ~mr lb I "'''cfJj«AsBa -AaBs +AaBo -AoB2)"'qJ'ftl)01l. 

Now IIcfJ j([(As -Ao)B2 + Aa(Bo -Bs)]"'f/Jlnl)OIl is expanded 
into a series of terms containing Ai: sand B i : s. After 
application of the triangle inequality every term in this 
series is majorized by the corresponding term where 
any Bi is replaced by a corresponding Ai' i=O, 2, 3. 
Thus 

IIcfJ j([(As -Ao)B2 +As(Bo -Bs)]"'f/Jlnl)OIl 

,.; 2",(n2 +m) !)1/2t (m) (no + k) !(ns + m - k) 1)1/2 
na l k=o\k no1ns! 

x IIcfJ J(qJ (nO+.'nl,na+""n3+"'-.»0II. 

NOW, let n=max(no, ns). Since m ~ k, we have 

(
no+k)!(ns +m - k)!)1/2 ,.; (n+ k)I(H+m _k)I)1/2 

no!ns! HIH! 

_ (n +m)! )1/2(n + k)! (n+m _ k)! )1/2 ,.; (n+m) 1)1/2 
- nl JiI(n+m)1 HI' 

Thus 

IIcfJ J([(As -Ao)Ba +As(Bo -Bs)]"'f/JlnllOll 

,.;c·4",(n+m)! (l+n+m)31> 
n! ' 

where n=max(ns, H) and p=max(PO,P2'PS) E IN. 

From this follows 

,.;ct 14bl'" (n+m)1 (l+n+m)SI><oo for b<I/4. 
"..0 ml n! 

Next we consider an arbitrary vector cfJh(qJ Inh l) 
000 cfJik(qJ{nik,)OE D6• Let bE Bt. We then have 
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x max {lIcfJil«AsBa -AaBs +AaBo -AoBa)hqJlnill) 
o .. Jl .... · Jk". 

h+·"+J,,:lS rK 

x 0.0 cfJi.«AsBa -AaBs +AaBo -AoB2)JkqJ Inikl)OIl} 

,.; c t 14bk I'" max (nil + it> ! ... ~ (nib + it) I 
_0 ml o .. h .... ·J..... nill ... ni.1 

h.-· ·+i,,:tI. m 

x (1 + nil + A)Sl>il •.. (1 + nik + j.)Sl>i.) 

',;;: t 14bkl'" (n+m)1 (1 + + )SkP 00 
~c ".=0 ml nl n m <, 

for b < 1/(4k), where n=max/niJ) and niJ 
= max(ni J' 0, ni J. a, nf i.' s) and P = max iPi J) with Pi J 
= max(Pi j,O' Pi j, 2' Pi j,s)' 

This concludes the proof that DfJ consists of analytic 
vectors for the unitary one -parameter group corre
sponding to M2s + M o2 ' 

II. From the preceding calculation it is immediately 
clear that the vectors in Do are also analytic for the uni
tary one-parameter group corresponding to - (MIS + MOl) 
the only difference in the proof is that we have to ex
change the index 2 by 1 everywhere. Thus the proof of 
Theorem l' is complete. QED 

In both Theorem 1 and Theorem l' we have for sim
plicity considered spinless field operators. It is evident, 
however, that spin degrees of freedom can be introduced 
as in A 4 without changing the validity of the theorems, 
since the spin generators act as index transformations 
on the· fields. 

Remark 

The existence of a dense invariant subset of analytic 
vectors for the translations U( 11., a) in Do can also be 
proved directly by USing Eq. (2.2) with A = 1. Since the 
mapping from ®.S( R4) to H is strongly continuous, the 
vector cfJil{fl)" .cfJi.{fk)O E Do is analytiC for U(I,a) if 
the !j(x):s are nice real-analytic functions. As is well 
known there is in S (R4) a dense subclass of analytic 
functions which provides Do with a dense set of analytic 
vectors for U(I, a) in this case. This argument suggests 
that when the test function space is D(R4), then the do
main Do does not contain a dense subset of analytic 
vectors for U( 11., a). 

3. DISCUSSION 

The result that the quasilocal domain Do contains an 
invariant dense set of analytic vectors for the unitary 
representation U(A, a) of T4 IS? SL(2, 0:) first shows that 
the Wightman axioms A O-A 5, especially the cyclicity 
of 0 in A 5, are rich enough to give a concrete domain 
on which free passage between the Poincarl! algebra 
representation and the Poiricarl! group representation 
is possible. Secondly it might eventually permit a dis
tinction between theories where the test function space 
is S (£4) and where it is D (:£4). Thirdly it indicates pos
sible departures for generalizations of the axioms to 
more general physical situations. One possible type of 
generalization is to consider a Poincare algebra co
variant quantum field theory defined by replacing 
axioms A 2, A 3, and A 4 by 
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A 2'. There exists a (continuous) representation T(p) 
of the-Poincare algebra p=t4 18 sl(2,<r) on D such that 

T(p)DC D. (3.1) 

A 3'. There is one unique state 0 (up to normalization 
and a phase factor) EH and satisfying 

(3.2) 

(3.3) 

where {iP' ,iMl'v} is the usual basis in T(p). OE D and 
for any vector \f! E D, (0, \f!) = 0 we have (\f!, Po\f!);;' lJ.o 11\f! 112 , 

lJ.o>O. 

A 4'. The fields <P I transform covariantly among them
selves under commutation with operators from T(p), 
i. e., for \f! ED we have 

(3.4) 

[Ml'v,<p~(cp)}Ir = t T::'<P~.(CP)\f! + <Pk(i(xl'av -xva")cp)\f!, 
", =0 

(3.5) 

where kE I and T::. are matrix elements of a represen
tation of sl(2, <r). 

If for D we chose Do, since this is the concretely 
given domain, then the following remarks apply. 

For spin zero fields over S(R4
), the calculations in 

Sec. 2C show that Db is a set of analytic vectors for the 
basis {iPI', iMl'v} of T(p) and since the linear hull of D~ is 
dense in H, T(p) is integrable. 13 This is actually also 
true when the test function space isD (R4), since we can 
always define a unitary representation U(A, a) of T4 

18 SL(2, <C) transforming the fields as in (2.1) and giving 
rise to a representation dU(P) of p which coincides with 
T(p) on Do' The generalization is therefore trivial in 
this case. 

For fields with spin, the situation is more complex. 
The requirement T( p)Do C Do, however, puts strong re
strictions on the representation T of sl(2, <C). In general 
this condition can be always fulfilled only if the repre-
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sentation T of sl(2, <r) is decomposable into a direct 
sum of finite-dimensional irreducible representations, 
since an infinite sum in (3.5) will take vectors in Do out 
of Do' If the representation T(p) is symmetric then it is 
in this case integrable to a unitary representation of T4 
~ SL(2, <C), since the definition in (2.1) is exactly the 
one required. 

When T(p) is not required to be symmetric on Do, then 
nontrivial generalizations exist. This is of course also 
true when D is a more general domain than Do. 
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Factorizable and infinitely divisible projective unitary-antiunitary representations of locally compact 
groups are analyzed in terms of their "expectation values." A connection between these and first 
order cocycles is established. As a consequence a very general analog of the Araki-Woods 
embedding theorem is proved. 

INTRODUCTION 
In this paper we are concerned with factorizable and 

infinitely divisible projective unitary-antiunitary (PUA) 
representations. These are of great interest in quantum 
field theory. The former ones arise as the simplest 
representations of "current groups." The latter ones 
are closely linked to continuous tensor products. Fac
torizable representations were first discussed by 
Araki. 1 While the connection of infinitely divisible 
representations and continuous tensor products was ex
hibited by Streater. 2 Then Parthasarathy and Schmidt 
gave an almost complete analysis of both kinds of rep
resentations. 3 Here we give an extension of the result in 
Ref. 3 to the case where antiunitary operators may oc
cur in the representation. This is of interest since with 
a sufficiently large symmetry group in quantum me
chanics (e. g., the extended Poincare group) antiunitary 
operators occur in the representation. The methods of 
proof used in Ref. 3 apply for most of our theorems with 
more or sometimes less trivial modifications. The 
main difficulty consisted of finding suitable "positive 
definite Kernels" (as opposed to positive definite func
tions) to describe our representations. In Sec. 1 we ex
hibit a correspondence between "UA-Araki multipliers" 
and" Araki-s functions, "on the one hand, and unitary
antiunitary (UA) representations and their associated 
first order cocycles in a Hilbert space, on the other 
hand. In Sec. 2 we make a detailed analysis of "factor
izable PUA representations." In Sec. 4 we make use of 
the results in Secs. 1 and 2 to redefine the "UA current 
group" and prove that even under these most general 
circumstances an analogue of the "Araki-Woods embed
ding theorem" still holds. That is, we give an explicit 
construction which allows us to embed a "factorizable 
PUA representation" in a symmetric Fock space over a 
Hilbert space. 

Preliminaries: Given a locally compact group G, we 
consider a projective unitary-antiunitary representation 
(PUA representation) in a separable complex Hilbert 
space H. If G = G+ U G- is the associated UA-decomposi
tion (for details see Ref. 4) where G+ = {g E G : g is 
mapped into a unitary operator under the representa
tion}, G-={gE G:g is mapped into an antiunitary opera
tor}, then we have the following. Our representation is 
a map G - unitary / antiunitary operators in H sending 
g- Ug which is measurable w. r. t. suitable Borel struc
tures (see Ref. 4) together with a map (J: G x G - Sl (the 
complex unit circle) which is also measurable (again in 
a suitable sense) such that the following holds: 

(i) Ug1 Ug2 = (J(gl> g2)UC1g2 V gl, g2 E G, 
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(iii) (J(e,g)=(J(g,e)=l VgEG 

(j is then called a UA multiplier and is in fact a second 
order cocycle. 

An additive UA multiplier is then a function s: G x G 
-IR which is measurable (or continuous) and satisfies 

(i) s(gl> g2) + S(g~2' g3) ={S(gl> g~3) + S(g2' g3), gl E G+, 
S(gl,g~3)-S(g2,g3)' glEG-. 

(ii) s(e,g)=s(g,e)=O VgEG. 

Note: exp(is) is then an ordinary UA multiplier. We 
shall also need the notion of positive definite (condition
ally positive definite) Kernels: 

A function K from xxx - C, where X is a topological 
space (Borel space) is called positive definite if 

n n 

V choices of points xl> ••• xn E X and arbitrary complex 
numbers al> ... , an. It is conditionally positive definite 
if this inequality holds whenever L~=l ai = O. Usually our 
Kernels will be continuous in the product topology. This 
then leads to the concept of a" conditionally s-positive 
definite function": 

Given a continuous function cp: G - C and an additive 
UA multiplier s, which is continuous, we say cp is 
"conditionally s-positive definite" if the following holds: 

(i) cp(g-l) = {cp(g), gEG:, cp(e)=O 
cp(g), gE G , 

(e = identity in the group), 

(
ii) {-S(h-l,g-l) (g,h)EG+XG+UG-xG-, 

s(g,h)= s(h-l,g-l) (g,h)EG+XG-UG-xG+, 

(iii) the Kernel 

{
CP(h-1g) + is(h-l, g), 

K(g, h) = cp(h-1g) _ isWl, g), 

is conditionally positive definite. 

A kernel K is called Hermitian if K(x, y) =K(y, x), 
V x, Y EX. From (iii) and Lemma (2.2) in Ref. 5 it then 
follows immediately that the following Kernel is positive 
definite and Hermitian and satisfies ptp(e, e) = 0: 

{
Q;W1g) _ Q;(g) _ Q;(h-1) + is(h-1, g), hE G+, 

p",(g, h) = cp(h-1g) _ cp(g) -7fJ(h-1) _ is(h-l, g), hE G-, 

Copyright © 1974 American Institute of Physics 1060 
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for a motivation and further details of these prelimin
aries see Refs. 3 and 5. 

I. MULTIPLIER-VALUED MEASURES. 
CONDITIONALLY S-POSITIVE FUNCTION
VALUED MEASURES AND COCYCLES 

In order to analyze "factorizable PUA representa. 
tions" we have to study additive-UA-multiplier-valued 
measures and conditionally s-positive function-valued 
measures. 

We introduce the following definition. 

Definition (1.1): Let (T, S) be a standard Borel space. 
A function s: S x G x G - IR is called a UA-Araki mul
tiplier (cf. Ref. 6) if the following conditions hold: 

(i) For every fixed (gbga) E GXG, s(· ,gbga) is a 
totally finite signed measure in S. 

(ii) For every fixed A E S, the function seA, " .) is an 
additive UA multiplier on G x G. 

For a given UA-Araki multiplier s, a function q;:S XG 
- CC is called an Araki s function if the following 
conditions hold: 

(1) For every fixed gE G, q;(., g) is a totally finite 
complex measure on S. 

(il) For every fixed A E S, q;(A,.) is a conditionally 
s(A,·, • )-positive function on G. 

[All multipliers are defined w. r. t. the same normal 
subgroup G+ (cf. Ref. 4) of G.] 

We choose and fix a standard Borel space (T, S) and 
a pair (s, q;) of a UA-Araki multiplier and an Araki s 
function. We now define a kernel K", on the space (SxG) 
x (S x G) by the following equation: 

K",(A,g.B, h) 

j
q;(A nB, h-1g) - q;(A nB,g) - q;(AnB, h-l ) + is(AnB, h-l,g), 

hEG+ 
= ~(AnB, h-1g) _ q;(A nB,g) _ q;(AnB, hell _ is(AnB, h-l,g): 

hEG-. 

Lemma (1. 2): The kernel K", defined above is positive 
definite in the space (S x G) x (S x G). 

Proof: Let AlJ As • .•. , An ES, gl, ga, ... ,gn E G and 
all as, •.•• a" be complex numbers. Let Bh B a, .••• Bm 
be the atoms of the ring generated by AI, Aa • .•• , An. 
We set 

( ) {
I if BkcA j • 

X i,k = 0 otherwise, 

Thus we have 

i= 1.2, •. 'n, 
k=1,2,···m. 

= E{ttaIX(i,k>aX(j,k) [q;(B,.,g~:g{) 
It=1 1=1 i=l i. W(B", gj gl) 

- q;{B,., g.) - q;(Bk,gjl) + is(Bk' g'/,gj)]} gi E G+, 
- q;(B,., gl) - ep(B,., gjl) _ is(B,., gjl, gl) , gj E G-. 

Since q; is an Araki s function we have that every term 
inside the brackets is nonnegative. QED 

J. Math. Phys., Vol. 15, No.7, July 1974 

Lemma (1. 3): Let q; be an Araki s function. Then 
there exists a separable Hilbert space H spanned by 
vectors YeA, g, h), A E S, g, h E G such that the inner 
product is given by the following equations: 

(Y(A,gb h1), Y(B,gz, ha» 

(i) = <P(A nB, hilg;.lg1hl) - q;(A nB, h;.lgilgl) 

- q;(A nB, g;.lg1h1) + q;(A nB,g;.lgl) 

+ i[s(A nB, hi.t, g;'lglhl) - seA nB, hit, gi1gl)], 

if (ga, ha)·E G+XG+ 

(ii)= ~(A nB, hi1gi1glh1) -Cii·(A nB, hi1gi1gl) 

- q;(A nB, g;,l&hl ) + q;(A nB, gi1gl) 

+ i[s(AnB, h;.l,gi1gl) - s(AnB, hi\g;,lglh1), 

if (ga, ha) E G+x G-

(iii)= qi(A nB, h;,lgi 1g1h1) - qi(A nB, hi1g;'lg1) 

- ep(A nB, gi1g1hl) + qi(A nB, g;,1g1) 

+ i[s(A nB, hi!, g;.lg1 ) - s(A nB, hit, g';,tgIh1)], 

if (ga, ha) E G-xG· 

(iv)= q;(A nB, h'21g;.1&hl) - q;(A nB, h;.1g';,lg1) 

- qi(AnB, gi.1gthl) +ep(A nB, gi1gl) 

+i[s(AnB, h;.1,gilg1hl) - seA nB, h;,l,g;.lg)] 

if (gz,ha)EG-XG-

VA, B E S, ghga, hh haE G. 

Proof: This follows by considering K", as the covari
ance function of a complex Gaussian stochastic process 
X(A ,g) where (A, g) ES x G cf. Ref. 6 and then setting 
Y(A,g, h) = x(A,gh) -x(A,g). Let H(A) be the span of the 
Y(A,g,h) as g,h vary over G. Let p(A) be the projection 
onto H(A). Then we have the following lemma: 

Lemma (1.4): A-P{A) is a projection-valued mea
sure on (T,S). We also have 

P(A)Y(B,g,h)=Y(AnB,g,h) VA,BES. 

This leads us to the following main result in this section 
which is obtained in the manner similar to Theorem 
(2.1) in Ref. 6 with some fairly obvious modifications: 

Theorem (1. 5): Let G=G+U G- be a locally compact 
second countable group and (T,S) be a standard Borel 
space. Let further (s, q;) be a pair consisting of a UA
Araki multiplier s and an Araki s function q; on S x G x G 
and S x G, respectively. Then there exists a complex 
separable Hilbert space H, a projection-valued measure 
A - p(A) on S, a continuous UA representation g - UK of 
G in H, and a continuous function g- O{g) in G with val
ues in H such that the following holds: 

(i) UKO(h) = O{gh)- O(g) V g, hE G. 

(ii) The subspaces H(A) =P(A)H are invariant under 
all UK' 

(iii) for every A E S ; g, hI' ha E G we have 

(P(A)UAh1), O(ha» 
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_{CP(A, hilghl) - cp(A, h'31g) - cp(A,gh1) + cp(A, g) + i[s(A, hal, gh t ) - seA, hil, g)], haE G+, 
- '9'(A, h'3lghl) - '9'(A, h;.lg) - cp(A, ghl ) + cp(A, g) - i[s(A, hil, gh1) - seA, hil, g) 1, ha E G" . 

Further the Hilbert space H can be written as a direct 
integral H == f T H t dJ..L(f) with respect to a totally finite 
measure J..L on 5, where the family {Ht : t E T} satisfies: 
(i)' For all tE T there exists a representationg-U(f,g) 
of G in H t such that U, = f T U (g, t) d J..L (t). (ii)' The proj ec
tion valued measure A - P(A) is given by 

peA) = JT XA (t)It dJ..L(t) (It = identity operator in Ht ). 

(iii)' For every t there exists a continuous map g 
- o(t,g) from G into H t such that 

U(t, g) oCt, h) = oCt, gh) - oCt, g) 'fig, hE G 

and 

O(g)=JTo(t,g)dJ..L(t) 'fIgEG. 

The measure J..L is determined up to equivalence. The 
map t - W(t, • ), oCt, • » is determined up to unitary 
equivalence, a. e., [J..L]. 

Conversely: Given a totally finite measure J..L and a 
triplet (Ht,U(t,'), o(t,'» for every t such that (i)', (ii)', 
(iii)' hold and the direct integrals are well-defined, 
then we can construct an UA-Araki multiplier s and an 
Araki-s function cp such that (U" peA), 0) defined by (i)', 
(U)', (iii)' satisfies (i), (ii), and (iii). If (s', cp') is an
other pair satisfying the same conditions then (s - s') 
is trivial for every fixed A and Recp = Recp'. 

Note: A continuous multiplier s(g, h) is trivial if 
there exists a continuous real-valued function a: G-IR 
such that 

s( h)={a(gh)-a(g)-a(h), gEG+, 
g, a(gh) - a(g) + a(h), g EGo. 

That is to say, a trivial multiplier is just a coboundary. 

Proof; We only note that for the converse one sets 

cp(A, g) = - ~ (P(A)o(g), o(g», 

(A h) = {Im(p(A)o(h), O(gol», gE G+, 
s ,g, -Im(P(A)o(h),o(g-l», gEG". 

Remark: This gives the generalization of Theorem 
(2.1) in Ref. 6. 

2. MULTIPLICATIVE MEASURES AND 
FACTORIZABlE FAMILIES OF a·POSITIVE 
DEFINITE FUNCTIONS 

In order to study factorizable representations we have 
to analyse "nonatomic complex-valued multiplicative 
measures" and'" (l-positive definite functions. " We need 
a definition and two lemmas from Ref. 6. 

Definition (2.1): Let (T, 5) be a standard Borel space. 
A function M : 5 - C is called nonatomic complex-valued 
multiplicative measure if the following holds 

(i) 0 < I M(A) I ~ 1 'fI A E 5, 
(ii) M(</»=l, 

(iii) M{U~.l AI) == II;".l M(AI ) for any disjoint sequence 
{An}E 5, 

(iv) for every Single point set {t}, tE T, M({t}) = 1. 

Throughout the remainder, by a multiplicative mea-
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-I ---------------------------sure we shall always mean a nonatomic complex-valued 
one. The following lemma shows that every multiplica
tive measure is the exponential of an additive measure. 

Lemma (2.2)6: Let M be a multiplicative measure on 
(T,S). Then there exists a unique nonatomic complex
valued totally finite measure m such that 

M(A) == exp[m(A) 1 vA E S. 

We shall also need the following. 

Lemma (2.3)6: Let Xbe an arbitrary topological 
space and K:SxXXX-C have the following properties: 

(i) K(· ,x, y) is a multiplicative measure on 5 'fI x, y 
EX. 

(ii) K(A, • , • ) is a continuous positive definite Kernel 
on XxX 'fIAES. 

Then there exists a unique function K' :SXXXX-C 
satisfying the following conditions: 

(a) K'( " x, y) is a totally finite nonatomic complex
valued measure on 5 'fIX,YEX; 

(b) K'{A,' , .) is a conditionally positive definite 
Kernel on XxX whose real part is continuous; 

(c) K(A,x,y)=expK'(A,x,y) 'fIAES, X,yEX. 

Definition (2.4): A function cp: G -C is called u 
positive for a UA-multiplier u if the following holdS: 

(1) 

{
q;(g"l) , 

CP(e) == 1, cp(g).= cp(g"l), 

(ii) the kernel 

{ 
u(h"l, g)cp (h"19), 

K(g, h)= U(h"1,g)'CP(h-1g), 

is positive definite in G x G. 

gEG+, 
gE G", 

hE G+, 
hE G", 

Definition (2.5): A family {u(A, • " );CP(A, .)}A E 5 of 
UA multipliers on G xG and u(A,',' )-positive functions 
cp (A, • ) on G is said to be factorizable if 

(i) u{ • ,g, h) and cp( " h) are multiplicative measures 
on 5 'fig, hE G, 

(ii) 

(A h) 'fUCA, h"t,g"l), (g, h)E G+XG+ UG"XG", 
u ,g, == u(A,h"t,g"l), (g,h)EG+XG"UG"xG+ 

With the preceding lemmas and definitions it is then 
fairly easy to prove (see Ref. 6) the following. 

Theorem (2.6): Let G be a locally compact group, 
(T,5) be a standard Borel space. Let {u(A,' , .); 
cp (A, • )} A E 5 be a factorizable family of continuous U A 
multipliers u(A, • , .) defined w. r. t. the same normal 
subgroup G+ on G xG and (l(A, " • )-positive continuous 
functions cp(A,.) on G. Then ::I a map {3: 5 x G - 81 such 
that (3(A, .) is a continuous function on G for every 
AE 5, (3( ',g) is a multiplicative measure for every 
gEG and 

exp[1/J(A,gh) +is(A,g, h)] 
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_J a{A, g, h)CP (A, gh)f3(A, g)~(A, h), gE G+, 
-l a{A, g, h)cp(A,gh)f3(A,g)f3(A, h), gE G-, 

where s is a UA-Araki multiplier and l/J is an Araki s 
function. Further if 0'= 1 we may choose f3 = 1, s = 0. 
We need another two definitions. 

Definition (2.7): Let (W<ll, 0'1' Xl) be two cyclic UA
multiplier representations acting in Hilbert spaces H l> 

i = 1, 2, respectively, where both representations are 
defined w. r. t. the same normal subgroup G+ of G. Their 
convolution denoted by (W<l), au Xl) * (W<2) , 0'2' X2) is the 
UA-multiplier representation W<l) 0 W(2) restricted to 
the cyclic subspace generated by Xl 0X2 in H 1 0H2 • The 
multiplier of the convolution is clearly 0'10'2' 

Definition (2.8): For any cyclic UA-multiplier rep
resentation (W, 0', x) of G the function f(g) = (W8'x, x) is 
called its expectation value. We then have the following: 

Lemma (2.9): Let (W, 0', x) be a cyclic UA-multiplier 
representation where 0' satisfies 

(i) a(h-l _l)={a(g,h), (g,h)EG+XG+UG-xG-, 
,g a(g,h), (g,h)EG+XG-UG-xG., 

(ii) a{g,g-l) = a(g-l, g) =1; 

then the expectationf(g)=(W~,x) is 0' positive. 

Proof: Straightforward computation. 

Definition (2.10): Let (T,S) be a standard Borel space 
and for every A F S let (WA, a(A, 0,0), xA) be cyclic UA
multiplier representations of G. (All defined w. r. t. the 
same G+.) The family {WA, a(A,','), xA}AE S is said to 
be factorizable if 

(i) for every sequence {An} of sets in S descending to 
a single point set we have 

lim (W:nXA ,xA )=1 
n~~ n n 

and therefore 

lim a(An , g, h) = 1 
n-= 

uniformly on compact sets of G and G x G, respectively. 

(ii) for every A E S and any finite measurable parti
tion of A into sets AUA2" •• ,Ak, the cyclic representa
tions (WA, a(A, 0, o),xA) and (WA1, a(Au 0, '),xA) 

* 0 •• * (WAk, a(Ak" ,0 ), X Ak) are unitarily equivalent. 

In order to see how Araki s functions and factorizable 
representations are connected, we need another lemma. 

Lemma (2.11): Let (T,S) be a standard Borel space, 
G = G+ U G-, locally compact and second countable as 
usual, and let {WA, a{A, 0,0 ),xA} be a family of factoriz
able UA-multiplier representations of G then {g:f(A,g) 
=(W:XAOXA)*O}AES forms an open subgroup of G. 

Proof: Since f( T, g) = j(A, g)f(A' ,g) it is sufficient to 
show {g:f(T,g) *O} is an open subgroup of G. We first 
show that Ij(T, g) 12 is positive definite and continuous. 
For this we need the a(T, • , .) extension of G (denoted 
by GU) which is defined as follows: GU = G X Sl as a set 
with group operation given by 

(gH Al)o (g2' A2)={(glg2' Al~2a(T,gug2»' gl E G., 
(glg2' A1 A2a(T, gu g2»' gl E G-, 
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VgH g2 E G, AU A2E Sl. 

lt is then easy to see that furnished with the product 
Borel structure GU is a standard group. (This definition 
was also given by E. Khabie independently of the author 
in an unpublished paper). Now the proof proceeds along 
the lines of Lemma (4.1) in Ref. 6. We are now ready 
to state the main result connecting Araki-s functions 
and factorizable cyclic UA -multiplier representations. 

Theorem (2.12): Let (T,S) be a standard Borel space 
and {WA, a{A, ',0), xA} be a factorizable family of cyclic 
UA-multiplier representations of G. Then there exists 
another factorizable family {-RTA, &(A, " • ), x A} such that 

(i) for each A, (WA, a(A, " .), xA) and (WA, &(A, • , .), xA) 
are projectively equivalent (i. e., unitarily equivalent 
up to a scalar factor of modulus 1) 

(ii) {g:f(A,g)=(WiAOXA)*O} is an open and closed 
subgroup N of G and on that subgroup f(A,g) is a(A,',')
positive VA E S . 

(iii) The family {&(A, ., • ),f(A, o)} is factorizable in 
the sense of Definition (2.5) on N and both a(A, • , .) and 
f(A, .) are continuous on G x G and G, respectively. 

Conversely: Every continuous factorizable family on 
G {a(A, 0, • ),f(A, o)} yields a factorizable family 
{WA, a(A,. ,.), xA} by the equation f(A, g) = (W:XAO xA). 
[Here the f(A, 0) are a{A, " • )-positive. ] 

Proof: We set 

WAA _{( I (W:XAOXA) I /(W:xAO xA)}W: 
g- WA 

g 

if (W:XAO xA) * 0, 
otherwise, 

changing a(A, • , .) accordingly to &(A, 0 , 0) and setting 
XA=XA• Then it is fairly easy to see that (0, (ii), and 
(iii) hold. For the converse we use again the 0' exten
sion GU of G. We note that the following Kernel is posi
tive definite on GU (for fixed A): 

K [(g A) (h /J.)]={~A[(h'/J.)-10(g,A)], hEG., 
A , " l/JA[(h,/J.)-l o (g,.\)], hEG-, 

where l/JA (g,.\) = Af(A,g). Also note that 

l/JA[(g,.\)-l]={iPJ(g,.\)], gEG~, 
l/JA[g,,\] gE G • 

Thus considering KA as the covariance function of a 
Gaussian stochastic process X(g,.\) we can find a UA 
representation of GU [for details see Theorem (3.7) in 
Ref. 8] defined by 

U1f1.A1)X(g, A) =X«gu .\1) 0 (g,.\» 

and extended by linearity (antilinearity). This satisfies 

(U1g.A)XAO X A) = l/JA (g, A) = .\f(A,g). 

Now the rhs is a product in A and g thus U1 . A) =.\ ~A for 
some unitary (or antiunitary) VA and g- vl has mul-

l l 
tiplier a(A, ., .) and satisfies 

<V:XAO xA) =f(A,g). 

Now let A H ••• ,An be any measurable partition of A then 

n 
f(A, g) = II f(Apg)--(a), 

i.1 

a(A, " .) = IT a(A;o',' )--(b). 
i.1 
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So for each we construct V:I but from (a) and (b) and 
uniqueness in Theorem (3.7) in Ref. 8 it then follows 
that {V;, c(A, • ,.), xA} is a factorizable family. QED 

Corollary: Let {WA, c(A,', '),xA}AES be a factoriza
ble family of cyclic UA-multiplier representations of G. 
Then::3 another factorizable family {"-,A, &(A, ',' )'XA}A 
E S such that (i) (WA, c(A, " .), xA) and <"-,A, &(A,' , .), XA) 
are projectively equivalent" A E Sand (ii) there exists 
a UA-Araki multiplier s(A,' , .) and an Araki s function 
<p (A, .) such that 

(W:XM xA) =exp<p(A, g), where (W:XMXA) *0 

and 

u(A,g, h)=expis(A,g, h) YAE S, g, hE G. 

Proof: Define WA and xA as above. Then an applica
tion of Theorem (2.6) where f3:; 1 immediately implies 
the result. 

3. INFINITELY DIVISIBLE PUA 
REPRESENTATIONS 

"Infinitely divisible" representations are closely 
related to "factorizable representations." They are also 
of interest in quantum mechanics. See, e. g., Ref. 2. 
So we'll briefly outline their theory in this chapter. It 
will turn out that they are described by conditionally 
s-positive functions and these in turn by first order 
cocycles. Thus we need the Theorem [corresponding to 
Theorem (1. 5)]. 

Theorem (3.1): To every conditionally s-positive 
definite function 4> defined on G, there corresponds a 
UA representation g- U, in a Hilbert space H with inner 
product (',' ) and a 5: G -H such that 

(i) U,5(h) = 5( gh) - 5( g) (i. e., 5 is a first order 
cocyle) Yg.hEG, 

(ii) (5(h,), 5(~» 

{
4>(h;lht,) - 4>(~) - 4> (h;l) + is(h;l, ~), haE Go, 

= -;;;(h21~) - 4>(~) -ifi(h'2l) -is(h'2l ,hl), h2E G-. 

The vectors {5(g) :gE G} may be assumed to span H. If 
Ul, 51 is another pair satisfying the above conditions, 
for the same 4> and s then U and rJ1 are unitarily 
equivalent and 5 and 51 correspond under this 
equivalence. 

Conversely: Given (U, 5) as above then there exists 
a pair (4), s) such that (ii) holds. 

Proof: Take the Borel-space T in Theorem (1.5) to 
be a point. 

Definition (3.2): A cyclic (in the obvious sense) PUA 
representation is called infinitely divisible if, for 
every positive integer n, there exists a cyclic PUA 
representation g - D! In with cyclic vector xlI" [denoted 
by (U;",xlIn )] such that U, and 

[J1ln ® ••• ® u1 /n 
~' 

n 

restricted to the cyclic subspace generated by xlI. 
o ••. (Xl xl In are unitarily equivalent and the vectors x 
and xli" 0 .. • 0xl/· correspond under this equivalence. 
The pair (D!'n,xl/n) is called an nth root of (U,., x). If 
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(1 is the multiplier of (U"X) and (1" the multiplier of 
(D! ''',xl'n), then it follows immediately that we may 
assume without loss of generality rJ= rJ;: Yn. Such a 
(1 is called infinitely divisible. 

We shall define an extension G: of G to see how in
finitely divisible PUA representations of G may be ex
tended to U A representations of G!. Let {(1kh =1, 2, • •• be 
such that rJ:=rJ yk and let rJ=rJl • Define: 

G: ={(g, t17 t2 • ••• ) :gE G, tIl E S1, t:=t1> k= 1, 2,'·.} 

then G: becomes a group with operation given by 

(g, t1> t2 ,···) (gr, ti, t~,···) 
= {(gg" t1!irJl (g,g'), t2!JrJ2(g,g'), ••• ), 

(gg', 11 f1(11 (g, g'), t2t~(12(g. g'), ... ), 
gEG+, 
gEG-. 

The set 1': ={(e, fl' t2,"') E G:} is a closed subgroup of 
the infinite dimensional torus and therefore compact. 
The arguments used in Ref. 9, show that G! is locally 
compact in the Weil topology, T: is a normal subgroup 
and G:/T: is isomorphic to G. We then have the 
following. 

Theorem (3.3): Let g- U
f 

be an infinitely divisible 
PUA representation with multiplier rJ of a group G. Let 
rJ=rJk

k , k= 1, 2,·'·; then there exists an infinitely 
diviSible UA representation of G: (g, t1, •• .)- VC"l

p
':') 

given by VCf1, tl. t2' ••• ) = tl U,. 

Definition (3.4): A continuous positive definite Her
mitian Kernel K(g, h) satisfying K(e, e) = 1 is called 
infinitely djvisible if for each integer n there exists a 
continuous positive definite Hermitian Kernel Kn such 
that 

K.(e,e)=l; K;:=K. 

Remark: Infinitely divisible kernels of the form 

K( h)_{t(h-lg), hEG., K _{~(h-lg), hEG., 
g, - 4> (h-1g) , hE G-, "- 4>,,(h-1g) , hE G-, 

where 4>, 4> n are continuous function G - C and satisfy 

(i),f.. (g-!) = {-;;;cn) (g), gE G+, (ii) A-. (e) = 1 
'l'C1l) 4>cn)(g), gEG-, '1'(,,) , 

give a one-to-one correspondence between infinitely 
divisible positive Kernels and equivalence classes of 
cyclic infinitely divisible UA representation. This is 
easily proved by conSidering the K(g, h) as covariance 
functions of Gaussian stochastic processes X(g). See 
Theorem (2. 12). This leads to 

Theorem (3.5): Let G=G+UG-be locally compact 
and second countable and let (s, 4» be a pair consisting 
of an additive UA multiplier s and a conditionally s
positive function 4>. Then, up to equivalence, there 
exists a unique infinitely divisible PUA representation 
(U" x) with multiplier expis = (1 such (U,x, x) =exp4>( g) 

Proof: This makes use of the above remark, Lemma 
(2.2) in Ref. 5 and then proceeds along the lines of 
Theorem (5.4) in Ref. 6. Making use of G: and proceed
ing Similarly as in the first part of the proof of Theorem 
(2.12) we obtain a "canonical form" for UK namely: 

Theorem (3.6): Let G = G+ U G- as usual. Let (V" rJ, x) 
be an infinitely divisible cyclic PUA representation. 
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LetG1 ={g:(V,x,x)*0}, Gi=G+nG1 ; Gi=G-nGl" Then 
there exists a projectively equivalent infinitely divisible 
cyclic PUA representation (UK' a', x), where a' is con
tinuous, such that the function f( g) = (U ,x, x) is real and 
positive on Gl" Further there exists a sequence {a;} of 
multipliers which are continuous on G1 x G1 such that 
a,:" = a' V n and a; and a satisfy 

Now it is fairly easy by adapting the arguments in the 
proof of Theorem (9.10) in Ref. 3 and considering the 
positive definite Kernel 

where f(g) = (U,x, x) to arrive at a converse of Theorem 
(3.5) namely: 

Theorem (3.7): Suppose (U" a,x) is a "canonical" 
[in the sense of theorem (3.6)] infinitely divisible PUA 
representation of G. Suppose the expectation value f( g) 
= (Ugx, x) does not vanish on the subgroup N of G. Then 
there exists a real-valued, conditionally s-positive 
definite function I/! and an additive UA multiplier s de
fined on Nand NXN, respectively such that 

f(g) = (U,x, x)=expl/!(g) VgE N 

a(g, h) =expis(g, h) V(g, h)E NXN. 

Remark: This is the main result in this section and 
generalizes the results of Parthasarathy and Schmidt in 
Ref. 5. 

4. FACTORIZABlE REPRESENTATIONS OF 
CURRENT GROUPS AND THE ARAKI-WOODS 
EMBEDDING THEOREM 

In Ref. 6 the definition of the weak current group of 
Gover T [(T,S) is a standard Borel space], is given as 
follows: F(T,G), the weak current group of Gover Tis 
the set of all measurable maps Y: T - G which take only 
finitely many values. Multiplication is defined pointwise. 
In order to consider UA representations we redefine 
the weak UA-current group F(T, G) as follows: Let 
G = G+ U G- then we set F+(T, G) = set of measurable 
Y: T - G+ taking only finitely many values; F-(T, G) = set 
of measurable Y : T - G- taking only finitely many values 
in G-. F(T,G)=F+(T,G) UF-(T,G) is then a group under 
pointwise multiplication. Note that this definition re
duces to the one given in Ref. 6 if G- is empty. 

For each A E 5 we define the following functions: 

XA'T-G XA(t)={g, tEA, 
" 'I e, triA. 

Note: If gE G+ then X: E r(T,g). 

Now any function YE F(T, G) may be written as 

Y= X' were II" A· h {gi EG+ Vi ifYEF+, 
i.l Ii' gi E G- 'fIi if YE F-, 

and {AJ7.1 is a measurable partition of T. Now suppose 
that {WA, a(A, " .), xA} is a factorizable family which is 
in the "canonical form" described in Theorem (2.12) 
and suppose, for simplicity, that the expectation values 
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(W:XAoXA) are nonvanishing, (otherwise we have to re
strict our attention to N). 

For any two elements 

we set 

then we obtain easily (by computation): 

Lemma (4.1): a is a UA multiplier for F(T, G) such 
that 

n <7( -1 -1)={~(YUY2)' (Yu Y2)EF+XF+UF- xr, 
1 Y 2 , Y1 a(Yu Y2), (Yu Y2) E F+ XF- UF-xF., 

(ii) <7(y, y-1)=CT(y-1
, y) = 1 'flY, Yu Y2 E F. 

Now let us define a function I/!: F(T, G) -IR as follows. 
Let 

then 

then I/! is a positive on F(T, G), and we also see that 
l/!(y-1) = I/!(Y). Thus using the a extension of F we may 
again [as in Theorem (2.12)] construct a a representa
tion Wy of F such that (W,.x, x) = I/!(Y). It seems natural to 
define CT representation of F(T, G) to be factorizable if 
they can be constructed in the way defined above (and, 
of course, a representations which are projectively 
equivalent to these). Combining this definition and the 
corollary to Theorem (2.12) we obtain: 

Theorem (4.2): Let G=G+ UG- as usual, let (T,S) be 
a standard Borel space, and let F(T, G) =r(T, G) 
UF-(T, G) be the weak UA-current group of Gover T. 
Let (ii", a', x') be a factorizable cyclic UA-multiplier 
representation of F(T, G) in a separable Hilbert space 
H; then there exists a projectively equivalent factoriza
ble representation (W, CT, x) such that if 

A., B.E 5, Y1 = n x-!i, Y2 = IT X~i, g,., hJ.E G, 
t J i=l g i j=l j 

we have 

(WY1 X, x) =exp{E <p(Aj> g;)} , 

CT(Yu Y 2) = exp {t i:: s(A; n B f' gp hi)}, 
i.l f=l 

where <p(A, .) is an Araki s function and s(A,' , .) is a 
UA-Araki multiplier. 

Conversely: Given an Araki s function and a UA
Araki multiplier we can construct a factorizable UA 
representation (W, CT, x) satisfying the above equations. 

Proof: The first part of the theorem just follows by 
construction. For the converse we set 

qJ(y1) = t <p(A j , gj), s(Yu Y 2) = 't i:: s(Aj n B i' gp h) 
i",l l::1il }:l:1 

whenever 
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n 

Y = II xAi 
1 i=l g i ' 

It then follows that (P is conditionally s-positive definite 
and we construct the UA representation by a method 
analogous to the one used in Theorem (2.12). Note that 
by construction cp (A, .) is real valued y A E Sand (P is 
real. 

Remark: The above theorem together with Theorem 
(1.4) gives a complete description of all factorizable 
UA-multiplier representations of weak UA-current 
groups with nonvanishing expectation value. Let us now 
proceed to show how factorizable UA multiplier repre
sentations can be embedded in the symmetric Fock 
space over a separable Hilbert space H. If we consider 
the UA-Araki multiplier s and the Araki s function cp of 
the above theorem then, using Theorem (1. 4) we obtain 
a measure Il on (T,S) and UA representations U(t,g) of 
G in Hilbert spaces H t and cocycles 6(t, .) connected 
with (s, cp). Let us write for 

Y= TI X:.i, 6.(Y)={6(t,Y(t)):tET}E! Htdll{t) 
i=l 'l T 

U (A, g) = IT XA (t)lj (t, g) dll (t) 

uy = {Jy U (Ai' gi) (1) 
/.1 

thus 

6.(y) = ~ 6 (Ai ,gi)' (2) 
/.1 

Then using (1) and (2) we see 

Uyl6.(Y2) = 6. (Y1Y2) -6.(Y1). 

So 6. is a first order co cycle associated with Uy • 

Now let us define a metric in F(T, G) by 

p(Yu Y 2) = {IT 116(t, Y 1 (t)) - 6(t, Y 2(t)) 112 dll (t)}1/2 

and complete F(T, G) under this metric to obtain the full 
UA-current group r(T, G) (cf. Ref. 6). Then it is clear 
that our representation and the associated cocycle can 
be extended by continuity to r. Now let us set as before 

n n n 

IP(Y1)== Zcp(Apgi ), S(YUY2)==~ Zs(A I nB"gl,h), 
i=l t=1 ;=1 

where 

'" 
Y 2 == II x~ J, 

J ... l J 

then we h~lve 

(6.(Y1), 6.(Y2) =IP(y;ly1 ) - IP(Y1) _(,O(y;l) ± is(y;l, Y1), 
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where the (-) sign applies if Y 2 E r-. 
Note: Here we have used the same notation for the 

natural extension of s and (,0 to r. 
Let H = f H t dll (t) be the Hilbert space where U y and 

6. are defined. We construct the symmetric Fock space 
exp[H] over H: We set X(y) == exp(,O(Y) exp[6.(y)] then we 
have: 

(X(Y1), X(y2) = exp{cp (1';11'1) ± is(y;l, Y1)}' 

where (-) Sign applies if Y2E r-. We define the map 
WY1 :X(y) -X(y1y) expis(yu y). This is unitary (anti
unitary) if 1'1 E r+(r-). Hence it can be extended to a 
unitary (antiunitary) operator on the closed linear span 
of this set. Further we have 

WY1 WY2 =expis(Y1, Y2)WY1Y2' 

(W yX(e),X(e) = expCp(y). 

So we get a factorizable UA-multiplier representation 
of r associated with the pair (s,cp). This is the analogue 
of the Araki-Woods embedding theorem for factoriza
ble UA-multiplier representations with nonvanishing 
expectation (cf. Refs. 2 and 6). 

ACKNOWLEDGMENT 
The author would like to thank Professor K. R. 

Parthasarathy and Dr. K. Schmidt for several helpful 
discussions. 

tH. Araki, Factorizable Representations of Current Algebra. 
RIMS-41, preprint Kyoto (1969). 

2R. F. Streater, Sci. Int. Fis. "E. Fermi" XI, 247 (1969). 
3K. R. Parthasarathy and K. Schmidt, "Positive Definite 
Kernels, Continuous Tensor Products, and Central Limit 
Theorems of Probability Theory," Lecture Notes in Mathe
matics (Springer, Berlin, 1972), Vol. 272. 

'K.R. Parthasarathy, Commun. Math. Phys. 15, 305 (1969). 
5K.R. Parthasarathy and K. Schmidt, "Infinitely Divisible 
Projective Representations, Cocycles and Levy-Khinchine
Araki Formula on Locally Compact Groups," Research Re
port 17, Manchester-Sheffield School of Probability and 
Statistics, 1970 (unpublished). 

6K.R. Parthasarathy, and K. Schmidt, Acta Math. 128, 53 
(1972). Most of the results in Refs. 5, 6, and 7 have also 
been published in Ref. 3. 

7K. Sc-hmidt, Math. Ann. 192, 107 (1971). 
8B. J. Falkowski, Ph. D. thesis, University of Manchester, 
1971 (unpublished). 

9K. R. Parthasarathy, Multipliers on Locally Compact Groups. 
Lecture Notes in Mathematics 93 (Springer, Berlin, 1969). 



                                                                                                                                    

A new system of Casimir operators for U(n) 
R. L. Hudson 

Mathematics Department, University of Nottingham, University Park, Nottingham NG72RD, Great Britain 
(Received 30 August 1972) 

Explicit formulas are found for the Casimir operators for U(n) whose eigenvalues in the irreducible 
representation for which the highest weight has components 11 - n + I, 12 - n + 2, ... , I n are the 
elementary symmetric polynomials in 11' 12, ••• , In. 

1. INTRODUCTION 

The eigenvalues in an irreducible representation of a 
complete system of Casimir operators for the unitary 
group U(n) of order n have been calculated by Perelomov 
and Popov. 1 The systemof Casimir operators used is' 
that of Gel 'fand. 2 An alternative and more explicit ex
pression for these eigenvalues was given by Louck, 3 the 
proof being supplied by Louck and Biedenharn. 4 Numer
ous earlier authors obtained partial results lor eigen
values of Gel 'fand operators of low orders. 5 Now if the 
components of the highest weight of the representation 
are written as 11 - n + 1, l2 - n + 2, ... ,In' it is known6 

that the eigenvalue of an arbitrary Casimir operator 
must be a symmetric polynomial in the quantities 
11,12 , ••• , In. The purpose of this work is to construct 
explicitly the system of Casimir operators for Which the 
corresponding polynomials are the elementary sym
metric polynomials: 

CIrf (1 I> 12 , ••• , In) = 1 , 

(r=1,2, ... ,n). 

USing this system of Casimir operators it is clearly 
possible to construct Casimir operators whose eigen
values are arbitrary symmetric polynomials in the quan
tities lI,12,' .. ,In; in particular, Casimir operators for 
which the eigenvalues are sums of powers of II>' .. ,In 
are readily obtained. Our method is to follow7 Louck and 
Biedenharn4 in exploiting certain behavioral characteris
tics of the eigenvalues of Casimir operators under uni
form translation of 1v . .. ,In' and under the summation 
process of the Weyl branching formula, 9 which are 
analogs of properties of the elementary symmetric 
polynomials. 

2. THE CASIMIR OPERATORS G~ 

The Lie group U(n) is generated by elements Ai, 
.. 1 t· f . J t,)= , ... ,n, salsylng 

[A:,A~]=o;A:-o!A7. (2.1) 

A Casimir operator is an element of C of the complex 
associati ve algebra.}ll generated by these elements, 
subject to the commutation rule (2.1), such that for all 
i,j=1, ... ,n 

[C,AJ]= CA; -A;C=O. 

C is real if it is invariant under the natural involution 
of.}ll which makes A1 into A{ and reverses the order of 
products. 

We denote by !1" the group of permutations of {I, ... , n} 
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and by €a the sign of the permutation a E !1". We write, 
when needed, (~l¥ • .I"n) for the permutation )', L...k )' ~1 ... n ,- 1'···, n 
f- kn , and (j, k) for the permutation which exchanges j 
and k. 

Proposition 1: 

Gn= 6 € AI"'. - -A"'" n rlJ ",s IS "S 
a,SE <Tn 

(2.2) 

is a real Casimir operator. 

Proof: 

" 6 € '" {Of Ala Ar", An", >: ra:A1 ", Af A"a} aS D rS IS'" J ••• n8 -VJ IS'" rS'" nS 
"".SE !F"r=I 

If i = j, the term corresponding to the choice (r, a, (3) in 
the first sum cancels that corresponding to (ia- 1 , a, (3) 
in the second sum. If i *j the terms in the first sum cor
responding to the choices (r, a, (3), (r, aI' (3), where a l 
= a(j{rla, ra), cancel, and the terms in the second sum 
corresponding to the choices (s, a', (3'), (s, a', (3{), where 
(3f=(3'(ia-I {1,sf;f), cancel. It follows that G" is a Casimir 
element. Moreover, the image of Gn under the natural 

" involution is 

where 

a' = (1, ... , n) (3, 
\n, ... ,1 

(3'= (1, ... ,n) a. 
n, ... ,1 

QED 

For each real number e, the map 

A; r- A; + eo; (2.3) 

determines an automorphism t8 of the algebra .A which 
preserves the natural involution on./l. The image under 
this automorphism of a real Casimir operator is thus 
also a real Casimir operator. Thus, for all real e, 

is a real Casimir operator. It follows that the coeffici
ents of the powers of e occurring in G~(8) are likewise 
real Casimir operators; these are easily seen to be the 
elements (n!/r!) G~, where 

Copyright © 1974 American I nstitute of Physics 1067 
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G;== 6 €.r,KA~'·'A~~, r==1, ... ,n, 
.r,KEPr 

P r is the class of ordered r-tuples 

J== (ju'" ,jr)' K== (hu'" ,kr) 

of distinct elements of {1, ... ,n}, and 

_jO if Vu'" ,jr}*{kt> ..• ,kr }, 

€.r,K - siO'TtI jt> .•• ,jr \ otherwise. 
o·~u··. ,kr)j 

(2.5) 

Denoting by G~(B) the image of the Casimir operator 
G~ under the automorphism ts, we prove 

Proposition 2: 

Proof: The G~ are defined by 

G"(S) == ~ er _n_'_ G" . 
" ~ (n -r)t "-r 

Using the fact that ts+. == tst., we have 

" I )" , l] cpr _n_ G"(S = '" (cf> + ey n. G". 
roO (n -r)! ".... ~ (n -r)1 "-r 

(2.6) 

Comparing coefficients of er on the two sides yields the 
result. QED 

We record for use below the obvious identity 

"+1 J J 
G~4ol == 6 6 €.r,KA~ ... A";:, (2.7) 

ro!.r, KEP~r) 

where p~r) is the subclass of P" consisting of those 
ordered n-tuples which exclude r. We observe that for 
each r the inner sum in (2. 7) is the Casimir operator 
G~ for the Lie subgroup of U(n + 1) generated by the A~ 
with i,j *r. 

3. TRANSLATION AND SUMMATIONIPROPERTIES 

The general theory of representations10 of Lie groups, 
specialized to U(n), yields the following characteriza
tion of the irreducible representations of U(n). Every 
irreducible representation 7r is characterized by a 
strictly decreasing n-tuple of integers 

11>12>"'>1". 

Moreover, there exists a nonzero vector, called the 
vector of highest weight, in the representation space 
such that for i,j == 1, ... ,n, 

a7r(Ap1jJ== (1, -n + j)1jJ, 

a7r(AJ)1jJ==O (i <j), 

where a7r is the differential of 7r. 

(3.1) 

(3.2) 

For every Casimir operator C we denote by cfJt> . .. ,1") 
the unique eigenvalue of C in the representation charac
terized by (lu" . ,1,,); in particular, g;fJu '" ,I,,) is the 
eigenvalue of G~. Comparison of (2.3) and (3.1) shows 
that 

g;(S)(lu .. . ,1,,)=g;fJ1 + e, ... ,1" + e). 

Hence from Proposition 2 we obtain 
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(3.3) 

According to the Weyl branching formula9 the irreduc
ible representation of U(n + 1) characterized by the 
(n + 1)-tuple 1u'" ,1,,+1 decomposes, when restricted to 
any Lie subgroup of U(n + 1) isomorphic to U(n), into the 
direct sum of irreducible representations of U(n) char
acterized by the n-tuples If, ... ,l~, where 

11 >l~ ;;'12>1~ ;;.1 3 >l~ ;;.14 ", ;;'l,,>l~ ;;'1"+1' 

Taking the traces of the representatives of the two sides 
of (2.7) in the representation of U(n + 1) characterized 
by lu . .. ,l"+u and recalling the observation follOwing 
(2. 7), it follows that 

~+l(lU'" ,l"+l)a"+l(lu'" ,1"+1) 
11-1 12-1 1,,-1 

=(n+O,6 .:0 ... 6 ~(lf, ... ,l~)a"(lf, ... ,l~), 
11 r.J2 '2 ·'3 '~='n+l 

where d"{J.1 , ..• ,1,,) is the dimension of the representa
tion of U(n) corresponding to 1u' .. ,1", which is givenlO 

by 

a"(lu ... ,l,,)= II (l,-IJ)' 
l"'<J .. " 

We write this equation as 

~+la"+l = (n + 1) ;P,~d", 

(3.4) 

(3.5) 

where the summation operator t yields a function of 
n + 1 arguments from one of n arguments. 

It follows from (3.5) and the fact that the dimension 
functions a", a,,+l are invariant under translation of their 
arguments through e that 

g~+l (B) a" +1 = (n + 1) ~ ~(B) a". 

Using (3.3) and comparing coefficients of powers of 8 
gives 

(3.6) 

The eigenvalue ~(lu" . ,I,,) can, in principle, be 
computed from the definition (2.2) of G~ and the Eqs. 
(3.1), (3.2) by repeated use of the commutation relation 
(2.0 to rewrite each monomial in G~ in a form in which 
the last term is of form A; with i'" j. Now it is known6 

that the eigenvalue of a Casimir operator is necessarily 
a symmetric polynomial in the quantities lu . .. ,1". Since 
no term of G~ contains a repeated upper or lower suffix, 
and application of the commutation rule (2.0 does not 
create new suffices, consideration of (3.1) shows that 
the polynomial g~(lu .. . ,l") cannot involve any argument 
lJ to more than the first power. We have proved the 
first assertion of 

Proposition 3: ~(lu'" ,1") is a linear combination of 
the elementary symmetric polynomials (1. 1); moreover, 
the coefficient of a;(lu ... ,I,,) is nonzero. 

Proof: To prove the latter assertion, observe that in 
the computation of ~(11" .. ,1"), contributions to the term 
in a""(l,,, . .. ,1,,) will come only from those terms in G~ 
for which Q! = (:3. Since the sign of each such term is posi
tive there can be no cancellation, so that the coefficient 
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of unn(l1' • •• ,In) is indeed nonzero. 

Proposition 4: For r= 0, ... ,n, g';fJ1 , ••• ,l") is a 
linear combination of the elementary symmetric poly
nomials U."(ll' •.• ,l,,), with O'-s'-r, moreover, the 
coefficient of u:<Z1' • .• ,l,,) is nonzero. 

Proof: Comparing coefficients of xn-1' in the identity 
" n 
L; U~(ll + 9, ... ,In + 9)xll-r' = L; u:fJ1' ..• ,l,,)(9 + x),,-r, 
roO ,..0 

gives the formula 

(3.7) 

In accordance with Proposition 3, we can write 

with b:*O. Replacing each I, by li + 9, 

" g,:(11 + 9), ... ,I" + 9)=L; b~U:{J1 + 9, ..• ,I" + 9). 
roll 

Substituting from (3.3) into the-left-hand Side, and from 
(3.7) into the right-hand side of this equation and com
paring coefficients of 9n-.- yields g';(Z1' . .• ,I,,) as a linear 
combination of ug(lu • .• ,In)'' •• ,u:(lu". ,1"), in which 
the coefficient of the latter is a nonzero multiple of b:. 
QED 

4. THE CASIMIR OPERATORS H~ 

From Proposition 4, it follows that for r 
= 0, ... ,n, u;(lu'" ,In) can be expressed as a linear 
combination of g;(lu." ,In)' with 0'- s'- r. The corre
sponding linear combination of the Casimir operators 
G~, which we denote by Ir;., will then have the desired 
property that their eigenvalues in each irreducible rep
resentation are the elementary symmetric polynomials 
in the weights of that representation. We proceed to de
termine the Ir;. explicitly. 

We write 

(4.1 ) 

Replacing each Ii by l, + 9, using (3.3) and (3.7), and 
comparing coefficients of powers of 9 in (4.1) gives 

unll 1 )-~ n (n-s)l(n-r+s)l ( ) 
r \' l' ••• , " - ~ an-r .. (r _ s)! (n _ r) Is! ~ l1' • • . ,l" . 

(4.2) 

Thus knowledge of the coefficients a~ suffices to deter
mine all the nr;. 

Before determining the a~ we require the following 
identity: 

Proposition 5: 

1" ~ --- L; (_)ru ... 1 d n+1 = . u"d" 
(n + 1) I r.o".r ". (4.3) 
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Proof: The dimension function d n is givenlO by 

·1 • 

[

"'-I 

dn(lu •.• , In) = II (ll -li) =det . 
l4Ol<i 4O" 

1 

Thus we must prove that 

-~~,] 

.1 

[---~] I n-l 

L; 1; 12 • •• l~ det 
J;'= 'n+l 

The summand on the right-hand side of (4.4) is 

W·· 'l~n 0 

[
l~n • •• l~n] 

det . =det 

If l{ l{ ••• l~ 0 

1 ... 1 1 
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• (4.4) 

1 ri + 1)~+1 -lin • •• (l~ + ~)"+1 _l~n+l ~n+l_ 0] 
----det· • . 
-(n+1)! . . . ' 

(l~ + 1) - If ... (l~ + 1) -l~ 1 - 0 

where the extra terms, other than the appropriate power 
of Ij, in each row are linear combinations of the row 
below. The summation can now be carried out to give 

[

r+l - Ir1 ••• 1;:+1 - I~:~ 1] 
1 . .. 

-:-(n-+~1)-:-! det: :: 

11 - 12 ••• In - In+l 1 

~ (.:1) I E (-)~'-, de-F~ ---" ---: 1:] 
tl ... ~.A ·In+l 

lr+l ... l:::~ 1 WI ... l:::~ 

= (n+\)! (_)n det -det 

11 , •• l'n+l 1 1 ... 1 1 
as is seen by expanding the (n + 2) x (n + 2) determinant 
by its last row, 
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We now obtain a system of linear equations for the 
coefficients a~. Using (4.1) and (4.2) we substitute for 
the functions o:::~, 0:: occuring on the two sides of (4.3). 
The right-hand side of the resulting equation can be 
expressed, using (3.5), as a linear combination of the 
functions g;+l. These functions inherit linear indepen
dence from the functions 0:+1

, in view of Proposition 4. 
Hence we may compare coefficients of g;+l on the two 
sides of the resulting equation. We obtain finally 

u!'= 1 ~(_).-.. ra'+l (n+1-r)l(n+1-s)1 
r n + 1 - r .=0 .+1-. (n + 1 - r - s) ! r I s I 

(r= 0, ... ,n). (4.5) 

Now in the trivial representation of U(n), in which 
every element of U(n) is mapped into the identity, every 
AJ is represented by the zero operator. This represen
tation characterized by the n-tuple n -1, n - 2, ... ,0. 
Substituting these values into (4.1), we see that 

. _{1 if n=O, 
ao- ° if n*O. 

(4.6) 

Now if ag, ... ,a~ and ag+1 are known, then (4.5) gives 
a triangular system of inhomogeneous linear equations 
for a;'+1, ••• , a~:~ and hence determines these quantities 
uniquely. It follows by induction on n that if ag, eta, ... 
are all specified, then the system (4.5) determines all 
~ uniquely. Hence we need only exhibit a solution to the 
system (4.5), consistent with the condition (4.6), to 
determine the a~. This is done in 

Proposition 6: The quantities 

a~ = [en - r) I In !]O::-ri(O, 1, ..• ,n -1) 

satisfy (4.5), (4.6). 

(4.7) 

Proof: That (4.6) is satisfied is clear by inspection. 
Substituting into the right-hand side of (4. 5) the values 
for a~:~_. given by (4.7), we obtain 

(n - r)! • _1_ ~ (n + 1 - s )! (_).-.+ra".+l(O, ... ,n) 
n! n + 1 .=0 (n + 1 - s - r) ! r ! 

_ (n -r)! . _1_ ('Iir (n + 1-s}l (_).-.+ra"+l(O n) 
- n! n+1 .=0 (n+1-s-r)!r! • , •.. , 

+ O:::~-/O, ..• , n~ 
(n - r)! 1 [ +1 = --,- --:j:l - <T.:+l-r( -1,0,1, ... ,n -1) n. n 

+ <T.::~(O, .•• , n)], 

using the formula (3.7), with e taken as -1, 
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(n -r)! 1 [ = --,- -+ 1 - <T.:+l-r(O, 1, ... ,n -1) n. n 

+ <T.:-r(O, 1, ... ,n -1) + n<T.:_r(O, 1, ... ,n -1) 

+ <T.:.l_/0, 1, ... ,n -1)] 

(n -r) I 
n! <T.:_r(O, 1, ... ,n -1), 

=a~, 

according to (4.7). Hence (4.5) is satisfied. QED 

5. CONCLUSION 

We conclude from (4.2) and (4.7) that: 

The system of Casimir operators 

H'_--E(n-s)l(n-r+s)! ( ) 
r-s=o n!(n-r)!s! 0:_.0,1, ••. ,n-1G:, 

r=0,1, .•. ,n, 

where 

Gg=1, 

G' = '" E A h ••• A J. S 1 2 n • U ",K kl k.' =" ... , , 
",KEP • 

P. is the class of ordered s-tuples J = (jl,j2"" ,j.), 
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K = (kl> k2' ••• , k.) of distinct elements of {1, ... ,n}, and 

~
o if {jl"" ,j.}*{kl , ••• , k.} 

E" K= . . 
, Sign J1O'" ,J.. otherwise 

(ku ... , k.) 
is such that in the irreducible representation character
ized by lu ... , ln of U(n), H~ is represented by the 
scalar operator 

~(Zl' •.. , In)1. 
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An elementary discussion is given of a phenomenon discovered by Klauder. In Klauder's 
phenomenon H=Ho+AV does not converge to Ho as the positive real parameter A-<O+. We discuss 
domain questions of the operators, and also operator forms and operator extensions. The implications 
of this phenomenon for "gauge theories" are given, and new examples, which include the massless 
limit for particles of arbitrary spin and an integral operator, are given. 

1. INTRODUCTION 
Recently Klauderl

•
2 has shown that sufficiently singu

lar potentials V cannot be turned off in the Hamiltonian 
H =Ho + ~ V to restore the free Hamiltonian Ho' Thus, 
one may have that 

s-lim{Ho + A V) *Ho (1.1) 
;\-0+ 

for A a positive real parameter. One example of the 
Klauder phenomenon can be exhibited with a one-dimen
sional simple harmonic oscillator as the free system 
Ho, 

and the singular interaction 

V = 1/\x\3, 
so that 

H=Ho+~V, 

(I. 2) 

(1. 3) 

(I. 4) 

with A a positive real parameter. In units with n= 1 con
figuration space eigenvectors of Ho are given by 

IjJ~O){x) = (n, 0 \ x) = hn{x) exp{ - x 2/2) , (1. 5) 

where hn are the Hermite polynominals of order n (n E" Z·, 
positive integers including zero). 

If the energy units further have w = 1, the nth energy 
eigenvalue E~O) of Ho is given by 

E!O) = 2n + 1. (I. 6) 

The energy eigenvectors <I>n{x, A) of H, with energy eigen
values En (A) are solutions to the operator equation 

(1.7) 

Neglecting domain questions, Klauder showed that for 
nE"Z· and n odd 

lim[<I> n{x, ~)] = IjJ~O){x), 
). .. 0+ 

(1.8) 

lim[En{A)] =E~O), (I. 9) 
~-o+ 

whereas for n E Z· and n even 

lim[<I>n{x, ~)] = 1jJ~~f{x), 
~-o· 

lim[En{~)] = E~~l. (1.10) 
)._0· 
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Therefore, one sees that only the odd eigenvectors re
main. This occurs because <I> n{x, A) must vanish at x = 0 
if it is to be L2{R). Thus, 

s-lim[H{~)]*Ho, {I. 11) 
~-o· 

a result which we refer to as the Klauder phenomenon, 

In the present paper, we wish to give a Simple discus
sion of the Klauder phenomenon including domain ques
tions and two possible meanings for the sum "+" in 
Ho + A V namely operator extensions 3 and operator 
forms. 4~7 The present noteS contains some distinct re
sults, e.g., the integral operator in Sec, 4, and elabo
rates on several points made independently by Simon and 
us, We are presenting our discussion partly on the as
sumption that it is more easily accessible to the work
ing physicists, In Sec 3 and 4 several examples are pre
sented and in Sec. 5 our conclusions are given. Useful 
definitions are given in the Appendix. 

2. NOTATION, THEOREM, REMARKS AND EXAMPLES 

Notation 

H is a complex Hilbert space, R, C, Rn are the real, 
complex, and n-dimensional real number systems 
respectively. 

Ho, H, V, Aare (possibly unbounded) operators inH, 
Le., H:H-H. 

A* is the adjoint of the operator A. 

D (A) is the domain of A in H, i. e. , D (A) cH. 
R. (A) is the range of A in H . 

r{A) is the graph of a in H. 

fn +f means that the sequence of real valued functions 
fn{x) increase to the real function f{x) for all real x. 

Al CA means that operator A extends the operator AI" 

A \ D (AI) = Al is the restriction of A to the domain of 
AI" 

:l, Z· are the integers and positive integers, including 
zero, respectively. 

Theorems 

Theorem 1: Let qn' n = 1, "', and q be closed densely 
defined quadratic forms [see definition (15) in the Appen
dix] inH xH and satisfying the following conditions: 

(i)D (qn) cD (q), 'V n. 

Copyright © 1974 American Institute of Physics 1071 
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(ii) q'~ == q - q" satisfies 

IIm(q~[U]) I ~M Re(q~[U]), 

UEO(q,,), Yn, M>O. 

(iii) There is a core 0 of q such that 0 clim infO (q,,) 
and lim qJ:U]= q[U] if UEO"'. 

The densely defined closed sesquilinear forms for self
adjoint Tn, T, given by 

q,,[U, V]=(U, TnV), Y n, 

q[U, V]=(U, TV), Y n, 

are identified with ~ and q, respectively. Then Tn and 
T: converge strongly to T and T*, i. e. , 

s-Um (Tn)== T, 
n~" 

Thus, if .6. .. and A: are the regions of strong convergence 
of the operator sequences {Tn}, {T:}, then .6. .. * is the 
mirror image of .6. .. with respect to the real axis and 
both contain the half-plane Re(z) < Y, where y is a ver
tex for q. The resolvents R.(Tn), R.(T:) converge 
strongly to the resolvents in .6. .. , .6.:. 

Proof: Ref. 5, p.454-456. 

Theorem 2: Let {q) be a nonincreasing sequence of 
densely defined closed symmetric forms uniformly 
bounded from below qn ~ X (X constant). If Tn is a self
adjoint operator associated with qn [see definition (16)], 
then 

s-lim (Tn) == T. 
n·" 

Proof: Ref. 5, p.458. 

Theorem3: If the lower part X < {3 of the spectrum of 
T of Theorem 2 consists of finitely degenerate eigen
values, these eigenvalues are stable under a form per
turbation. 

Proof: Ref. 5, p.460, 461. 

Remarks 

One notices that Theorems 1 and 2 do not hold for the 
operator H == Ho + X V unless 0 (Ho) n 0 (V) is dense and is 
a form core. 3 If these theorems do not hold, the repre
sentation in definition (16) cannot be used. If 0 (Ho) nO (V) 
is not a form core, the unbounded self-adjoint operator 
H may have a strong limit 

s-lim [H(X)] =HPF • (2.1) 
A·O· 

It is just that H PF * Ho, which is the Klauder phenomenon. 
Mathematically, these conditions have been given by 
Simon4,8 and physically correspond to singular poten
tials, i. e., nonrenormalizable interactions. 9,10,11 
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Examples 

In view of the popularity of the so called gauge field 
theories we repeat an example due to Klauderl,2 con
cerning the generating functional formalism. If the 
Langrangion 

L =Lo+XV (2.2) 

with V(.p) ~ 0 and free of derivatives, the generating 
functional Z(.p), for the Euclidean scalar field .p, can be 
written as 

Z(h) =! exp{i[(h,.p) - Lo(.p) -XV(.p)]}t).p, (2.3) 

where O.p is a formal, translationally invariant measure 
with 

(h,.p)=! h(x).p(x)d4x, (2.4) 

and 

Lo(.p) = if[E (~=J +m2.p2]d4x. (2.5) 

If Z(h) is positive definite, continuous, and satisfies 
Z(O) = 1, a unique normalized measure on the fields ex
ists such that 

(2.6) 

When Z(h) fulfills translation invarience and the clus
ter property, the support of (] is concentrated on those 
fields .p for which 

lim Inl-l!Cldzexp[i(h.,'P)]=Z(h), (2.7) 
Cl·" 

where h .. (x) = h(x - z), 0 CRn, and I n I = fCldz. For the 
free field, for example, 

ZF(h)==! exp[i(h,'P)]d(]F(.p) 

== exp[ - H (k2 + m2tl I h(k) \2dk], (2.8) 

where the support of (]F is as indicated by Eq. (2.7). 

Klauder introduces, in a formal sense, 

d(](.p) == X(.p) exp[ - L o(.p) - X V(.p )JD.p, (2.9) 

where 

(2.10) 
x(.p) =0, Lo<oo, V(.p)=oo. 

Equations (2.9) and (2.10) define X(.p) as a projection 
operator which suppresses those fields (nonrenormali
zable) which cause the interaction to be infinite. This 
suggests that as X_ 0+ the supports for the free and in
teracting systems coincide, 1. e. , 

d(](.p) = X(.p )d(](.p)- X(.p )d(]F(.p) = d(] PF(.p), 

and that 

Z(h)-! exp[i(h,.p)]X(.p)d(]F(.p)=ZPF(h) 

*ZF(h). (2.11) 

These equations formerly characterize the psuedofree 
system which is not equivalent to the free system. One 
sees that even as X- 0+ the potential suppresses any con
tributions to Z(h) from the nonrenormalizable fields. 



                                                                                                                                    

1073 B. DeFacio and C.L. Hammer: Remarks on the Klauder phenomenon 1073 

Klauder has shown1,12-14 that this analysis applies with 
full rigor to ultralocal field theories. One therefore ex
pects full field theories to exhibit this same phenomena. 
If this is the case then dO'(<I» cannot be treated simply as 
an infinite "constant" as is sometimes done. 1S The dis
tinction between the psuedofree system and the custom
ary free theory must be carefully investigated. 

The Klauder phenomenon can also occur in the L ° part 
of the Lagrangian. It is well known that a massless par
ticle, regardless of its spin, has only two helicity states, 
one aligned with and the other against its direction of 
motion. This is a typical example of the Klauder phe
nomenon with the mass parameter m acting as a Klauder 
projector X(<I» on the helicity states. To see this, con
sider the free particle, "rest" frame field equation16,17 

E~cp(x,m)=i :t cp(x,m), (2.12) 

where E = ( - v2 + m2)1/2 and ~ is the 2(2s + 1) generali
zation of the Dirac (:3 matrix. Weaver, Hammer, and 
Good16 have shown that a generalized Foldy-Wouthysen 
transformation exists which relates the "rest" frame 
field to the "lab" frame field 

(2.13) 

where 1/i(x, m) satisfies a Schrodinger-like field equation 
with the Hamiltonian operator defined by 

H = S(E~)S-l • (2.14) 

Williams, Draayer, and Weber18 (WDW) have examined 
the massless limit of these equations in considerable de
tail. They show that in the massless limit, when operat
ing on 1/i(x, m), the Hamiltonian becomes 

s-limH=Ho, (2.15) 
m-O+ 

(2.16) 

where Ys is the 2(2s + 1) generalization of the Dirac Ys 
matrix. This is the expected free particle Hamiltonian 
for a massless particle of spin s. The Klauder phenom
ena arises because not all solutions of Ho survive the 
massless limit. 

It is worth repeating the WDW argument to illustrate 
this point. They find 

S = co sh({:3p·sw) -Yssinh({:3p'sw) 

where 

expw =(E + p)/m. 

(2.17) 

The "rest" frame field can be expanded in helicity states 

cP (x, m) = (2'lT)-3/2L; J dp ak , e(EP)Uk , e exp[iE(p'x - Et)], 
k,e 

(2.18) 
where 

a,.,J -p) = b!(p) , 

~S'iiUk e=kuk e' k=s,s-l,"', -so , , (2.19) 
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Therefore, when S acts on cp(x, m), under the integral 
Sign, ~·s can be replaced everywhere by k, giving 

S = cosh(kw) -Yssinh(kw), 

= (1 ;Ys) (E~Py + (1 ;YS) (E:Pt· (2.20) 

It is therefore clear that unless k=± s, the general
ized Foldy-Wouthysen transformation, and therefore 
s-limm_ o.1/i(x, m), vanishes in the massless limit, 

s-lim (m sE-1 / 2Su ) 
k, • 

m"O+ 

and 

s-lim 1/i(x, m) 
m"O+ 

= (2'lT)-3/2L; J dp(2p)S-1[(1-Ys)as ,e(EP)Us, e 
e 

(2.21) 

Note that this is an example of the Klauder phenomenon 
which takes place inside the L o-term, enforcing the fact 
that only helicity k = ± S states survive the massless 
limit. 

3. ADDITIONAL EXAMPLES 

Integral example 

Consider the integral operator 

(3.1) 

with the unperturbed eigenvalue equation 

Ho1/i~O)(x) = E~O)1/i~O)(x). (3.2) 

Let V denote the perturbing operator 

V(x)=x. (3.3) 

Let X denote a positive real parameter and define the 
full Hamiltonian H as the form sum 

H=Ho+XV. (3.4) 

We impose the usual boundary conditions on both q,~o)(x) 
and the eigenstates of the full Hamiltonian, 1/in(x, X), 

lim 101-1 Jodxlcp(x)12<M, (3.5) 
o-~ 

where M is some positive, finite real number and 

lol=indx• 

Note this integrability condition allows 1/i~O)(x) and 1/in(x, X) 
to be continuous as well as bound state solutions. 

Proposition: The unperturbed Hamiltonian Ho has two 
eigenvalues Eri°) = 0 and EiO) = 1 (there is no continuum). 
The degeneracy of Eri°) is infinite and the eigenvalue EiO) 
is nondegenerate. 

Proof: The eigenvalue equation is 
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(3.6) 

It follows from Eq. (3. 5) that a finite number b exists 
such that 

b = J: exp( - I y I )¢~O)(y)dy. (3.7) 

Imposing this condition upon Eq. (3.6) then gives 

E~O)¢~O)(X) = be-Ix I. (3.8) 

The eigenvalues E~O) are obtained by substitution for 
[E~O)¢~O)(x)] from Eq. (3.8) into Eq. (3.7). This result is 

E~O)b = b f:dy exp( - 2 I y I), 

=b. (3.9) 

If b 01- 0, EiO) = 1 and the corresponding eigenvector is 

(3.10) 

If b = 0, the only nontrival solution (¢~O)(O) 01- 0, "I~) is 
Eci°) = 0 with the corresponding eigenvectors being all 
functions which satisfy Eq. (3.5) and for which 

If one considers xn exp( - I x I), one sees that the family 
of eigenvectors ¢ci°)(x) is nonempty (n positive integers). 
Since there are an infinite number of n's, the degener
acy of Eci°) is of infinite order. 

Finally we note that Eq. (3.7) applies for continuous 
as well as for discrete solutions to Eq. (2.6). Since EiO) 
and Eci°) are the only two possible eigenvalues, there are 
no continuous solutions. 

Proposition: The full Hamiltonian has only the trivial 
eigenstate ¢n(x, A) = 0 and the indeterminate eigenvalue 
En(A). The limit A- O+of ¢n(x, A) therefore corresponds 
only to the trivial solution of the unperturbed Hamilton
ian and Eq. (3.11). The eigenstate corresponding to E?), 
as well as all nontrivial eigenstates corresponding to 
Eci°)have been lost. Thus the Klauder phenomenon occurs 
and 

s-lim [H(A)] =H PF oI-Ho' (3. 12) 

Proof: The full :genvalue problem is 

f:exp(-lxl-lyl)l/!n(y,A)dy+Ax¢n(X,A)=En(A)l/!n(X,A). 

(3.13) 

Proceeding as before, we note that if lPn(x, A) is to satisfy 
Eq. (3.5), a finite number d exists such that 

(3.14) 

The full eigenvalue equation thus implies 

I/!n(x,A)=-dexp(-lxl/[Ax-En(A)]. (3.15) 

The combination of Eqs. (3.14) and (3.15) give 

d f~ d exp( - 21 y I) - d 
_~ Y En(A) - Ay - • 

(3.16) 
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(3.17) 

However this equation has no solution for En(A), A ED (R). 
Thus the integrability condition forces the choice d = 0, 
with the corresponding solution 

I/!n(X,A)=O ("Ix), (3.18) 

for any A, however small. 

It is interesting to note that if a perturbation apporach 
to the solution of Eq. (3.13) is attempted, a formal se
ries is obtained, 

(3.19) 

and 

(3.20) 

which apparantly corresponds to EiO) and I/!;O)(x) in the 
limit A_ 0+. The "F" over the equal sign is defined as a 
formal equality, meaning that if the individual terms ex
ist and if further their sum exists then the object on the 
left-hand side is equal to the object on the right-hand 
side. However, these series diverge for all A, however 
small, as can be seen from examination of Eqs. (3.15) 
and (3.17). Thus no hint that the Klauder phenomenon is 
taking place can be obtained from such a perturbation 
approach. 

This example can be studied further by conSidering a 
more general interaction V = w(x) for Eq. (3.4), where 
w(x). is a piecewise continuous function with compact sup
port. Repeating the arguments from Eq. (3.13) to Eq. 
(3.16), one has 

I/!n(X, A) = - d exp( - I x I )/[Aw(x) - En(A)], (3.21) 

and 

d f ~ dx exp( - 2 1 x I) - d -0. En(A) - AW(X) - • (3.22) 

Again if d = 0, only the trivial solution I/!n(x, A) = 0 ('V x) 
is obtained. However, if dol-O then Eq. (3.22) can be 
written as 

1'" dx exp( - 21 xl) - E (A) 
_'" Ll-/.Lw(x)] - n , 

(3.23) 

where J.L = [AI En(A)]. 

If W o is given by 

wo= sup I w(x) I =1. u. b. I w(x) I, (3.24) 
xER wER 

then solutions to Eq. (3.23) exist for all A, En(A) such 
that J.L < WOo 

Note that a perturbation approach to this full Hamilton
ian will result in formal series similar to Eqs. (3.19) 
and (3.20) that will converge. This follows directly from 
Eq. (3.21) which can be expanded in a convergent Taylor 
series if J.L < W o and from Eq. (3.23), the integrand of 
which can be expanded in a convergent series and inte
grated terms by term. 
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In summary, whenever the form sum Ho + X V is small 
in norm no eigenvalues of Ho are lost by adding the form 
perturbations. When the form sum is large in norm, 
some (possibly all!) eigenvalues can be lost even if the 
perturbation is turned off. 

The trouble with forms 

Since the boundary conditions are part of the very es
sence of a self-adjoint operator, the boundary conditions 
can force f) (Ho) n f) (V) to contain only the zero vector of 
H. For example, consider H = L2(R); n a smooth open 
set in R3 and 

(3.25) 

and 

(3.26) 

where HO satisfies Neumann boundary conditions and V 
satisfies Dirichlet boundary conditions. 19 Since 

H=Ho+XV=(1 +X)V, 

one gets the result that 

s-lim [H(X)] = V*Ho' 
x .. 0+ 

(3.27) 

(3.28) 

Thus the boundary conditions have caused the domains to 
have so little in common that the Klauder phenomena 
occurs 0 

Operator extensions 

Because of these examples one searches for alternate 
meanings for the "+" in Ho + X Vo Operator extensions 
are one candidateo Let J ~ denote a family of self-adjoint 
extensions of Ho + X V onf) (Ho) nf) (V) so that 

s-lim [H(X)] =HPF • (3029) 
~~o+ 

Then the Klauder phenomenon occurs when HpF*Hoo 
Consider H = L2(R), 

(3030) 

and 

(3.31) 

The example given in the Introduction corresponds to 
y = 3. Now for - 2 < Y < 1, Eq. (3.31) is a form which is 
small in the norm1

•
2 and no Klauder phenomenon can oc

cur 0 For Y ~ 1, all vectors Ij!(x) Ef) (Ho) satisfy a Holder 
condition so that 

(3.32) 

which requires Dirichlet boundary conditions, 1. e. , 

1j!(0) =0. (3.33) 

Therefore, one has 

(3.34) 

However q(Ho) is that subset off) (Ho) that satisfies Eq. 
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(3.33). Therefore an alternative definition to the mean
ing of "+" in Ho + X V used thus far, namely that f) (Ho) n 
f) (V) be well defined, is that of operator extensions, 
e. g., f) (Ho + X V) cf) (Ho) as in Klauder' s example given 
in Sec. 1. 

Note that for Y> 2 the interaction is nonrenormaliz
able. A particularly clear discussion of these cases is 
given by Aly and Taylor. 9 

4. CONCLUSIONS 

Since nonrenormalizable interactions are very much a 
part of present day physical theories, e. g., nongauge 
weak interactions, charged massive vector mesons, and 
so on, it seems rather clear that perturbation approach
es and cutoff dependent theories do not deserve such 
widespread usage. Also, the measure questions which 
are so glibly assumed away in gauge theories are com
plicated and make a significant difference in the physical 
fields in nonrenormalizable cases. Furthermore, the 
domains of essential self-adjointness of the unbounded 
operators are not a mathematical luxury but rather are 
a physical necessity, even for such venerable problems 
as the massless limit of a general spin free particle 
equation. 
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APPENDIX 

This appendix contains the definitions required for our 
discussion of unbounded operators and the Klauder phe
nomenon. For a comprehensive introduction to unbound
ed operators, we refer the interested reader to Simon20 

and Reed and Simon. 21 

(1) The graph of the operator A, written as r(A), is 
the set of all ordered pairs 

r(A) ={<p, A<p I <p Ef) (A)} 

and is a subset of H xH. 

(2) The operator A is called a closed operator if r(A) 
is closed in H X H . 

(3) The adjoint of an operator A, written as A*, is de
fined as (<1>, AIj!) = (A*<I> , Ij!); V <1>, Ij! E f) (A)::l f) (A*) 

(4) If Ai and A are operators on Hand r(A1) c r(A), 
then A is called the extension of Au written as Ai CA. 
Also, Ai is called the restriction of A tof) (Ai)' written 
as AIf)(A1). 

(5) An operator A is called closable if it has a closed 
extension. The smallest closed extension is called the 
closure of A and is written as A. 

(6) An operator P is called positive if 

(<p, P<p) ~ 0 for each <p ~f) (P). 
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(7) An operator H is called Hermitian (or symmetric) 
if 

o (H)e 0 (H*) , Hcp =H*cp 

for each cp EO (H). 

(8) An operator H is called self-adjoint if 

H =H*, 0 (H) =0 (H*) 

Remark: One Hermitian operator may have several 
self-adjoint extensions; see esp. pp. 204, 205 of Ref. 6 
for a discussion of this point. 

(9) A Hermitian operator H is called essentially self
adjoint if its closure jj is self-adjoint. 

(10) If H is a closed operator, the subsetO ceO (H) is 
called a core or domain of essential self-adjointness if 
HIOc=H. 

(11) An operator 5 is called densely defined in H if 
o (5) is dense in H. 

(12) The resolvent set p(H) of H in H is the set of all 
complex numbers z such that (zl-H) has an inverse. 

(13) The resolvent operator R(z) of H in H at z is 

R.(H) = (zl- H)-l 

(14) The spectrum O'(z) is the complement of the re
solvent set p(H) in C. 

(15) The quadratic form q is a map 0 (q)xO (q)- C, 
where 0 (q) is called the form domain and is a dense lin
ear subset of H. For each Cp, I/J EO (q) the sesquilinear 
form 

q(cp,I/J)-C 

is conjugate linear in I/J and conjugate antilinear in CP. 
The form q is called semibounded if 

q(cp,cp)~O 

for each cp r-:O (q). 

(16) The quadratic form qA associated with the self
adjoint operator A onO (A)e H =L2(R, Il) is 

~ (cp, I/J) = (cp, AI/J) 

for each Cp, I/JEO (A). The quantity L2(R, IJ.) is the real 
Lebesgue square integrable functions with measure IJ.. 

(17) If Ho and V are positive self-adjoint operators, if 
H =Ho + X V, and if 0 (H) =0 (Ho) n D(V) is dense in H, then 
the form sum (Ho + X V) is 

q:,(cp, I/J) = (H~ /2cp, H~ /2cp) + X(Vl/21/J, V1 / 21/J) 

for each cp EO (Ho) and for each I/JEO (V). 

(18) The operator T is called norm al if T* T = TT* • 
Every normal operator can be written uniquely as 

T=Re(T) +i1m(T) 

where Re(T) and Im(T) are Hermitian. 

(19) The complex number y is called a vertex and the 
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real number fJ is a semiangle for a normal operator 
Tif 

I arg(z -y) I .,. fJ < 1T/2 

whenever the complex number z is in the spectrum of 
T, 1. e., Spec(T) ={z I (z - T)-l does not exist}. 

(20) Given Ho + X V and thaW (H) = 0 (Ho) n 0 (V) is 
dense in H the maximal self-adjoint extension of H on 
o (H) is written as 

HIO(H), 

or 

(Ho + X V) 10 (Ho) nO (V). 

(21) The sequence of operators Tn uniformly or norm 
converge to the operator T 

n-lim Tn=T 

if for E> 0 

IITn-TII<E 

whenever n> N, where II ,1'0 is the operator norm, e. g. , 
Tr(wT*T) for w a real function. 

(22) The sequence of operators Tn are strongly con
vergent to the operator T, 

s-lim Tn=T, 

if for E> 0 and I/JEO (T):) 0 (Tn)' 

II(Tn - T)I/JIIH < E, 

whenever n> N, where II-IIH is the Hilbert space norm 
ofH. 

(23) The sequence of operators Tn weakly converge to 
the operator T 

w-lim Tn=T 
n~'" 

if for E> 0, and I/J, cp EO (T):) 0 (Tn) 

I (cp, Tnl/J) - (cp, TI/J) I < E 

whenever n> N, where ( , ) is the inner product of H. 

Remark: Every norm convergent sequence of opera
tors is strongly convergent and every strongly conver
gent sequence of operators is weakly convergent. That 
the converse propositions do not hold can be seen from 
the next two examples. 

Example A1: A strongly convergent sequence which is 
not norm convergent. Let In>, nEZ+, be a complete 
orthonormal basis for H and let Pn be the projection op
erator onto the n-dimensional subspace spanned by 
11 ) .. ·In), e.g., Pnlr)==lr), r"'n, andPnlr==O, 
r>n. Then 

s -lim (Pn) == 1 

but 
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IIPn -Pn+lll = 1 

for each n so that the norm limit diverges, or equiva
lently, no real positive E < 1 bounds IIPn - Pn-11l for any n. 

Example A2: A weakly convergent sequence which is 
not strongly convergent. Keep In> as in the last exam- . 
pIe and let Sr denote the shift operator by r units (rEZ+). 
Then 

Srl n>= In+r>, IISr -Sr+lIlH=2 

whereas 

w-lim (Sr) = O. 
r- OO 
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In this paper the effects of screened-Coulomb scattering on electron polarization are calculated. The 
results apply to elastic electron scattering by light atoms at moderate energies. The calculation is 
carried out to second order in aZ; in this order the change in magnitude of the polarization first 
occurs. For arbitrary initial polarization. the fmal polarization vector is expressed explicitly as a 
function of initial polarization. momentum, and scattering angle. The effects of screening on 
polarization is discussed. In the low energy region, a few hundred eV, there is a significant effect on 
the output polarization of an input unpolarized beam. 

I. INTRODUCTION 

The problem of calculating polarization effects in 
scattering by the screened Coulomb potential Z e e-Ar / 

41Tr is interesting because it gives an approximation to 
the elastic atomic scattering problem and because of 
the inSight it gives into the Coulomb scattering problem. 

To second order the problem can be solved in terms 
of elementary functions; the complete results are given 
below. An arbitrarily polarized input beam is con
sidered and the polarization of the output beam is cal
culated, as a function of the input polarization, momen
tum, and scattering angle, to second order in aZ. It is 
essential to go to this order to begin to understand the 
change in magnitude of the polarization. In first order 
there is only a rotation of the polarization 3-vector 
about the normal to the scattering plane. The second 
order contribution consists of a correction to that 
rotation angle, an additional rotation toward the normal, 
and a change in magnitude of the polarization. For 
small a Z, the higher order terms are expected to be 
small with no qualitatively new effects coming in. 

This calculation proceeds from a much earlier one by 
Dalitz.1 He obtained the cross section for scattering of 
unpolarized beams in this order. 

The limit of small A, properly taken, gives the 
Coulomb scattering results. A second order calculation 
with a pure Coulomb field leads to divergent matrix 
elements for the scattering. As shown by Dalitz, 1 the 
divergence is circumvented by calculating the proba
bilities in the screened Coulomb problem and only then 
taking the limit of small A. 

The results which we derive below for the Coulomb 
scattering agree with those obtained earlier by Gii rsey2; 
he treated the case of longitudinally polarized electrons 
incident. 

II. TRANSITION OPERATOR 

We shall use Bjorken and Drell's notation and follow 
their presentation of scattering theory. 3 

The initial wavefunction is 

The state 1/!(x) that evolves from this is given by (Ref. 
3, p. 96): 
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(1) 

(2) 

where SF is the Feynman propagator and A(y) is the 
external 4-potential. To two orders the scattered wave 
is then 

1/!f(x)=ef try SF(x-y)".A(y)1/!j(y) 

+e2f trySF(x-y),,·A(y) (3) 

f d4zSF(y-Z)".A(z)1/!j(z), 

Here one sets 

A(y)=O, Ao=- (Ze/41Tlyl )exp(-Alyl) (4) 

and uses the formula (Ref. 3, p. 95) 

jft exp[-iP' (x- y)] 
SF(X-y)= (21T)4 p2 _m2+iE (,,·p+m). (5) 

After simplifying in the usual way, one finds that 

() f trPf exp(-iPt·x) ( ) ( ) 
1/!f x= {21T)3 p;-m2+iE "'Pf+moEf-Ej 

(6) 

where 

--ze2( ,,0 _ Ze
2 f~ 1 

- A2+IPf-PjI2 (21T)3 QA2+IPf-qI2 

X En)J + q. 'Y + m 1 ) 
E~-lqI2_m2+iE A2+lq_p,1 2 • 

(7) 

This transition operator M is related to the Bjorken and 
Drell S-matrix element Sf! by 

Sfi = - ~(E7~J 1/227rO (Ef - Ej)u(Pfsf)Mu(pjs,). 

In the integration over P'J in Eq. (6), there is a con
tribution only when E, =Ef and, because of the pole in 
the denominator, only when Ef = (J Pf 12 + m 2 )1/ 2. Conse
quently there is really only an integration over the di
rection of Pf involved, where the output wavefunction in 
the direction p,I1 Pf 1 is of the form 

1/!fP(x) = C exp(- iPf ' x)(,,· Pf + m) 

XM(Pf ,PI) (m/ Ef V)1/2U(Pi SI) ' 

C being a normalization factor. 

Copyright © 1974 American Institute of Physics 
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The integrals that occur in Eq. (7) are 

-f q£i3q K- (A2 + Ip/- qI2){A2 + Iq _PI12){p2 _ q2 +ie)' 

where p denotes {Iq - m2)1/2 and q is I ql. The lengths 
I p I I and I P, I are both p. (In this respect we depart from 
Bjorken and DreWs notation.) In the Appendix it is 
shown that K is of the form (PI +P/) J and the complete 
evaluation of I and J in terms of elementary functions 
is given, Eqs. (A17) and (A24). In terms of I and J the 
transition operator is 

(

yO Ze2 
M{P"PI)=-Ze

2 
A2+IP/_PII-{27T)3{ElyD+m)I 

(9) 

The matrix dependence in M can be simplified using 
the fact that M, as it occurs in Eq. (6), only relates 
electron wavefunctions. That is, since 

'Yo PI U{P I ' 8 1) = (m - EyO)u{PI , 8 1), 

{yo P, + m)'Y t P, = (yo P, + m)(m - EyO), 

one can replace y' (PI + P,) in Eq. (9) by 2{m -EyD). An 
equivalent expression for M is then 

[
yO Ze2 Ze2 ~ 

M = - Ze
2 

A2 + 4p2 sin2~ 0 - (27T)3 Ey°{I + J) - (27T)3 m{I - J)J ; 

(10) 

here 0 is the angle between PI and PI' 

An alternative way of writing this expression, valid 
to second order, is 

Ze2 

M=- A2 + 4p2 sin2~ 0 

(11) 

There is freedom in choosing the exponential that is 
factored out at this point. This particular choice was 
arrived at in a pragmatic way by finding an exponent 
that makes the term of order (O' z)1 in the final equation 
for the helicity amplitude ratio, Eq. (17) below, small 
compared to the (O'Z)O term. This choice of exponential 
factor agrees with Dalitz1 in the Coulomb limit where 
the exponent is proportional to 10gA. Discussions of this 
factor were given recently by Gasiorowicz4 and 
Uberall. 5 

Some remarks can be made about the transition 
operator in the general form 
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M= C{yD+a) (12) 

independent of the expansion on O'Z. For any wavefunc
tion of the form of Eq. (1) the amplitude is 

(
X '(E + m) 1/2 

u= [0'0 p/ (E +m)Jx) -2-

and the polarization of the state is given by the spin of 
the two-component X. In the present case Eqs. (8) and 
(12) imply that the initial and final amplitudes are re
lated by 

u, = C{yo P, + m)(yo + a)uI 

and so the spin functions are related by 

X/=MXI' 

where 

( 
1-aE-m A A\ 

M = C 1 + 1 + a E + m U· P/Uo p~ . 

This M is two-by-two and this coefficient C accumu
lates several factors. Alternatively one may write 

M = C{/ •• exp[ - hen. 0'] - 1._ exp[ - ~i{0 + 7T)n' uJ}, 

where the I's are helicity amplitudes in the notation 

(13) 

of Martin and Spearman6 and n is the unit vector in the 
direction of PI xp!' Only the ratio of the terms can 
affect the polarization; the parameter 

T/ =1 .. /1++ 
is suggested. In terms of T/ the matrix is 

M = C exp{- ~iOn' 0")(1 + iT/n' 0") (14) 

and by comparing Eqs. (13) and (14) one finds that 

aE+m 1 
T/ = E + am tan2"O. (15) 

We return now to the specific problem. Equation (11) 
implies 

- [Z e2/ (27T)3]m{A2 + 4p2 sin2~ 0) {I - J) 
a=1 +[Ze2/{27T)3]E{A2+4p2sin2~O)(I-J)' 

and Eq. (15) gives 

(16) 

mtan~O 
T/ = E + (O'Z/2rr2)(E2 _ m 2 )(A2 + 4p2 sin2~O)(I _ J) , (17) 

where 0' is e2/47T. The expansion for small O'Z gives 
here 

III. FINAL POLARIZATION 

(18) 

The final and initial density matrices for the polari
zation are related by 

p,=MPIW , 
In general such a denSity matrix is written as ~ (1 + 0'0 t), 
where t is the polarization 3-vector for the state. Ac
cordingly, one writes, using Eq. (14) for M, 
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Xexp(~i9n' o')(1-i'l}*n. 0'). (19) 

By simplifying the right side into an expression linear 
in 0', one finds C and the relation between the initial 
and final polarizations. 

A standard form for organizing polarization results in 
this type of problem 7 is 

t f = (1 +Sn' t f)-l{(S +n' tf)n 

+ T[cose nX t, + sine nX (n x tin 

+ Ursine nX t, - cose(nx (nx t,H). (20) 

Here S, T, U are functions of the energy and scattering 
angle related by 

(21) 

The quantities T and - U give the components of tf in 
the directions cose nxt, +sine nx(nxt,) and -sine n 
x t, + cose nX (nx t,); these are the vectors nX t, and 
n x (n x t,) rotated about n through the scattering angle 
e. Another standard way to express the results2 relates 
the components of tf in a coordinate system built from 
n and P, to the components of t, in a coordinate system 
built from n and P,: 

tf = (1 +St,.n)-l{(S +no t,)n 

+ [ut,· (n,xn) - Tt," n,Jn,xn 

+[Tt,· (n,xn) + ut,· n,]nf }, 

where n, and nf are unit vectors in the P, and Pf 
directions. 

(22) 

In the present problem Eq. (19) leads directly to Eq. 
(20) with 

S == - 2 1m 1// (1 + 11/ 12), 

T= - 2 Re 1//(1 + 11/12), 

U = (1 -11/12)/(1 + 11/1 2). 

(23a) 

(23b) 

(23c) 

The problem is in principle solved. Equation (22) 
gives the final polarization; Eqs. (23) gives S, T, U in 
terms of 1/; Eq. (18) gives 1/ in terms of 1- J; I and J are 
given in Eqs. (A17) and (A24). 

IV. DISCUSSION 

A. General remarks 

For comparison we shall quote the results for cross 
section in second order. For scattering of an unpolar
ized beam without observation of the final polarization, 
Dalitz1 found 

(
dU) 4012z2.E2 {(l.o2' 21 e) 
dG unp == (A2 + 4p2 sinate)2 - p sm 2 

X[l ~OI~E) (A2+4p2sin2~e)Re(I+J)J (24) 

-( a;;t) (A2+4p2sin~e)Re(I -J)}. 
For scattering of a particle with polarization t, into any 
final polarization t; the cross section is 
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(25) 

where tf is understood to be written in terms of t" as, 
for example, in Eq. (20) or (22). From the standard 
form for the polarization, Eq. (22), the degree of out
put polarization is found to be 

(26) 

If the input particle is in a pure state so that t, = 1, then 
the output particle also is in a pure state. 

In the especially interesting case of an unpolarized 
incident beam, t, = 0, the output polarization is 

tf==Sn. (27) 

B. The Coulomb limit 

The screening constant A appears in the cross section 
and polarization results always in the ratio A/ p. The 
limit as Alp goes to zero is identified as the Coulomb 
scattering. 

For small Alp Eqs. (A17) and (A24) lead easily to 

~i A ~2i . 1 

1= 2p3 s in2i8 In 2P - 2p3 sin2i81n(sm2 e), (28) 

~i A 
J == 2p3 sin2i 0 In 2p 

~i l(.le) 
2 3 . a!. 8 21 II n sm2 p sm 2 cos 217 

~3 1 

+ 4 3 218 (1 - csc2e). p cos 2 
(29) 

Here one sees that I and J and hence M diverge as 
In(A/p). However cross section and polarization results 
depend only on the real parts of I and J and 1m (I - J) 
and so are finite. 

The Coulomb cross section in this order results from 
using Eqs. (28) and (29) in Eq. (24): 

x[csc~o- [32 csc2i9+ ~OIZ[3(csc3t8 - csc~e)J. 

(30) 

To get the polarization effects, one combines Eqs. (18), 
(28), and (29) to get, in the A/P-O limit, 

- 2i In(sin~ oH}. 

Finally Eqs. (23) give, for the Coulomb limit, 

OIZ[3(l - [32)112 tan3ieln(sin2~e) 
S == 1 + (1 _ [32) tan2i 0 ' 

2 (1 - 132 )11 2 tan~ 8 
T = - 1 + (1 _ (32) tan2i 8 

1raZt3(1 - (32)1/2 tan3~8{csd9 -1) 
+ 1 + (1 -132) tan2{- 9 

(31) 

(32a) 

(32b) 
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.... 

1 - (1 - ,g2)tan2! 8 
X 1 + (1 _ ,g2) tan2ie ' 

1 - (1 - ,g2) tan2! 8 
U 1 + (1 _ ,g2)tan2! 8 

1TaZtl(l- ,g2)1/2tanSi8(csci8-1) 
+ 1 + (1- ,g2)tan2!e 

2(1 - ,g2)1/2 tani8 
xl + (1 _ 132) tan2!8 • (32c) 

From this result it is easy to see qualitatively the 
amount of polarization that you get from Coulomb 
scattering. The function S, as given by Eq. (32a) , is 
zero at (3=0 and f3=l and is zero at 8=0 and 8=1T. For 
intermediate values it varies smoothly and has a mini
mum value near aZ. A graphical discussion of S, T, 
and U is given in the next subsection. 

At high energy, f3 -1, the formulas simplify to 

t,=n o tin + tie (ni Xn) n,Xn + tie nil'l' 

Thus the final polarization is found by rotating the 
initial polarization through scattering angle 8 about the 
normal to the scatttering plane n. The helicity is hard. 

At low energy, ,,- 0, the formulas simplify to 

t,= tl' 
and here the polarization is hard. 

C. The atomic case 

In the caSe of finite Alp Eqs. (23) give, to order a Z , 

S_aZj3{1-j32)1/2tani8 A2Ip2+4sin~8 
- 1 + (1 - 132) tan2! e 2 cos2{- 8 

2(1 - 132)1/2 tani 8 aZ13(l - 132)1/2 tani8 
T = -1 + {1- j32)tan2{-e + 1 + (1 - j32) tan2{-8 

XA2lp2+4sin2ie 1-{1-f32)tan2ie 
2 cos2! e 1 + (1 - 132) tan2! e 

(33a) 

1 (sini 8) ( 2 )] + sin!8 arctan Alp - arctan Alp , 

1 - (1- j32) tan~8 aZtl(l - f32)1/2 tan~8 
U= 1 + (1 _ j32)tan2{-8 + 1 + (1 - j32) tan2{-8 

XA2Ip2+4sin~8 2{1-f32)1/2tani8 
2 cos2i e 1 + (1 - 132) tani e 

1 (sin~e) ( 2 ) ] + sini 8 arctan Alp - arctan Alp' 
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(33b) 

(33c) 

These results are expected to apply to the elastic 
scattering of electrons by low-Z atoms at moderate 
energies. Only small aZ can be considered since this 
is a perturbation calculation. Thus, for a 10% calcula
tion, Z should not be much greater than 10. For such 
low-Z atoms the screened-Coulomb potential is a good 
approximation to the Hartree potential, 8 with the 
screening parameter A given by the Thomas-Fermi 
value, 

A=1.13Z1
/

3/ao, 

where ao is the Bohr radius. The parameter ranges 
from zero for a Coulomb field to 4.6 A-1 for neon at 
Z = 10. A static potential is expected to provide a valid 
model of the atom at kinetic energies greater than 100 
eV; below that energy, electron exchange and shell 
polarization effects probably become significant. 9 As 
long as the kinetic energy is greater than 100 eV the 
wavelength pol is less than 0.20 A so Alp ranges be
tween zero and unity in the applicable region. 

With the applicable range of the variables established, 
the discussion of the exponential factored out in Eq. 
(11) can be completed. With the factorization as given 
one obtains Eq. (17) for 1/ and it is sensible to expand 
the denominator in Eq. (17), to obtain Eq. (18), pro
vided the quantity 

K = (aZp2/2rE)(A2 + 4p2 sin2~8)(I - J) 

is small. A numerical discussion establishes that the 
absolute value of this quantity is less than aZ at all 
energies and angles provided A is less than p. On the 
other hand, if an inappropriate exponential is factored 
out, one arrives at an expression for 1/ where such an 
expansion is not justified. For example, if no exponen
tial at all is factored out, the same procedure leads to 

1 - (aZlr)E{A2 + 4p2 sin~8)I m 1 
1/ = 1 + (aZ/21T2)(p2/E){A2 + 4p2 sin2!e)(I _ J) _ {aZ/r)E{A2 + 4p2 sin2{-e)I E tan"2 e. 
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FIG. 1. Effect of screening on S. Here S(9)/Z is plotted at 
kinetic energies of 0.1, 0.2, and 2.0 KeV for screening 
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FIG. 2. Polarization at higher energies. Here S(9)/ Z is 
plotted at kinetic energies of 20, 200, and 2000 KeV. The de
pendence on A is too small to be seen at these energies. 

that the only significant dependence on A is in S at 
kinetic energies below about 2 KeV. Thus, except in 
that respect, the screened Coulomb potential gives the 
same results as the pure Coulomb potential. The Z 
dependence in T and U is too small to be seen on these 
graphs; the (aZ)1 terms are too small compared to the 
(aZ)O terms in these functions. However, S is propor
tional to aZ, in the order calculated. 

o ~-----------r---------,r_-----~ 
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parameters ;>'=0,4.6, and 9. ::> 0 t-----------4r-----"<""-----+--i 

Here the expansion can be made provided the quantity 

K' = (aZ/1T2)E(A2 + 4p2 sin2~8)I 

also is small. However, K' diverges for small Alp as 
10g(A/p) and diverges at low energy as 1//3. 

Graphs of S, T, and U, showing the dependence on 
screening parameter, kinetic energy, and scattering 
angle, are given in Figs. 1, 2, and 3. It is interesting 
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FIG. 3. Energy dependence of T(9) and U(O). The functions 
are plotted at kinetic energies of 0.1, 0.2, 2.0, 20, 200, and 
2000 KeV. The dependence on ;>. and Z is too small to be seen. 
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APPENDIX 

The integrals that occur in Eq. (7) were evaluated 
by Dalitz. 1 We give here an alternate and more com
plete description of how to do them. 

The integrals are 

I-f d3
q 

- (;\2+ Ip,_qI2)(;\2+ Iq_pjI2)(p2_q2+ie)' (AI) 

-/ q~q ) 
K- (;\2+ Ip,-ql 2)(;\2 + Iq_PI12)(p2_ q2+iE)' (A2 

where p denotes (E~ - m2)1/2 and q is I ql • The lengths 
IPII and Ip,l are both p. 

The first step is to use the identity, 

I .rdZ( 2 )2 
ab =J_l"2 a(l +Z) + b(l- Z) 

to bring the integrals to the forms 

! l dZ! q~q 
K= _1"2 (lq_PI2+A2)2(p2_ q2+ie)' 

where 

and 0 is the angle between PI and P" the scattering 
angle. The length of P is 

P= [p2 _ p2(1 _ Z2) sin2!0]1/2, 

and one notices that 

p2 + A2 =p2 + ;\2. 

The second step is to recognize that 

! d3q dL 
(I q - PI2 + A2)2(p2 _ q2 + ie) = - d;\2 , 

! qld3q I aL 
(lq_PI2+A2)2(p2_q2+ie)=2" oP

i 
' 

where L is defined by 

The problem is reduced then to the evaluation of L. 

In terms of spherical polar coordinates, z axis 
chosen in the P direction, L becomes 

L = 1T [I d(cos 0) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AIO) 

(All) 

(AI2) 

(AI3) 

The q integration is done with complex variable tech-
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nique. For large q the integrand goes like q-2 so that 
the contour may be closed upward at infinity. The de
nominator has zeros at ± (p + ie) and P cos 0 ± i(p2 + ;\2 
- p2 COS 20)I/2 so the contour includes poles at p + ie and 
P cos 0 + i(p2 + ;\2 - p2 cos2 0)1/ 2. The evaluation of the 
residues leads to 

L = - 21T2ZJl dt 
-1 

{ 

2p2t2 _ 2 _;\2 + 2iPt( 2 +;\2 _ p2t2)1/2 
X 2i(p2 +;\2 _ p2f)1/2 2p2f _ 2p2 _;\2 + 2iPt(p2 +;\2 _ p2f)I/2 

(AI4) 

From here on the integration is elementary. The result 
is 

(AI5) 

Here we are thinking of L as a function of P, A (p) given 
by Eq. (A9). The logarithm function is defined to have 
- 1T < arg log z < 1T • 

One differentiates Eq. (AI 5) by ;\2, as required by 
Eq. (AI 0), to obtain 

f dlq 1T2 

(I q - PI2 + A2)2(p2 _ q2 +ie) = A(_;\2 + 2piA) , (AI 6) 

and then integrates over Z as required by Eq. (A4). The 
final expression for I is 

_ 1T2 

1= P sintO[;\4 + 4p2(;\2 + p2 sin2tO)]1/2 

(AI7) 

the arctangent defined to be in the first quadrant. 

To get K, one first writes 

Ki=f
1

dZ ~=fl dZ Pi dL. (AIS) 
-1 4 oPI -1 4 P dP 

However, P and dL/ dP are even in Z so only the even 
part of PI contributes and 

K=~(Pi +p,)J, (AI9) 

where 

J =f 1 dZ .! dL =p-2 . -21. oil dZ dL 
4 P dP sm 2 4Z dZ • 

_1 -1 
(A20) 

Two integrations by parts bring this to a form that can 
be treated by elementary methods. First of all 
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(A21) 

Second, one recognizes that dZ/ PZ2 is - p-2 COS-2~ ed(p/ 
Z) so that 

1 
1f2i 1 P p-P+iA I 

- 2p2 sinz{"e 2p2 cos:q.e Z In p + P+iA 1-1 

1f2i 1 
+ 2p2 sin2i e -2p"""2,...c-o-s-=-:q. .... e-

f 1 P dZ d P - P + iA 
-1 Z dZ In p + P + iA • 

(A22) 

This simplifies down to 

1f2i (1 i~ f 1 dZ pA + i(~2 + p2n 
J=-2p2cos2ie pln2p+i~+ -1 A -~2+2PiA j' 

(A23) 
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The final result is 

~2+2p2 ir 
J= J-2p2 cos~ 9 2p3 cos2]- 9 

( 
i~ i pSin~e) 

In 2p +i~ - sinte arctan,\ . 
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Representation and differential geometry of the semisimple Lie 
groups 
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Department of Physics and Astronomy, Moorhead State College, Moorhead, Minnesota 56560 
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A systematic method is presented whereby any compact Lie group of n-real parameters is dealt with 
from an infinitesimal approach with the representative matrix method based on a group of inner 
automorphisms suggested in a previous paper. The group manifold, dermed in terms of a metric of 
group parameters, is identified as a Riemannian one in which these parameters play a role of n 
curvilinear coordinates.· Riemannian geometry is thus valid in the group manifold, and geometric 
quantities are explicitly calculated in terms of the symmetric or (0) connection by a straightforward 
application of the ordinary procedure of tensor analysis. A new and simpler method of computing 
the invariant volume element is presented within this framework. Furthermore, we discuss in detail 
the group of inner automorphisms for the calculation of the matrix element of finite rotations for 
any irreducible representation (abbreviated MEFRIR). It is found that our method works very well 
and yields right and left vector fields together with a set of 2n equations to be satisfied by the 
MEFRIR. The global properties of the group may, therefore, be obtained as a solution to these 
equations. Moreover, it provides not only the generalized Maurer-Cartan equations, the Lie structure 
formulas, two parameter groups of point transformations and the adjoint group, but also two 
additional nonsymmetric (+) and (-) connections with zero curvature, which do not possess any 
preassigned metric but possess two absolute parallelisms. Thus, our results on differential geometry 
completely agree with Cartan and Schouten's. A link between differential geometry and 
representations is presented by the right and left vector fields which are explicitly calculable in terms 
of the n parameters and through which geometric quantities, e.g., the Riemann tensor, the Ricci 
tensor, and the scalar curvature, of any connection are explicitly displayed. A theorem relating both 
the vector fields to the metric tensors is also included. Finally, the I (rank of the group) invariant 
differential equations to be satisfied by the MEFRIR are cast in the covariant (or Lie derivative) 
forms in any connection. Examples of the invariant equations are given for SU (2), SO (3), and 
SU(3). The two invariant equations of the latter can be cast in terms of the eigenvalues of isospin 
and hypercharge upon carrying out charge and hypercharge quantizations; in this connection, a new 
nonrelativistic wave equation to be satisfied by SU (3) multiplets as a generalization of the 
SchrOdinger equation of the symmetric top is also proposed. 

I. INTRODUCTION connection, representative matrices of these groups 
have been parametrized quite arbitrarily. 14,15 

In spite of some prominent works by Lie, 1 Cartan and 
Schouten2

,3 (abbreviated CS), and Eisenhart,4,5 on dif
ferential geometry of the semisimple Lie groups, little 
progress has been made along this line of research. 
Attempts have been made to introduce the Hilbert space 
of complex functions6- s to the unitary group, symmetric 
spaces,9 special functions, 10 and many others. 11 

An infinitesimal and differential geometric approach 
has a definite advantage in that the motion of geometric 
quantities may be explicitly describable in terms of the 
variables at any point in group space, as compared with 
the algebraic method, the Hilbert space method, and 
others, in which there exist no geometry. Recently, 
there were attempts to introduce a metric to the unitary 
group U(m)12 without success and to geometrize U(m).13 

In this paper we present a method whereby the rep
resentation theory and differential geometry of any 
semisimple Lie group are treated in a systematic way 
from an infiniteSimal point of view. This is accom
plished by generalizing the representative matrix meth
od16 based on a group of inner automorphisms which was 
used in treating the representation theory of SU(3) where 
it was suggested that such a generalization would indeed 
be possible. Our method is completely different from 
Lie's original approach, in which a finite continuous 
transformation group is defined as a system of 
transformations 

Yet, no systematic method exists by which all semi
simple Lie groups may be dealt with from an infinitesi
mal and differential geometriC point of view. An appar
ent difficulty seems to be that although the transforma
tion of a semisimple Lie group with n-real parameters 
has been dealt with and the existence of three [(0), (+), 
and (-) 1 connections has been Shown, in practice it is 
not known how these connections can be calculated, how 
they are related to the group manifold and the ME FRIR. 
On the other hand, recent developments in the represen
tation theory of the semisimple Lie groups indicate that 
a separate treatment for each of A l> Bile l> D I and the 
five exceptional groups G2 , F 4 , E 6 , E7 and Es would be 
necessary-this is accomplished by our method. In this 
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in that we need neither the variables Xl (or xi) nor the 
functional equations derived thereby. However, we re
quire a representative matrix for a group, which is a 
continuous and differentiable function of group coordi
nates (parameters), through which a Riemann space can 
be introduced. Different representative matrices of a 
group are regarded as different sets of coordinates in 
the same Riemannian manifold which provides the same 
quadratic line element so that the method has universal 
applicability to any representative matrix of any semi
simple Lie group. 

While it is important to recognize that CS's treatment 
applies to the semisimple Lie group in general, it is 
more important to recognize that our treatment applies 

Copyright © 1974 American Institute of Physics 1085 
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particularly to a specific group, e. g., the unitary group 
U(m) if we start with a representative matrix of U(m). 
Our method also has an advantage over CS's in that the 
metric tensor of a group manifold is explicitly calcula
ble as functions of coordinate variables and thereby 
making possible the explicit calculation of the right 
and left vector fields as well as three connections and 
geometric quantities, such as the Riemann tensors, the 
Ricci tensors, and the scalar curvatures for any 
connection. 

We also present a new method simpler than the ordi
nary ones by Wigner, Boener, and Murnaghan of com
puting the invariant volume element of a group. Espe
cially important is the fact that the differential equa
tions to be satisfied by the MEFRIR may be integrated; 
once this is done, our method establishes a link between 
the differential approach and the global approach of 
Schur and Weyl and thus, when solved, provides us with 
a complete set of orthonormal functions in a Riemannian 
group manifold. Consequently, any function of this 
manifold may be expansible in terms of these functions. 
Our method therefore generalizes the method of Fourier 
series to one with a larger class of series expansible 
in terms of a complete set of orthonormal functions 
defined in a general Riemannian space. 

It is apparent that the important global properties of 
group manifolds cannot be introduced independent of the 
infinitesimal approach and can only be understood as 
solutions to differential equations to be satisfied by the 
MEFRill; this paper indeed details such a method. 

This paper is divided into five sections and the 
Appendix as follows: 

In Sec. II, we introduce, through a representative 
matrix, a quadratic line element of a semisimple Lie 
group of n real variables ajJ. (J.I. = 1 •.. n). The quadratic 
line element is invariant under a coordinate transforma
tion a" - a''', therefore provides a symmetric 
Riemannian metriC, and defines an invariant group 
space of n-real dimensions. Cyclic coordinates are also 
defined. 

We can then utilize the ordinary method of tensor 
calculus of Riemannian geometry to obtain the symmet
ric or (0) connection, the Riemann tensors, the Ricci 
tensors, and other geometric quantities of the symmet
ric connection associated with this metric. The invari
ant volume element of a group is also introduced within 
the framework of Riemannian geometry. 

In Sec. III, a group of inner automorphisms induced 
by parameter change is considered which is a general
ization of the method used in treating SU(3). 16 By apply
ing with the generators from the right and left sides on 
the representative matrix, the right and left translations 
(or rotations) are generated, which, in turn, induce two 
contravariant vector fields yi(a) and lj(a). We thus 
obtain a set of 2n differential equations to be satisfied 
by the ME FRill. Two sets of covariant vector fields 
yj(a) and l~(a) are then introduced through orthonor
mality conditions. Furthermore, another set of 2n equa
tions to be satisfied by the MEFRIR are derived which 
is shown to include the generalized Maurer-Cartan 
equations and the Lie structure formulas of the first and 
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Section IV, treated in parallel with CS and Schouten, 
deals with two nonsymmetric (±) connections and their 
geometric properties generated by the real vector fields 
yi(a), lj(a), y~(a), and l~(a). It is shown that these 
connections with zero curvature do not possess any 
preassigned metric and therefore are non-Riemannian 
but possess two absolute parallelisms of Levi-Civita, 
which is in complete agreement with CS's results. The 
relationships between these connections and the curva
ture tensor of the (0) connection are also given. 

Section V deals with invariant differential equations 
to be satisfied by the ME FRIR. A theorem relating the 
vector fields to the metric of a group is proved. By 
making use of this theorem, the second order invariant 
equation of any group is cast in the covariant forms in 
any connection. For the higher order invariant equations 
we take U(m) as an example and cast them in Similar 
covariant (or Lie derivative) forms. Some special exam
ples of the invariant differential equations are explicitly 
given, including those of SU(2) and SO(3) (the Schroding
er equation of the symmetric top) as well as those of 
SU(3). The latter example also includes new quantiza
tion rules for charge and hypercharge so that the invari
ant equations can be expressed in terms of their eigen
values. A new nonrelativistic wave equation to be 
satisfied by SU(3) multiplets is also displayed. 

Section VI contains our conclusions which summarize 
some new results and compare our results with CS's. 

In the Appendix we briefly discuss some properties 
of the ME FRIR, including its orthonormali ty, complete.., 
ness and transformation properties in R". 

The general theory developed in this paper will be 
applied to the groups SU(2) and SO(3) in another article.17 

II. RIEMANNIAN SPACE, GEOMETRIC PROPERTIES, 
AND SYMMETRIC (0) CONNECTION 

In this section we identify the group manifold of a 
compact Lie group as a Riemannian one with a metric 
provided by a representative matrix. It is shown that the 
quadratic line element defined is invariant under any 
transformation of its representative matrix. Thus we 
can apply the ordinary method of tensor calculus on 
Riemannian geometry to obtain its symmetric (0) connec
tion and all other geometric quantities. The invariant 
volume element is also introduced and its invariance 
under a coordinate transformation as well as right and 
left translations is shown. 

A. The Riemannian space 

Let G, be a semisimple Lie group of rank 1 with a 
representative matrix M(a) = (mtt'(a» of rank N - mtt' 
are complex numbers and the a collectively denotes the 
a"'s-expressed in terms of n (order of the group) 
linear ly independent real variables a" (J.I. = 1, 2, ... , n) 
such that the variability domains of the ajJ. 's are appro
priately chosen to cover the entire group manifold once 
and only once. We assume the continuity and differentia
bility of the representative matrix with respect to the 
group parameters a". The M(a) satisfies the relavant 
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group conditions. For example, MtM=l and detM=l 
for SUI+u the dagger (t) indicating the Hermitian con
jugate; the rank N of matrix M( a) is l + 1 and the order 
nisl2+2l. 

With the help of M(a) we define a symmetric metric 
g"r(a) and a positive-definite quadratic line element 
between two adjacent pOints in group space in terms of 
the real coordinate variables a" by 

(2.1) 

the asterisk indicating complex conjugation. Throughout 
this paper, indices t and t' run from 1 to N, whereas 
italic indices [both lower case (i,j,) and capitals (I, J, )] 
as well as Greek indices (fJ" v) run from 1 to n. The 
summation convention for a repeated index is used un
less otherwise stated. By definition, g"v(a) '" (omt'~, 1 
oa")(omtt'laaV); the metric tensor g,,)a) is clearly 
symmetric and therefore Riemannian. 

Let a" - a'" induced by M(a) - M(a') of the same G l 

be a transformation to another set of coordinates of 
the same point; let a neighboring point have coordinates 
a" +da". The da" then transform according to a con
travariant vector 

O 
,,, 

d '" a d v a = 0 ava, 

and g,,)a)18 according to 

oaP oa' 
g,,/(a')= oa'" oa'v gp,(a). 

(2.2) 

(2.3) 

Accordingly, for the same G l with different M(a) and 
M(a') we get the same line element 

(2.4) 

i. e., the quadratic line element is invariant under a 
coordinate transformation a" - a'''. Since there is a 
symmetric (0) connection associated with the metric 
g"v(a), we have therefore defined the group manifold, 
called R n, of a Riemann space in the n real variables 
a" . 

It is convenient to define a cyclic coordinate a" of Rn; 
any coordinate a" which does not appear explicitly in 
g"v(a) is said to be cyclic (or ignorable). This concept 
of cyclic coordinates will play an important role in 
quantization procedures -in both the ordinary quantum 
theory and a new quantum theory of quantized charge 
and hypercharge. 

Mathematically, no set of coordinate system is pre
ferred to another; any set of n coordinates which satis
fies the relevant group conditions may be acceptable 
mathematically in defining the group manifold of a n
dimensional Riemannian space. However, phySically 
there is very often a preferred set of coordinates. 
PhySical requirements, such as the requirement of 
quantizing the z component of angular momentum, often 
impose restrictions on a choice of coordinate system. 
Two examples are given in another article17 on pre
ferred sets of coordinates for SU(2) and SO(3) which are 
compatible with the quantization of angular momentum 
in quantum mechanics. Another example has been dis
played16 of a preferred set of coordinates for SU(3) 
where isospin and hypercharge angular variables have 
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been introduced to make the chosen coordinate system 
be compatible with the quantization of electric charge 
and hypercharge. 

B. Geometric properties of the (0) connection 

Once the metric of G l is known, one can follow the 
general procedure19

,2o of tensor calculus to obtain 
general mixed tensors and geometriC quantities in R n • 

A mixed tensor of rank r +8 with r contravariant indices 
and 8 covariant indices may be defined in the ordinary 
way. The contravariant metric tensor g"V(a) are defined 
by 

(2.5) 

The covariant (or contravariant) derivatives of g"v and 
g"v, denoted by Vp (or v P

), then vanish 

(2.6) 

These equations lead to the expressions of the 
Christoffel's symbols of the first and second kinds for 
the symmetric or (0) connection, r",a" and r~a: 

r",a" "'Hoag"" +0", gYa - o,gae), 

r~a =g,6 r ",a,6 
(2.7) 

where 0, denotes 0 10 a'. Clearly, r a a,' and r ~ a are 
symmetriC in a and ~. 

Through the (0) connection a tensor is parallel dis
placed in group space. For clarity, we write out geo
metric quantities of the (0) connection as follows. 

The Riemann tensor of the (0) connection is defined in 
the ordinary way as 

(2.8) 

which has the symmetric properties 

(2.9) 

and satisfies the two Bianchi identities 

(2.10) 

The Ricci tensor and the scalar curvature of the (0) con
nection are obtained by contraction 

(2.11) 

which do not vanish in general. Geodesics in Rn can be 
introduced in a similar way. 

C. The invariant integral 

Wigner21 has generalized a method of calculating the 
invariant volume elements of finite groups to those of 
continuous groups, and Murnaghan has utilized the meth
od of characteristic matrices (generators). An alterna
tive to these methods is presented which makes use of 
Riemannian geometry. 

When the determinant of the metric of G l defined in 
(2.1) does not vaniSh, Le., g= Ig,,) *0,22 which is 
actually the case, the invariant volume element of G l is 
defined by the one that is invariant under any coordinate 
transformation a" - a''', L e., v'gn:=l da". The volume 
element is also invariant under left (or right) translation 
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inasmuch as the translation is also regarded as a 
special case of coordinate transformation and the group 
space is invariant of the transformation. The invariant 
volume element defined in this way is indeed equivalent 
to the one defined by Murnaghan. Note that in our meth;. 
od the translation invariance follows automatically (not 
required) from the invariance under a coordinate trans
formation; in contrast, this is a required assumption33 

if one tries to generalize finite groups to continuous 
groups. 

We use the notation (F(a» to denote the average value 
of a function F(a) taken over the variability domains of 
the a" 's which is denoted by R", 

(F(a» = 1 F(a)lgrr da" IV (2.12) 
R" ,,=1 

where V=!R Igrr da" is the entire volume of R". 
n Jj=l 

Our definition is more concrete and definite than the 
customary ones in that it is indeed possible to carry out 
the integration over the group space of G I' 

III. THE AUTOMORPHISM GROUP 

Let Xi be a set of linearly independent generators 
which may be obtained from the representation matrix 
by 

Once the generators are given we can make use of the 
following method to obtain the first and second parame
ter groups as well as the adjoint group. When taken over 
all transformations of inner automorphisms, we have a 
group of inner automorphisms which yields a set of 2n 
matrix equations to be satisfied by the ME FRIR. Also 
included are the right and left vector fields obtained 
thereby and the generalized Maurer-Cartan equations 
together with the Lie structure formulas for each of the 
right and left vectors to be satisfied by the MEFRIR. 

A. Right and left translation 

Any representative matrix M(a) of G, is a function of 
a group element g of G, and by this we write M(g). When 
we apply a group element gi on g, M(g) is transformed 
into M(ggi) which is a function of another set of parame
ters e" (or a '''). 

A group of inner automorphisms is a one-to-one 
mapping of G 1 onto itseU which preserves multiplication 
and which also induces parameter change. One may re
gard this as a group of infinitesimal inner automor
phisms as a result of first performing a right transla
tion M - MX and then a left translation M - XM. Each 
of these translations may be regarded as the special 
case of a coordinate transformation a" - a'" or a point 
transformation. By these translations, the element of 
the representation matrix M(a) obeys two systems of 
first-order partial differential equations, which are 
obtained by finite right and left translations with the 
generators Xi applied respectively from the right and 
left side to M(a). If we denote the two sets of coordinate 
variables before and after the transformation by eJ(or.n 

and a 6 respectively, the right and left translations so 
defined are expressed by 
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(3.1) 

(3.2) 

where (1 is an indicator which is either 1 or i depending 
on the type of group under conSideration so that y/ and 
1/ in Eqs. (3.5) and (3.6) become real quantities. For 
the left translation, we use a capital italic letter .J to 
comply with Schouten's notation. 3 The coefficients of 
the right and left translations (oa 8IoeJ )y and (oa6IoeJ'), 
are obtained by regarding a6 as functions of eJ (or.n and 
setting aU eJ(or.n = O. These coefficients naturally 
reduce to (j8J (or J') when XJ(or J') is an identity operation. 

These coefficients should be expressed as explicit 
functions of the variables a 6

• To attain this, each corre
sponding element on both Sides of each matrix equation 
has to be equated to each other and the resulting system 
of equations must be solved for the 2n2 unknown coeffi
cients. In practice, solving these equations in most 
cases is extremely involved. 

By solving these matrix equations we map M(a) into 
the irreducible vector space prescribed by the l-row 
partition label [p]:; (PH P2, ..• , P,) in R". When the 
matrix element of any infinitesimal generator X J of G, 
is denoted by (m I X J I m ') where24 I m ') (or (m I ) is a 
GeUand (or its conjugate) state prescribed by the parti
tion label [p], we obtain the following 2n equations to be 
satisfied by the MEFRIRL)!!.J1m,)(a) (Ref. 25): 

L):~JI ... )(a) (m II I X J I m/) =C7Y/ o8L)~JI .. ,)(a), (3.3) 

(m I XJ' I m II)L):~I" I",,)(a) = al/ a 6L)!!.\m,)(a). (3.4) 

Here the contravariant vectors y/ and 1J are defined by 

(3.5) 

(3.6) 

where the right sides of (3.5) and (3.6) are regarded as 
explicit functions of the a" 's as a result of solving (3.1) 
and (3.2). 

The matrix elements of the generators (m I Xii m ') for 
all U(m) and O(m) were first obtained by GeUand and 
Zetlin. 26,27 A complete global solution to the MEFRIR of 
any semisimple Lie group may be obtained by solving 
either the set of 2n equations, (3.3) and (3.4), or the 1 
invariant equations, which are also satisfied by the 
MEFRIR (refer to Sec. V); our method thus unifies the 
integral approach of Schur and Weyl with the differential 
one of CS. 

The problem of SU(3) along this line of work in a pre
ferred system of coordinates, which is compatible with 
charge and hypercharge quantizations, will be treated, 
and the MEFRIR L)!!.J1m,)(a) will be dealt with elsewhere. 
The corresponding vectors y / and l/ have already been 
displayed. 26 

For each of SU(2) and S0(3), the vectors y /, y i8' 1/ 
and lIS are explicitly given29

,3o for a preferred set of 
coordinates, which is conSistent with the quantization 
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of the Z component of angular momentum in quantum 
theory. 

Although (1 appears whenever we map the generators 
Xl into differential operators according to (3.3) and 
(3.4), hereafter we simply set (1 = 1 for the sake of 
convenience. 

B. Right and left vectors "fill, "fi Il,/,Il, and /J Il 

From (3.5) and (3.6) it is clear that under a coordi
nate transformation aa - a,a in Rn, Y / and 1 J transform 
according to 

,a oa,a , 
Yj = oar Yj , 

a ,a 
l,a_~zr 

J - oar J 

(3.7) 

(3.8) 

and, therefore, are contravariant vectors. Hence, for 
each j (or J), j (or J) being the vector label, the quanti
ties I; (or l~) are the components of a contravariant 
vector, {3 indicating the component. Thus at every point 
in Rn, Yj'" (or Z/) may be chosen as a set of n linearly 
independent contravariant vectors. 

Because all the right (or left) contravariant vectors 
Y/ (or Z/) are linearly independent, their determinants 
I yt I (or IZ J'" I) are different from zero. At every point 
of Rn we now introduce the covariant vectors y1 IL (or l/) 
by dividing the cofactor of y"j (or 1 J") in I y"j I (or 11/ I ) 
by Iytl (or 11/1), i.e., 

(3.9) 

(3.10) 

Clearly, for each value of j (or J) the quantities yj IL 

(or Z /) are the components of a covariant vector. 

By the same token, we can easily show 

ylLiyiv= 61L
v, (3.11) 

C. The generalized Maurer-Cartan equations and the 
Lie structure formulas 

Operating with the commutator [Xi,Xj]=C/jXk on 
M(a) from the right Side, we obtain from (3.3) 

[I';'" olL(Y/ a:) -y/ o,,(y;" o:)][)1~]lm,)(a) 

C k v [)IP] () (3 13) = i j Yk ov (mlm') a . . 

Likewise, operating with the same commutator on M(a) 
from the left Side, we obtain from (3.4) 

[ZILI 0 IL (l" J oJ -If 0 IL (Z / oJ] [))~]Im,)(a) 

= C~K J 1 KV a v [):~llm')( a) 

= - C / J 1 K V Ov [):~\m,)(a). (3.14) 

Note that in (3. 14) the structure constants for the left 
sets of differential operators C' / J are the negative of 
the original structure constants, i. e., - C / J' This can 
be proved as follows: ConSider the operation of the 
commutator [XI> XJ ] = C lJK XK from the left side on 
M(a). Operating with X J on XIM(a), i. e., XJ XIM(a), 
we obtain If OIL [l/ ov[)1~]lm,)(a)]. Also, note that the 
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order of the subscripts I and J in X J Xl are interchanged 
in the corresponding operation of the group elements 
M(ggIgJ)' Thus, operating with gIgJ -gJgI=C/JgK or 
correspondingly with XIXJ-XJXI=C'IKJXK = - C /J XK 
on M(g) results in 

[Z / OIL (l" J a) -lJIL 0 IL (Z /0) 1 [):~]Im,)(a) 
= c' lJK lKVov [):~]Im,)(a) 

= - C / J ZKVOv [)(mlm,)(a) 

which is (3.14). 

Leaving out [):~]Im,)(a) from both sides of (3.13) and 
(3.14), we obtain the Lie structure formulas 31 for the 
first and second parameter groups: 

a I a J - OJ 0 I = - C IK J 0 K, 

where we have used 0i=Yi lL OIL and 0I=Zvlov' 

(3.15) 

(3. 16) 

These may be written in the Lie derivative forms (refer 
to Sec. IV) 

(3. 17) 

[£1> £ J] = - C l J ,£ K' (3.18) 

Corresponding to these parameter groups, there exist 
two one-parameter groups of point transformations in 
Rn which are aIL - a'lL +y;'"t and aIL - a 'lL +Z/t and 
transformations of which are in one-to-one correspon
dence with those of the original group. The left and 
right vectors serve to form two anholonomic coordinate 
systems in group space. On the left Sides of (3.15) and 
(3.16) the second-order differential operators cancel 
out, when developed. Hence, we have the generalized 
Maurer-Cartan equations32 

(3.19) 

[Z/ (OIL ZJV) -If (OIL 1/)] ov= -C /J lKvov' (3.20) 

Substitution of the results of differentiating (3.9) with 
respecttoa 6

, Le., ooyt=-y;"(ooY/}Y/, into (3.9) 
yields 

iii j k 
OvYIL -oILYv=CjkylLyv' 

Likewise, from (3.10) and (3.20) we obtain 

ovZIIL - 0)/ = - C/K ZJIL lKv. 

(3.21) 

(3.22) 

The conditions (3.13), (3.14), (3.21), and (3.22) show 
that the vectors 1''' i> Y i", Z I", and Z I" form anholonomic 
coordinate systems, L e., there does not exist a set of 
coordinates a i such that 0aai=Ya i or oaal=lla' 

Equations (3.19), (3.20), (3.21) and (3.22) are actual
ly the generalized Maurer-Cartan equations in specific 
forms inasmuch as ylL i , yilL' l/, and ZIIL are the vectors 
in a more restricted sense, e. g., those of U(m) if one 
starts with M(a) of U(m). This corresponds to the first 
fundamental theorem of Lie which provides the structure 
constants from the vector fields. Conversely, once the 
structure constants are known, the Lie structure formu
las as well as the Maurer-Cartan equations are merely 
identities which do not provide us any new information 
as far as the MEFRIR is concerned. In other wordS, 
being identities these equations are not useful for solving 
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the problem of Gz despite that they have been widely 
quoted in the literature. 

Examples of (3.19) and (3.20) and also of (3.21) and 
(3.22) for SU(2) and SO(3) are explicitly given33 whereas 
those for SU(3) can be obtained by the explicit expres
Sions of yt, yi", [r", and [1".28 

Besides the two parameter groups aforementioned, 
there is another transformation group known as the 
adjoint group whose group manifold is also given by Rn' 
This group transforms the right vector Y i" (or y\.) at 
a point in group space into the left vector [r" (or [I,,) at 
the same point. 

IV. THE (+) AND (-) CONNECTIONS AND THE 
CURVATURE TENSORS 

This section, added for the sake of completeness, 
discusses briefly the salient features of the (+) and 
(-) connections generated by the vector fields yt, y" l, 
I r", and [" I and their relationships to the curvature 
tensors. A parallel method to that of CS is developed 
from the vector fields derived in the previous section. 
However, it should be kept in mind throughout that our 
vector fields are generated by the group of inner auto
morphisms, and our differential operators are always 
to be understood to operate on the MEFRIR DI~J,m')(Ol) 
although sometimes D:~Jlm')(Ol) is omitted. In the next 
section, we shall make use of some results obtained in 
this section. 

To any pair of elements X, Y there always belong two 
elements Xy-1 and y-1X. Two pairs X, Yand Xl' Y1 are 
called (+) equipollent if Xy-1 = Xl y1-1 and (-) equipollent 
if y-1 X = Y1 -1 Xl' Now consider a right translation from 
a point in group space represented by Xs to another 
point X'",.s through X'",.s=M",Xs' Since X'",.sXS-1=M", is 
independent of any point {3, we have X'",.B X B -1 = Y' OI ., y;\ 
y being another pOint. That means 

X'X-1= y ' y-1, 

and, therefore, 

y-1X= y,.l X'. 

Thus X, Yand X', Y' are (-) equipollent. From X X
,
·1 

= Y y ,.1 it also follows that X, X' and Y, Y' are (+) 
equipollent. Hence, there exist (-) geodesics which 
transform X to X' and Y to Y' and (+) geodesics which 
transform X to Y and X' to Y'. 

A right translation therefore transforms any element 
X into a (-) equipollent element X' . 

X' (+) y' 

(-1 }-) 
X (+) Y 
Right translation 

Likewise, for left translation X, Yand X', Y' are (+) 
equipollent and hence X, X' and Y, Y' are (-) equipol
lent. A left translation transforms any element into its 
(+) equipollent element. 

With this preliininary for a proof of the existence of 
nonsymmetric connections we now pass to the (+) and 
( -) connections defined by 
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(4.1) 

(4.2) 

where the second equality in each expression has been 
obtained by use of the orthonormality relations (3.9) 
and (3.10). There are altogether 2n3 independent com
ponents for r~", as compared with n2(n + 1)/2 independent 
components for r's",' 

The fact that these quantities are indeed linear affine 
connections can easily be proved by sh0;ving that under 
a coordinate transformation Ol" - Ol''', r'",s respectively 
transform according to 

(4.3) . . 

which are the conditions that r'aa must satisfy in order 
that they determine linear connections. 

Next, (4.1) and (4.2) together with the orthonormality 
relations (3. 9) and (3. 10) yield 

• 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where '\10 are respectively the covariant derivatives with 
respect to the (+) and (-) connections. Because these 
are the conditions that the first covariant derivatives 
of yi 6 and y / (or [10 and [6/) with respect to the (-) 
[or (+)] connection be zero, each of the right fields y10 

and y / (or the left fields [/0 and [/) forms a parallel 
field with respect to the (-) [or (+)] connection. In other 
words, vectors at different pOints can be transformed 
into each other by a combination of (±) parallel 
transformations. 

• 
In view of the fact that ro /.I v are nonsymmetfic, it is 

convenient to have the relationships between ro /.Iv and 
rov" (~ and J) exchanged) which are obtained as follows: 
Multiplying (3.21) [or (3.22») by yO; (or IP/) and summing 
over i (or /), we get 

(4.8) 

(4.9) 

which, upon taking (4.4) and (4.5) into consideration, 
lead to 

(4.10) 

(4.11) 

Now we observe that the right contravariant vector 
field y /" is absolutely invariant with respect to the left 
contravariant field 1/ and vice versa, i. e., the Lie 
derivative of y /" with respect to 1/ is zero and vice 
versa: 

(4.12) 

£j l/=y/ a, [/ -F/a, y/=O. (4.13) 

Consequently, we can write 
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(4.14) 

£jl/=y'/iJ,l/+i'6 a,l/)=0. (4.15) 

Making use of (4.5), (4.7), (4.14), and (4.15) leads to 

t"'a,=f',"'a. (4.16) 

This condition reduces the number of independent com
ponents of r '" ' a from 2n3 to n3

• 

• • If r",' a is decoPlposed into its symmetric (S"/8) and 
antisymmetric (A,/ a) parts, then 

:t: :i: :t: 1:t: :I: 1:t: :t:) 
r ",'a=S",'a +A",'a =2(r ",'B + r B' "') +2(r ",'B - r/", . (4.17) 

From (4.14), (4.15), and (4.16) 

S'" ' B = S'" 'a = r ,/ a, (4.18) 

A+, A-'-A' ",a= a",= a",· (4.19) 

The A/ '" is also known as the torsion tensor. 

The last equality of (4.18) means that the symmetric 
parts of the (±) connections are, in fact, the (0) connec
tion in Rn. This can be shown in a way similar to CS or 
Yano and Bochner34 and therefore is omitted. It may be 
~hown in the ordinary way that the symmetric parts 
~",'a are not tensors whereas the antisymmetric parts 
A", 'a are tensors in Rn. 

Making use of (3.9), (4.8), and (4.12), we have 

ilvy./-iJ",y/=Ckj,y/y'v (4.20) 

i. e., from (4.1) 

(i'/v - i'/",)yl = CJk,y/Y v ' 

or from (4.17) 

A-a -.!.C j k loll ",v - 2 k ,y", 'Yv r r (4.21) 

Since the right vector is invariant for dragging along 
over the left field, 

£[Aa",v=ic/'£I('Y/'YV'~J)=O or VrAB I'v=O. 

(4.22) 

Likewise, from (4.19) 

AB - .!.C J lK lL lB 
IJ."--Z KL f,.L 11 J (4.23) 

and 
+ 8 .. +8 

£JA ",,,=0 or V',A ",v=O. (4.24) 

From (4.19), (4.22), and (4.24) we get 

(4.25) 

The last equality is obtained by the first two equali
ties upon taking V', = H V , + V,) into account. 

The Riemann tensors of the (±) connections are de
fined by 

(4.26) 

which vanish identically-the proof can be shown in a 
way Similar to Eisenhart. 35 

The relation between the curvature tensor of the (0) 
connection and that of the (-) connection, for instance, 
is obtained in consequence of r'" By = t'" B, - A'" B,: 
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+ t '6' A'" a< - t, 6 yA'" a<. (4.27) 

Since the first three terms on the right Side vanish, it 
follows (4.17) and Jacobi's identity that 

R'" 8,6 = -A"6 A'" ,a. (4.28) 

Combining with (4.25), we obtain 

~pR"'B'6 =0, \lpR"'B,6 =0, (4.29) 

i. e., the Riemann tensor of the (0) connection is con
stant in any connection. The last condition of (4.29) is 
the one required for a symmetric space. 

In consequence of the Theorem [Eq. (5.1), Sec. VJ 
we may write (4.21) as 

Clk,'Y",1 = - 2AB "'!lYB')'" , , 

so that 

(4.30) 

On the other hand, from (4.28) the Ricci tensor can be 
written as 

(4.31) 

Comparing (4.30) with (4.31), we have 

(4.32) 

i. e., R",v is symmetrical and proportional to the metric 
tensor g",v. Accordingly, we have the symmetric Ricci 
tensor for the group manifold of Gzo Using the scalar 
curvature R =R" '" we may rewrite (4.30) in the form 

R 
R",v=- g"v. (4.33) n 

Therefore, we conclude that the group space of a semi
Simple Lie group is an Einstein space, i. e., a space 
in which R,," differs from g"v only by a scalar factor 
which is equal to - 4 in this case. Clearly, the group 
space is homogeneous with respect to the Ricci tensor. 
In other words, the principal directions for the Ricci 
tensor become indeterminate. 36 

It might be of interest and useful to classify group 
spaces algebraically, but this would require further 
knowledge on elementary divisors and therefore is not 
within the scope of the present work. 

V. THE INVARIANT EQUATIONS 

It has been shown that a group of rank l has l group 
invariants, which are usually expressed in terms of 
sums of products of generators. In particular, Gelfand37 

and Biedenharn38 have explicitly given these invariants 
for U(m) whereas Racah, 39 Gruber and 0 'Raifearteigh40 

those for O(m). We derive by induction the invariant 
differential equations to be satisfied by the ME FRIR of 
Gzo 

First, we present the following theorem to which we 
have already had recourse in the previous section. 

Theorem: The metric tensors of Rn are related to the 
real vectors Yi"', yi"" l/", and l", i by 

If" B = C I 
J lI'" l / = C Ii "I' i'" "1'/ 

and 
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g",8 == Gu Zl", lJ8= GIJ yi", y i 8' 

where 

GIJ == CI·/C/,.== Cu 

and GIJ (or GU
) are given by Gli Gj/ == {ji/. 

(5.1) 

Proof: The quantity g"'B==GIJyl"'Y/ (or GUl"'rlBJ) has 
the determinant of rank n since I Gli I is of the same 
rank. Also, V,g",8==0 from (4.21), (4.29) and (4.30). It 
can then be shown that r ",13,,, and r "'''13 defined by (2.7) are 
respectively the Christoffel's sumbols of the first and 
second kinds in Rn and therefore the symmetric parts of 
t "'8,,, (or f' "'8,,,) and t ","B)' Consequently, g"'B is none 
other than the metric tensor of Rn' The proof of g "'8 

can be carried out in like manner. 

This theorem proved, we now proceed to the deriva
tion of the second-order invariant equation for G/ with 
the help of the vectors Yi'" and ll"" Operation with the 
invariant product of generators41 2G i J XI Xi from the 
right side on M(a) is equivalent to operation with 
2Gii y / 0,Y/08 from the left Side on .0 l!!,,,,.) (a). Hence 
we obtain 

2G ij y /" a", (y8j a 8.0 l!il",'l (a» 

= 2(g"'8 a2 ",a - t 8; g"'8 a,) D !!!Im') (a) 

= 2(g0<8 02
"'8 _ r", '13 g'" 8 0,) .of!!,,,,.) (a), (5.2) 

where we have used the above theorem together with 
(4.1), (4.17), andA",'8 g"'8=0. Upon taking (2.6) and 
(2. 7) into consideration, it follows that the above equa
tion can be cast in the covariant form 

(5.2)=2 ~ o~'" (rgg"'8~ Df~J,,,,,)(a) ) 

=2v' v,Df~J'm,)(a)==2v' v,Df~'rm,)(a). (5.3) 

The operation of 2GIJ XIX. from the left side on M(a) 
can be treated in the same way except that Y I'" and t 8 '" , 
have to be replaced respectively with Z r'" and t'" 8n and 
then we obtain 

2 v, v,.Df~J'm,)(a). (5.4) 

By equating (5.2)-(5.4) to an invariant function of the 
partition label [pl, -2f1([P]), we get the second-order 
invariant equation of G / in the covariant form of any 
[( +), (-), or (0) 1 connection 

v' v,.Df~J'm,)(a) == v' v ,.D([~Jlm,)(a) = V' V ,.D:~JI m,)(a) 

(5.5) 

In the follOwing, we use CS's symmetrically coupled 
coefficients42 gIJ".,,-Biedenharn's notation [ij". kJ 
is actually preferred-to derive, for example, the 
third- and higher-order invariant equations of U(m) 
although those of other groups can be derived in a simi
lar way. 

Applying the third-order invariant operator 
[ijkJ XIXj X" from the right side on M(a) leads to 

[ijk 1 Y j'" 0", Y/ a8 Y/ a,.D:~Jlm,)(a) == - f2([P l)f)f~J'm,)(a) 

(5.6a) 

where f2([P j) is another function of the partition label 
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[pl. From (4.5) 

o 8(Y/'P) = (y/ 08 + t 6'8 y" 0 )'P == 1"" V 8'P 

where .p is any function of the a8,s. Again, from (4.5) 
we have 

1'/" o",(Y/r/ VS'P) =YI'" Y/ V",(y/ V8 ,p) ==Y"'IY/Y'" v", v 81jJ· 

Similarly, 0, can also be replaced by v, since the in
variant operator is completely symmetric in i, j, and k. 
Hence, the third-order invariant equation can be written 
in terms of the (-) connection as 

[ijk] Y t y8
j 1'/ V", V 8 V ,.D~~Jlm,)(a) = - f2([P J>D l!.J,m.) (a). 

(5.6b) 

In the above equation we can replace V", V8 V, by V",·V8 v, 
because of the complete symmetry in i, j, and k, so 
that the left Side in (5. 6b) becomes 

(5.6c) 

By the same token, v, (or v r) can also be replaced by Vr 
(or v,) when the y"';'s are replaced by the l"'r's. In con
sequence of the foregoing discussion, it follows that the 
third-order invariant equation takes the covariant form 

[ijkl t ,'" t/ t>k A", A8A,.D:~'rm,)(a) == - f2([P l)f)l~"m,)(a) (5.7) 

where tt'" is either lr"', when A",=V", or V"" or 1'1"', 

when A", = V'" or v"'. 
It is worth noting that, as an example, in the expres

sion [ijkl yt"'y/ Y/ V'" V8 V, the symmetry with respect 
to any pair of indices, say a and {3, is not obvious since 
v'" V8~ V8 v"'. However, by interchanging a and {3, we 
get43 v" va V,= V8 V" V, +R 6

,"8 V6 so that 

[ijklyt y8jr"" v'" va V,== [ijklysiy"jY'" Us V'" V, 

= [ijk] y 8 ;y"'j Y\ (v" V8 v, _R6 ,,,,8 Vo). (5.8) 

The last term on the right side vanishes identically be
cause [ijk] yB i Y'" j y'k is symmetric in a and {3, but"R 6,,,a 
is antisymmetric. The complete symmetry under a 
permutation of any pair of indices a, {3 and y has there
fore been proved. This proof, however, is not limited 
to the third-order invariant equation and holds in gener
al to any order. 

When we apply to the qth-order invariant (q 
== 2, 3, ... , l + 1) reasoning similar to that which led to 
the third-order invariant differential equation (5.7), we 
have the qth-order invariant differential equation 

[ill i 2" 'iqJt~l t~2 .. ·t~QA", A", ... A", .D:~JI-,)(a) 
12 q 1 2 q m 

= - f q .1([P ]).DI~J,,,,,)(a), (5.9) 

where t"l is either l"'JI when A'" == V" or' v"', or y"'j> when 
A", == v'" or v"" and fa-l ([p]) is a function of the partition 
label [p], which we shall call the (q -l)th partition 
function of G/. 

Similarly, with the help of the covariant vectors 
r"i and ll"" we can write Eq. (5.9) as 

Ci1 i2"'ilt
i1 t'2 ... t iQ A"'lA"2 ... A"'q.D(IP) lea) 

, t7 (Xl c¥2 a Q m 1m' 

== - fQ_1([pJ)f)I~J'm,)(a) (5.10) 

where ti", is either ll" when A'" = vat or v", or yi"" 
when A'" == vat or V"'. 
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Finally, by inspection we can easily show that the 
qth-order invariant equation of any group can be written 
in the forms of Lie derivatives: 

[iI' ~. ,·i.]£11 £1 "'£1 Dl~\m,)(a)=[III2"'Iq] 
2 • 

(5_11) 

If a point transformation belong to a coordinate trans
formation a!' - a'" we say that a!'. is dragged along by 
this pOint transformation. The numerical values of the 
coordinates of a point remain invariant if any pOint 
transformation is applied and if the coordinate system is 
dragged along by the same transformation. Equation 
(5.11) thus means that the MEFRIR is invariant by drag
ging along over either the left or the right field. 

Examples will make the meaning of these invariant 
equation easily understandable, and here we choose the 
invariant equations of the groups SU(2), SO(3), and SU(3) 
for this purpose. 

Example 1: For each of the groups SU(2) and SO(3), 44 

a partition is given either by a positive integer or by a 
half-odd integer, denoted by j. The flU) is then jU + 1) 
and the second-order invariant equation becomes 

'V" 'V" D(~ Im,)(a) = - j(j + l)D(';"lm,)(a) 

which is the Schrooinger equation of the symmetric top 
for stationary states. Here we have used the natural 
units so that no physical constant appears in the equa
tion. A detailed account of this equation and other prop
erties of these groups will be published elsewhere. 

Example 2: The group SU(3) has two invariant equa
tions, one of the second-order and the other of the 
third-order. The partition is specified by the two posi
tive integers PI and P2 where PI'" P2 '" O. With the known 
expressions of fl (PH P2) and f2 (PH P2),45 the second
and third-order invariant equations become 

(5.13) 

where t/ is either l/ =L.r'" Ii or i'/ =R/ Ii of (A.1) or 
(A. 2) in Ref. 16. 

If the total isospin operator n2
, its third component 

I., and the hypercharge operator Yare chosen as a 
complete set of commuting operators with the eigen
values I(I + 1), m, and y, respectively, four of the octet 
angles can be eliminated and replaced by the two sets 
of eigenvalues I, m, y and I', m', y'. The Simultaneous 
quantization conditions then are46 

(5.14) 

where ¢ (or ;) is the fundamental unit of the electric 
(or magnetic) charge divided by 21T, Ci. r (or Ci. H ) being 
anyone of the isospin (or hypercharge) angles. 

The following equation may then be regarded as a new 
nonrelativistic wave equation to be satisfied by a new 
wave function ljJ47.48 
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(5.15 ) 

where t is the time variable and I the moment of inertia 
of a SU(3) multiplet. An alternative to Eq. (5.15) is to 
replace E by E2 on the right Side. If one keeps in Eq. 
(5.15) the constants ¢ and ; introduced through the con
ditions (5.14), the structure constants ¢2lnc and t2/nc 
then appear in the invariant equations. In stationary 
states, Eq. (5.15) reduces to Eq. (5.12), i. e., the 
energy eigenvalues are specified by the partition func
tion fl ([p j) and eigenfunctions become solutions of 
(5.12), namely, the MEFRIR .D/~lm')(Ci.) of SU(3). This 
new quantum theory is based on a new correspondence 
principle which asserts that the motion of a system as 
described by the new quantum theory and by the ordinary 
quantum theory should agree in the limit when e and g 
can be neglected. We shall discuss this new theory in 
detail elsewhere. 

The left side of Eq. (5.15), when fully developed, 
consists of about 90 terms, whereas the third-order 
invariant equation (5.13) contains over 200 terms. 

One characteristic feature of SU(3) which is complete
ly different from SU(2) or SO(3) is that the invariant 
equations (5.12) and (5.13), when expressed in terms of 
the eigenvalues I, m, y and 1', m', y', become essen
tially complex. 

VI. CONCLUSIONS 

In conclusion, we list some new results obtained by 
our method and some of the differences between our 
method and CS's. 

1. We have started with the concept of a quadratic line 
element of G j through the representative matrix method 
to identify the group manifold Rn as a Riemann space 
to make Riemann geometry available to G j , and to con
struct explicitly the Riemann tensor, the Ricci tensor, 
and other geometric quantities for the (0) connection. 
A new and Simpler method of calculating the invariant 
volume element and integral has been introduced within 
Rn' 

2. From the right and left translations, induced by the 
group of inner automorphisms regarded as an infinitesi
mal automorphisms, we obtain a set of 2n equations 
(3.3) and (3.4) to be satisfied by the MEFRIR and by the 
vectors i';", i'" I, 1 /" and [1,,; through the latter a link 
between representations and differential geometry have 
been establiShed. Moreover, also derived are Eqs. 
(3.13) and (3.14) to be satisfied by the MEFRIR which 
include the generalized Maurer-Cartan equations and 
the Lie structure formulas. 

3. We have introduced the nonsymmetric (+) and (-) 
connections associated respectively with the right and 
left vector fields, and geometric properties of these 
connections have been detailed. The Rieman tensors of 
these nonsymmetric connections vanish identically. 
Each (+) or (-) connection, being non-Riemannian, has 
been divided into the symmetric and antisymmetric 
parts in Eq. (4.17); the symmetric part agrees with that 
of the (0) connection [Eq. (4.18)] and the antisymmetric 
part is related to the Riemann tensor [Eq. (4.28)] of the 
(0) connection; the group space is therefore an Einstein 
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and symmetric space. The differential geometry of the 
group manifold thus agrees with CS's. But our method 
makes the explicit calculations of these quantities 
possible in terms of the group parameters. 

4. The theorem (5.1) has been proved which relates 
the right (or left) vectors to the metric tensors of Rn' 
With the help of this theorem, the second-order invari
ant equation of any semisimple Lie group has been cast 
in the covariant or Lie derivative forms of any connec
tion in Eq. (5.5). For the higher-order invariant equa
tions, we have taken U(m) as an example and have dis
played them in the covariant (or Lie derivative) forms in 
Eq. (5.9) [or (5.10)]. Moreover, examples of the in
variant equations for SU(2), SO(3), and SU(3) are given. 
For 8U(2), 80(3) they are the Schrodinger equation of 
the symmetric top of ordinary quantum theory. For 
8U(3) we have shown that after carrying out the quanti
zations of charge and hypercharge, the invariant equa
tions become the eigenvalue equations [Eqs. (5.12) and 
(5.13)] expressed in terms of the eigenvalues of isospin 
and hypercharge. A new nonrelativistic wave equation 
based on the second-order invariant equations has also 
been proposed for 8U(3) multiplets. 

5. The orthonormality and completeness properties 
as well as the transformation in Rn of the ME FRIR are 
briefly discussed in the Appendix. 

APPENDIX: SOME PROPERTIES OF f) (pI , (0:) 
<m/m> 

The MEFRIR D~~\m')(O:) which satisfies (3.3) and (3.4) 
is no longer a matrix but is a mixed tensor in Rn (and 
also in a subspace of Rn); its transformation property 
under a coordinate transformation O!"- O!,jL is deter
mined by the dimension of the partition label [p]. For 
example, in 8U(3) the three-dimensional representations 
(Pl=l, P2=0) and (Pl=O, P2=1) are the fundamental 
irreducible representations of a 8U(2) or 80(3) sub
group; teh corresponding MEFRIR transforms according 
to a contravariant or a covariant vector of this sub
group. For the regular representation, it transforms 
like a contravariant vector in Rn with a prescribed state 
(m I and like a covariant vector with another prescribed 
state 1m'), whereas D7~~~,)(0!) transforms like a covari
ant vector with the prescribed state (m I and like a con
travariant vector with 1m'). 

The D!~J'm')(O!) satisfies the generalized orthogonality 
relation 

r D7~1~,)(0!) D:~IJlm ,)(O!) rgndO!/J. JRn 1 1 tJ,:::;1 

_ O[PI,[/>I J 5(ml,(mll 0 
- d Im'),lml') 

where d is the dimenSion of the irreducible representa
tion with the partition [p] or [PI] and the integration is 
carried out over Rn' The 0lm),lm') means 
5 ,0 ,0 ,'" and 5[ J [ 'J = 0 ,0 ... 

m11,m 11 m12f m 12t m13 ,m 13 P , P PI.PI ' 1>2,1'2 

0p/,P'I' Being a unitary matrix of dimenSion d, the 

D:~J'm')(O!) is a complex function of many periodic vari
ables O!/J. in Rn' The functional space carrying IR label 
[p 1 is itself a vector space over the l invariant differen
tial equations to be satisfied by D~~J,m')(O!)' 
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The stationary gravitational equations in vacuum are expressed in five different forms. A necessary 
integral condition on the twist potential If> is derived. The Papapetrou-Ehlers class of stationary 
solutions is rederived in a different way. In the study of the complex potential theory it is proved 
from the field equations that a body admitting an arbitrary symmetry must satisfy an integral 
condition analogous to the equilibrium criterion. It is proved that the vanishing of the scalar 
curvature of the associated space implies the flatness of the space-time metric. A proof is given for 
the fact that the only analytic functions of the complex potential F which preserve the field 
equations form a four-parameter Mobius group. It is also shown that any differentiable function of F 
and F which preserves the field equations must either be an analytic function of F or the conjugate 
of such a function. Next the conformastationary vacuum metrics are classified. In the study of the 
axially symmetric stationary fields a class of metrics (outside the Papapetrou-Ehlers class) is found 
depending on Euclidean harmonic functions. 

1. INTRODUCTION 

In recent years the stationary gravitational fields 
have drawn attention on account of the collapse theo
rems. t In this paper a detailed study of the stationary 
field equations is made. We adopt the convenient metric 
form 

which has an associated space with metric tensor g ",/3' 

In the second section the Riemann tensor components 
are exhibited. Then five different forms of the field 
equations are given. First the equations which are anal
ogous to the magnetovac form2 are written. Next the 
twist potential ¢ is introduced and the equations resem
bling the electrovac case are given. Then the complex 
potential3 F=exp(w)+i¢ is brought in and the corre
sponding field equations are obtained. Finally by using 
the triad formalism the invariant form of the field equa
tions is provided. The present form, though mathemati
cally equivalent to that of Perjes, 4 does not contain ex
plicitly the conformal invariants 1/Jo, 1/J i> etc. 

In the third section the variational derivation of the 
field equations is given o The determinacy with regard 
to the number of unknown functions versus the number 
of independent field equations is sorted out. A neces
sary integral condition on the twist potential ¢ is ob
tained. The eigenvalues of the Ricci subtensor R"'B of 
the associated space are explored. One of the eigen
values turns out to be zero and the other two are non
negative. This result may have some implications on 
the existence of groups of motions in the space. 5 

In the fourth section we look into the class of station
ary metrics such that wand ¢ are functionally related. 
Papapetrou6 (in the axially symmetric case) and Ehlers7 

(in a more general case) have already shown that the 
field equations boil down to the static form in such a 
situation. Following the analogy of the electrovac prob
lem and Majumdar's8 work, a different derivation of 
the Papapetrou-Ehlers results is given. Furthermore, 
the integral condition on ¢ in this case implies the 
vanishing of the total mass of the static sources. One 
way to get around this difficulty is to mathematically 
impose semi-infinite branch cuts or physically adjoin 
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semi-infinite, massless, rotating tails to the finite 
bodies. 

In Theorem 5.4 we investigate the class of C., trans
formations of F which preserve the field equations. 
(This problem was essentially suggested by Matzner 
and Misner. 9) It is proved that the only analytic func
tions which preserve the equations are j(F) = (AF + iB)/ 
(iCF+D), where A,B, C,D are real constants satisfying 
AD +BC > O. These transformations form a subgroup of 
the fractional linear group (Mobius). Gerochto gave this 
result without proof. Kinnersley11 has found some 
transformations which preserve the stationary electro
vac equations and which include the group mentioned 
above. 

In the next section the class of conformastationary 
universes is investigated. These are the metrics where 
the associated space is conformally flat. It turns out 
that only three such metrics exist and all of these belong 
to the Papapetrou-Ehlers class. 

In the study of the axially symmetric stationary case, 
a new class of solutions is obtained. In this class at 
= a2 = a2 = 0, a3 is functionally related to w, and the equa
tions boil down to the Newtonian potential equation. 

2. NOTATIONS AND PRELIMINARIES 

The metric of a stationary V4 will be written in the 
following form: 

<I> = YiJdx i dxi 

= - exp( - w(x)] g"'B (x) dx'" dxB + exp(w)(a",(x) dx'" +dx4J2, 
(2.1) 

where the Latin indices range from 1 to 4, the Greek 
indices range from 1 to 3, x denotes (Xi> X2, X3), a'" 
=g"'BaB, and the associated space V3 with metric g"'B is 
positive definite. 

The form of (2.1) is preserved under the following 
transformations: 

x''''=j'''(x), t'=t+X(x), a'",=a",-\"" (2.2) 

where X and the j""s are arbitrary functions and partial 
derivatives are denoted by commas. We write i(T'" 13,,6 
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- T"'BO,.) = T'" B[,.6], a"'.B - alJ,'" = j"'B, and g"'Bw. ",W.B= Atw. 
The indices on w. '" and j"'B are raised and lowered by 
g ",B' The covariant derivative with respect to g ",B is de
noted by a slash. The Riemann tensors for i'iJ and g ",B 

are denoted <4> Ri lId and R'" B,.6, respectively, the Ricci 
tensors by (4)R 1J and R"'B, and the curvature invariants 
by (4)R and R. 

The components (4lRiJkl can be calculated from (2.1): 

<4>R'" 441'= (exp(2w)/ 4][ - 2w I"'" - 3w, "'w." + Ii~ A1w] (2.3) 

+ (exp(4w)/4][J"'"t'" ",], 

(4)R4
B,.4 = t[2WIBY+ 3w.~.,. - gB,.AtW]+ [exp(2w)/ 4][ - 2a~"'wl"''' 

+ 2a"'j,..BI,. - 3aBa,.a"'w,,,, +aBa,.A1w + 4a"'j"'BW." 

+2a"'j,..,.W.B+ a,.jB"'W,'" +gB,.W. '" I",,,,a'" +2/,.B a"'W.", 

+ I",,.t'" B] + [exp(4w)/ 4][aB a"'j", ",i'" ,.], 
(2.4) 

(4lR'" ",4,,= [exp(2w)/4][ - 2a",wl'" 1'+ 2j'" ",I" - 3a",w,vw, '" 

+ li~a",AtW + 4w."j'" '" + 2w. ",j'" 1'+ 2w. '" jv", 

+g",,,W.BjB'" + Ii~W/j"'B] + [exp(4w)/4][a",jBvi'" B], 

(2.5) 

(4lR'" R'" 1[2 '" 2"'" "'" A B,.6= B,.6+2" gB[6WI,.] + V[,.WIO]B+gB["vO] tW 

+W"'gB[6W.r] +w,Blif,.w.d + [exp(2w)/2][2a Ba[owl,.]'" 

+ 2aJ"'[rI6] + 2j'" BI[Oar1 + Iif6a,.pBAtw 

+ 3a~. "'a[6w.,.1 +4j6,.a~. '" + 2a[rj6]BW. '" 

+ 2j"'[oar]w. B + 2aBj"'[1'w.Ol + 4/"'B a [,.W,6] 

+gB[1'aO]W,'" j'" '" +aBw.'" I",[oli:] + Iif,.a6]w, '" I",B 

+ jB[1'16t + 2j1'o/'" B] 

+ [exp(4w)/2](aBf'" ",i"'[oa1' ]]. (2.6) 

The field equations can be written as follows: 

0"",,,; [exp(- w)/2]g",,,(4)R + <4>R",v - a", (4)R,,4 

- a"(4lR,,,4 +a",av (4)R 44 

;G",v+t(w.",w. v- ig",v A1W) 

+ (exp(2w)/2](- I", "'Iv'" + ~g ",vf"'B j ",B), 

p; - 2(exp(- 2w)] (4)R 44 ; A2w + (exp(2w)/2]f"'B jaa = 0, 

D",; 2a", <4>R44 - 2 (4lR",4 ; (exp(2w)j","]lv= 0, 

where A2w =g"'Bwl"'B and G",,,=Ru,,- iRg",,,. These equa
tions are almost the static magnetovac form.2 

Defining CP"'; i exp(2w)71", B1'IB,., where 71",ay = -fge"'B1" it 
can be shown from the equations D", = ° that CP'" = CP. '" for 
some function cP (called the twist potential). Now the 
field equations become 

0" uv; G",v+ i(w,,,,w,v- ig uv Atw) 

+i exp(- 2w)(cp.u CP,,, - ig",,, Atcp) = 0, 

p; A2w + exp(- 2w)At cP = 0,. 

p';~cp-2Al(W,CP)=0, 

where At(w, cp) ;g"'Bw.aCP.B' These equations are almost 
the static electrovac form. 8 
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They can be written more compactly by using a com
plex potentials F;exp(w) +icp: 

u ",v ;R",v + HReFt2[F.",F.v + F.",F. v] = 0, 

p. ; A2F- (ReF)-t AtF= 0. 

Here the bar stands for complex conjugation. 

Another form is obtained since the conformal curva-
ture tensor vanishes in three dimensions: 

0" uv).p ;R",v).p - i(ReF)-2[g", [).(F, pl F.v + F.p] F,v) 

+gv[lF.).]F,,,, + F.)'l F.",) 

+i At(F, F) g", [pg).]v] = 0, p.=o. 

The field equations can also be put into an invariant 
form. Triad labels will be denoted by capital Roman 
indices which take the values 1, 2, 3, and the summa
tion convention on these indices is also adopted. An 
orthonormal triad field e A "'(x) in V3 satisfies e A '" e B", 
= IiAB• Furthermore, with the following definitions, 

TAB'" ; e A",e B8'" T"'B"", 

i'ABC ;eA", I veBueCv, 

T .... A;eA"'T .... "', 

the invariant form of (F4) is the following: 

O"MNLR; 2[YMN[L,Rl+YMNAYA[LR] +YAMCRYI ANI Ll] 
1 -2 - --2"(ReF) [IiMcL(F,R]F,N+F,R]F,N) 

+ IiN[R(F,L] F.M + F,L]F,M) + i(F,Ai;A)IiM[RIiL]N] = 0. 

(F5) 

Perjes4 has also written invariant forms of the station
ary equations. But our formulation, though mathemati
cally equivalent to his, does not contain explicitly the 
conformal invariants iJiQ, iJil> etc. 

3. DISCUSSION OF THE FIELD EQUATIONS 

A. Lagrangian 

The Lagrangian from (2.1) is 

J Dx(ttt
1
<t<t2) (4)Rd4v 

= - (t2 - t1) J D [R + iA1W - texp(2w)f"'B laB 

- A2w]d3v. (3.1) 

Note that JD A2wd3v may be converted to a surface inte
ral and hence neglected. Thus the effective Lagrangian 
is 

(3.2) 

This is invariant under (2.2) and can be used to derive 
the system (F1)' 

B. Counting equations 

The system (F1) has ten unknown functions: sixga/s, 
three a",'s, and w. There are 11 equations, but they are 
related by certain identities. These are 

0""'''1 1'- iw"'p - iexp(- 2w) cP"'p'; 0, 

(3.3) 
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FIG. 1. 

a total of five identities. The number of independent 
equations is reduced to six, so that, to make the system 
determinate, we are entitled to put three coordinate 
conditions on the g"'B's and one gauge condition on the 
a",'s. 

C. Integral condition 

We derive a necessary integral condition. We will 
say that a body is a region of Vs where p, p I or one of 
the O'",a's is nonzero. Suppose that B is a finite body and 
D is a region containing B and no other bodies. Suppose 
furthermore that aD is C~, orientable, closed, bounded, 
and simply connected, and L is a curve in aD which 
divides aD into two surfaces S+ and S_ (see Fig. 1). Let 
n", be the outward normal of D. Now O=[~L +!h ]a",dx"', 

+ -
so 

= 2 J D [exp(- 2w)¢I"']I",dsv = 2 J DP' exp(- 2w) dsv 

= 2 J BP' exp(- 2w) dsv. 

D. Eigenvalues of the Ricci subtensor ROI.{3 

From (Fs) we obtain 

- det[R"'II- AliB']"'AS+tA2(ReF)a2AI(F, F) 

(3.4) 

+ 1
A
6(ReF)-4(AI(F,FW-IAIFI2]=0. 

(3.5) 

The eigenvalues are 

Al =0, 

A2 = - i(ReF)-2[AI(F, F) + 1 AIF I], 
As = - i(ReF)-2[AI (F, F) - 1 AIF I]. 

(3.6) 

Now As = ° iff Ai (F, F) = I Al F I, and this is the case iff 
ReF and ImF are functionally related. A2 = As iff AiF= 0. 
In this case F becomes a complex harmonic function in 
Vs. Note that Ai' A2, and As are all nonpositive. This is 
clear for Al and A2' Applying Schwartz's inequality, we 
have 

0,,; {Ai[exp(w)] Al ¢ - (Ai[exp(w), ¢ ])2} '" 4(ReF)4A2A3 . 

(3.7) 

Therefore As is nonpositive. This result may have some 
implications on the existence of groups of motion in Vs 5. 
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We investigate (F2) under the assumption that w is a 
function of ¢ and w'(¢)*O. We find 

(w')"lp - p' '" (w')"I[w" + exp(- 2w) + 2(W,)2] Al ¢ = 0. (4.1) 

Thus w" +exp(- 2w) +2(W')2=0 since Al¢*O in general. 
The general solution is exp(2w) = c + 2 b¢ - ¢2, where b 
and c are arbitrary real constants such that b2 + c > 0. 
In this case 

0',.. v '" G,..v + t(b2 + c)(c + 2b¢ - ¢2)-2(¢,,.. ¢,v - tg"v Al ¢) = 0. 

(4.2) 

Defining X(¢) = ± k J(c + 2b¢ - ¢2)"1 d¢, where k = 
(b 2 +C)I/2, we obtain 

¢ = b ± ktanhx (4.3) 

and 

(4.4) 

Equations (4.4) are just the static field equations for 
the metric 

CPo = - exp[ - x (x) ]g "'B(X) dx'" dxB + exp[x(x) ](dx4)2; (4. 5) 

therefore we have the Papapetrou-Ehlers theorem6, 7: 

Given a static vacuum metric (4.5), a stationary vacuum 
metric 

cP = - k-i(coshX)g"'lIdx'" dxB +k (sechX)(a", dx'" +dX4)2 (4.6) 

can be generated provided one can solve 

(4.7) 

Comments: (i) If the source for X(x) is a finite body, 
then the integral condition (3.4) boils down to J B A2X d Sv 
= 0. This means that the total mass of the static body 
must be zero. But any solution X(x) due to a finite body 
can be made single-valued by interpreting it as due to 
that finite body joined with a semi-infinite, massless, 
rotating tail. 12 This construction would puncture any 
encloSing surface S+ U So, so that the above integral con
dition need not be satisfied. 

(ii) The P. E. condition can be written in terms of the 
complex potential F as IF - ib I = k. This shows that 
both exp(w) and ¢ are bounded everywhere. However, 
w itself need not be bounded; in fact, if it were, the 
space-time metric would be flat. 

(iii) As an example of the P. E. class which is asymp
totically flat and due to a finite source, we cite the 
following solution: 

cP = _ k-1 cosh(2m cosO/r2)[exp(m2 sin20 (sin20 

_ 8 cos20)/2r4)(dr2 +r2d02) +r2 sin20d¢2] 

+k sech(2m cos O/r2) [ - (2m sin20/kr) dO +dtJ2. (4.8) 

This is generated by a dipole source. 

(iv) The eigenvalue A3 of the Ricci subtensor R'" II is 
zero iff the stationary metric is of the P. E. class. 

(v) In the static electrovac case Majumdar8 succeeded 
in reducing all the field equations to a single Laplace 



                                                                                                                                    

1099 Kloster, 80m, and Das: On the stationary gravitational fields 

equation in Euclidean space E3 by choosing the func
tional relation g44 = (b +A4)2. The analog of that case here 
would be to choose k = 0 so that exp(2w) = - (b - cf»2. But 
this choice makes exp(w) imaginary, and thus is not 
allowable. However, it may be mentioned that in a posi
tive-definite V4 the metric form 

q; = U(x)«(dx1)2 + (dX2)2 + (dX2)2) + U-1(a",(x) dx'" +dt)2 (4.9) 

satisfies (4)R lJ =O, where curla=gradU and V2U=0 
in E 3• 

5. POTENTIAL THEORY 

The action integral for the field equations in the form 
(F3) is the Dirichlet type integral 

(5. 1) 

This does not follow from (3.1) because some of the 
field equations have been used. The boundary conditions 
which go with the variational principle are 

{(g"'lIo{aYy} - g"'Y/i{ally} + (ReF)-2 Re(g"'l1 F, ",/iF)] nJaD = O. 

(5.2) 

For a unique solution of any boundary value problem 
for the stationary field equations, the above conditions 
must be fulfilled. An example of such boundary condi
tions is {aIlY}aD=O and [F,,,,n"']aD=O. But any boundary 
value problem in general relativity is different from the 
usual boundary value problems in applied mathematics 
in one respect. Though the boundary aD can be pre
scribed analytically, it is geometrically unknown until 
the boundary value problem itself is solved. 

From the equation p = 0 in (F2) it can be concluded 
that w is superharmonic. But from p' = 0, no conclusion 
about ¢ can be drawn. By Hopf's theorem, 13 the regu
larity of w throughout the whole V3 implies that w is 
constant. This in turn implies A1 ¢ = 0, so that ¢ is con
stant and V4 is flat. This is the content of the Einstein
Pauli-Lichnerowicz theorem. 14,15 

For a finite body generating a stationary field which 
permits some group of motions, the following result 
is true. 

Theorem 5. 1: Let the interior of a regular body B be 
simply connected and have a piecewise smooth, orienta
ble boundary aBo Suppose there exists a Killing vector 
~" in B. Let nil be the outward unit normal to aB and let 

CJ= (ReF)-2[A2F- (ReF)-1 A1F]. (5.3) 

If CJ ,,8 nil is continuous across aB, then 

(5.4) 

Proof; Note that CJ "'II = 0 in the neighboring exterior 
pOints of the body (see Fig. 1). From the assumption 
of continuity, it follows that CJ ",II nil = 0 on aBo Applying 
the divergence theorem, we have 

(5.5) 
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For the physical meaning of this integral condition, 
one can mention that in Euclidean space E3 a Killing 
vector can be expressed as ~ = t + (w X r), where t and w 
are arbitrary constant vectors. In this case the integral 
condition (5.4) becomes 

Re J BU (gradF) d3v = 0 (5.6) 

and 

Re J B a (rxgradF) d 3v = 0; (5.7) 

i. e., the total force and the total torque are zero. 

Theorem 5.2: Let V3 be the associated space of a 
stationary metric and Dk V3• Let T = {t: - co < t < co}. If 
R = 0 throughout D, then D x T is flat. 

Proof: USing (F3), we find 

R = - t[A1W + exp(- 2w)A1 ¢]. (5.8) 

Since g"'l1 is positive definite, A1 w = 0 and A1 ¢ = O. Hence 
wand ¢ are constant. Thus all of the f 8Y's vanish and 
by (2.3)-(2.6) and (F4), all of the (4)R i

J,,/s vanish. 

The converse is not true. This is shown by the fol
lowing example: 

q; = _ (x +x2 +X3,-2[(X1 +x2 +X3)2«(dx1)2 + (dx2) 2 + (dx 3)2)] 

(5.9) 

where A(X1, X2, x3) is an arbitrary function. This gives a 
flat V4, but R = - 6(x1 +X2 +X3)-4, so that it is nonzero. 

To see the physical meaning of Theorem 5.2, note 
that 

R = - t(ReF)-2 A1 (F, F). (5. 10) 

Thus R is proportional to the modulus squared of the 
complex force, so when it is zero, there is no gravity, 
and V 4 is flat. 

Theorem 5.3: With Va and D as in Theorem 2, if 
[exp( - w n IX is a Killing vector in D, then D x T is flat. 

Proof: If [exp(-w)]I" is a Killing vector, then 
[exp(- w) I "'II = 0 and hence A1w - A 2w = O. Using (F2 ), we 
have 

R = - t(A1w - A2w) = O. (5.11) 

By Theore~ 5.2, D x T is flat. 

A transformationf(F) is said to preserve solutions of 
(F3) if f(F) is a solution of (F3) whenever F is. A non
analytic transformation f(F, F) is said to preserve solu
tions of (F3) if f(F, F) is a solution of (F3) whenever 
F is. 

Theorem 5.4: Let the stationary field equations (F3) 

be valid in a compact, regular domain D in the associ
ated space V3 and let g",II(X) , F(x) belong to C3(D). Let 
f be a differentiable function which preserves solutions 
of (Fa). 

(i) If, furthermore, f is analytic, then 

f(F) = (AF + iB)/ (iCF + D), (5.12) 

where A, B, C, and D are real constants such that 
AD+BC>O. 

(ii) If f is conjugate analytic, then 
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f(F) = (AF +iB)/(iCF +D), (5. 13) 

where A, B, C, and D are as in (i). 

(iii) There does not exist any nonanalytic f which pre
serves (Fa). 

Proof: (i) For f to preserve (Fa), the following equa
tions are necessary and sufficient: 

1'1' /U+ 1)2 = l/(F +F)2, 

(In!')' + 2/(F + F) = 2f'/(f+ 1). 

Integrating (5. 14) with respect to F gives 

f' /(f + J) = l/(F + F) + [1nK(F)]', 

(5. 14) 

(5. 15) 

(5. 16) 

where K is an analytic function of F. Integrating (5.16) 
with respect to F gives 

f + 1 = (F+F)K(F) G(F), (5.17) 

where G is an analytic function of F. Neither K nor G 
can be identically zero, lest f be constant. Since KG is 
real, G=aK, for some real constant a. 

To find K(F), we differentiate (5.17) with respect to 
F and F, obtaining 

0= (K/K') + (R/K') + F + F. (5.18) 

Hence (K/K')=-F+ib andK=q/(F-ib), for some real 
constant b and complex constant q. 

Now (5. 17) becomes 

f+1=aqq(F+F)/(F-ib)(F +ib) 

= aqq/ (F - ib) +aqq/ (F + ib); (5. 19) 

thus f must be (aqq/ (F - ib)) + ie, for some real constant 
c, and this can be written as (5.12), the condition that 
AD+BC> 0 will ensure that Ref remains positive and w 
remains real. Substitution shows that (5.12) satisfies 
(5.15) as well as (5.14). The transformations (5.12) 
form a subgroup of the Mobius group and are generated 
by the following transformations: (1) F-AF, A a posi
tive real (magnification), (2) F - F + iB, B real (imagi
nary boost), and (3) F-1/F (inversion). 

Notice that in the static case F=exp(w), so that the 
inversion transformation yields Buchdahl's theorem. 16 

New solutions can be generated by (5.12). For exam
ple, letj(F)= (F+i)/(iF+ 1) and F=exp(x) be a static 
solution. Thenf(F) = sechX - i tanhX, which is the sta
tionary solution belonging to the P. E. class. 

(ii) The proof is Similar to (i). 

(iii) Under the transformation3 F= (~-1)/(~ + 1), the 
first of Eqs. (F3) becomes 

R",8 + (~; - 1)-2(~, ",t,8 + {, ",~,8) = o. (F3') 

Suppose f(~, ~ is a nonanalytic function of I; and t which 
preserves solutions of (F3'). Then we must have 

T",8'" (I f,( 12 + 1 f .. ~ 12)(~, ",t,8+;, "'~,8) 

+ 2f,J,(I;,,,,!;,8 + 21, 'ff, r r,,,,t,,, 
- UJ-1)2(!;t -1)"2(!;,,,,{,8+ t,,,~,B) =0. 

for all solutions ~. In particular, these equations hold 
for the Kerr17,3 solution ~ = px1 + iqx2. The T12 equation 

J. Math. Phys., Vol. 15, No. 7,July 1974 

1100 

gives f.ll,l-l,rf.r = 0, while the difference of the T11 

and T22 equations gives f,ll.l + 1. 1f, 1 = O. Thus f,r= 0 or 
f.l == 0, which means that f is either an analytic function 
of I; or else the conjugate of such a function. These 
cases are covered by parts (i) and (ii). 

6. CON FORMAST ATIONARY SOLUTIONS 

A conformastationary metric is one of the form 

q, == - exp( - w) g "'8 dx" dxB + exp(w) (a", dx'" + dt)2 (6.1) 

for which the associated metric g"Bdx'" dx8 is conformal
ly flat. (For an electrovac example see Israel and 
Wilson18). 

Theorem 6. 1: If a nonflat conformastationary metric 
form which is not static satisfies Einstein's equations 
(4) R II == 0, then it must be reducible to one of the follow
ing forms: 

(i) (NUT solution) 

q, == - (2k)"1[(1- 2m/r) + (1- 2m/r)"1 ][dr2 + (1- 2m/r) 

X (d02 +r2 sin20 dcp2)] + 2k[(1 - 2m/r) + (1 - 2m/r)"1]-1 

X [(2m/k) cosO dcp +dt]2, (6. 2) 

(ii) q, = - (2k)"l[l + (1- mx1)4][(dx1)2 + (dX2)2 + (dx3)2] 

+ 2k[(1- mx1)2 + (1- mx1)"2]-1 

X [(m/k)(x3 dx2 - x2 dx3) +dt]2, 

(iii) q, = - (2k)"l[ (1 + m/2R) 4 + (1- m/2R)4] 

(6.3) 

X [dR2 +R2(d1/J2 + Sinh21/Jdcp2)] + 2k(1 _ m2/4R2)2 

x [(1 + m/2R)4 + (1 _ m/2R)4 ]-1 

x[ (2m/k) cosh1/Jdcp +dt]2, 

where m and k are constants. 

(6.4) 

Proof: First consider those solutions F for which ReF 
and ImF are functionally related (the P. E. class). From 
the P. E. theorem, it is obvious that such a solution 
must be generated from a static solution which has a 
conformally flat associated space. This is called a con
formastat metric, and it has been shown19 that only 
three such solutions for Einstein's equations exist. 
From these three static solutions via the P. E. theorem 
the solutions (6. 2)- (6. 4) follow. 

Now suppose ReF and ImF are not functionally 
related. Then xl == ReF and x2 = ImF are allowable co
ordinate conditions. As the third condition we take 
gl1 +g22 = 2 (X1)2 • From (F 3) it follows that R = -1. Thus 
Schouten's2o condition for conformal flatness becomes 
R"811' - R "'1'1 8 = O. This yields nine equations, six of 
which are {3 1a}= 0 and {3 2a}== 0, a = 1, 2, 3. The cal
culation of Rl313 and R1m from the definition shows 
these are both zero. But the conformal flatness condi
tion in V3 implies Rl313 = t(gl1 - (x1)2)g33(X1)"2 and 
R1a23 = t g12 g33(X1)-2. Hence gl1 = (x1)2, g12 = 0, and g22 
= (X1)2. USing conformal flatness, R1m = t(X1)"2. By us
ing the definition, this is found to be (x1)"2 (after a long 
calculation). This contradiction means there cannot be 
any solutions outside of the P. E. class. 
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7. AXIALLY SYMMETRIC STATIONARY FIELDS 

We now consider metrics of the following form: 

cI> = - exp[ - w(p, z)]{exp[2v(p, z)](dp2 + dz2) + p2dz2} 

+ exp(w)[a(p, z) d8 +dt]2. (7.1) 

This will be called the Weyl-Lewis21-Papapetrou6 

(W. L. P.) coordinate system. The field equations re
duce to 

v. p= tp[(W,p)2 - (W,,,)2 +exp(- 2w)«cf>,p)2 - (cf>, .. )2)], (7.2) 

v, .. = tp[w,pw, .. +exp(- 2w)cf>,pcf>, .. ], (7.3) 

v2w + exp(- 2w)[(cf>,p)2 + (cf>, .. )2] = 0, (7.4) 

v 2cf> - 2[cf>,pw,p+ cf>,..w,z] = 0, 

where 

(7.5) 

(7.6) 

The two real equations (7.4) and (7.5) can be combined 
into the complex equation 

(7.7) 

The known solutions of (7.7) are those of Van 
Stockum,22 Kerr, 17 Tomimatsu and Sato, 23 and 
Papapetrou6 and Ehlers7• The following solutions may 
be mentioned: 

(i) In the case F=V(p)+icf>(z), we must have cf>=ez+d 
and 

V = b-1 P sinh(eb lnp + c) 

or 

V = b-1p sin(eb lnp +c), 

where b, c, d, and e are real constants (cL Van 
Stockum22

) • 

(7.8) 

(7.9) 

(ii) If the eigenvalues A2 and A3 are equal, then l!..lF 

= O. The space-time turns out to be flat in this case. 

(iii) When the equations faB = exp(- 2W)'T/aB'Ycf>i'Y are 
written in W. L. P. coordinates, we find 

a,p=pexp(- 2w)cf>,z (7. 10) 

and 

a,z= - p exp(- 2w)cf>, p' (7.11) 

These equations are the pseudo-Cauchy-Riemann equa
tions, and they show that a and cf> are conjugate pseudo
harmonic functions. 24 Thus (1, = cf> + ia is a pseudo-analy
tic function of the second kind and 

(7. 12) 

is a pseudo-analytic function of the first kind. More
over, if I;=p+iz, then 

=f .!!(w.e-- 1/ 4P)f+(w.c.- 1/ 4P)1 d dz 
g + 7r 1;' - t p (7. 13) 

is an analytic function of 1;. 

From (7.10) and (7.11) it follows that a and cf> are 
functionally independent. Thus we shall attempt to find 
a class of solutions where wand a are functionally re-
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lated and this class must be outside the P. E. class. To 
do that, we introduce U = W - lnp. Then the field equa
tions become 

v. p = ip[(U,p)2 - (U. z)2 + (2/ p)U, p + 1/ p2 

+ exp(2 U)«a, z)2 - (a, p)2)], 

v,z= tp[U,p,z+ U,..! P + exp(2U)a,pa,z], 

v2U + exp(2U)[(a, p)2 + (a,z)2] = 0, 

(7.14) 

(7.15) 

(7.16) 

(7. 17) 

If U and a are functionally related, the only possibility 
is 

(7.18) 

where cl and c2-are real constants. Equation (7.16) 
becomes 

(7.19) 

Let b = (Cl - C2 2)1 /2 and 

W(a) = - J a (C 1 + 2C2 a + a2r1 da = b-1 cot-1[ (a + c2)/b J. (7. 20) 

Now equation (7.19) becomes V2W = 0 and (7.1) becomes 

cI> = - bp-t secb W[ exp(2 v) (dp2 + dz2) + p2 d82] 

+ pb-1 cosbW[«b tanbW) - C2) de +dtJ2, (7.21) 

v = J (p/2}[(2b2(cot2bW) + 1) W,pW,z+ (1/ p)(b cotbW) W,z]dz 

+ (p/4)[«W, .. )2 - (W,p)2) + (2/ p)(b cotbW) ~ p 

+ (1/ p2)] dp. 

Before concluding we would like to discuss Ernst's 
potential equation. 3 This can be obtained from (7. 7) by 
putting F= (1; -1)/(~ + 1) and using general coordinates 
in E 3 , and it is 

V2~ = [2V( 1 ~ 12 -1)] (grad~)· (grad ~). (7. 22) 

In the Cartesian coordinates a set of solutions of 
(7. 22) depending on two variables x, y is generated by 
arbitrary analytic or conjugate analytic functions of the 
complex variable x +iy. For the three-dimensional 
analog we can mention that any analytic or conjugate 
analytic function of the complex variable x + i (cosc)y 
+i(sinc)z, (where x,y,z are Cartesian coordinates, c 
is a real number) solves (7.22). In all these solutions 
Re~, Im~ are functionally independent. Moreover, for 
a pole of a prescribed order at infinity, an infinite sub
set of these solutions exists. However, none of these 
solutions apply directly to relativity. For that purpose 
only the axially symmetric solutions are permitted. 
Furthermore, the solutions of physical interest are 
those for which Re~ and Im~ are functionally indepen
dent and which generate asymptotically flat metrics. 
Even in such cases, in view of the present solutions 
of (7. 22) just mentioned, it is reasonable to conjecture 
that an infinite set of solutions of Ernst's equation 
exists. 
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The fact that the Maxwell equations can be analytically extended into complex Minkowski space is 
used to show that a class of solutions to the real Maxwell equations exists which can be viewed as 
arising from a monopole source moving along a complex world line in the complex Minkowski 
space. This class of solutions is the natural analog of the class of regular, algebraically special type 
II. twisting metrics in Einstein's general theory of relativity. in that the two cases are characterized 
geometrically by the fact that the Maxwell and Weyl tensors, respectively. both possess a shear-free, 
diverging. geodesic principal null vector field I, which is twisting. By analytically extending the 
algebraically special metrics into a complex manifold. we show that the analogy runs even deeper 
than this. Aside from the constants, charge and mass, the solutions in both cases are completely 
determined by a single complex function .p. In both analytically extended manifolds the surfaces, 
.p=const, are complex null surfaces and the complexified versions of both the Maxwell and Weyl 
tensors now have a nontwisting principal null vector field 1*, equal to the gradient of .p. We 
introduce the natural coordinate and tetrad systems associated with 1 and 1* and show the 
relationship between them in both the flat and curved complex manifolds. The class of solutions to 
the Maxwell equations is solved in both systems. The algebraically special metrics are treated in 
detail, and the Kerr metric is given as an explicit example. 

1. INTRODUCTION 

We have recently shown l that the Lienard-Wiechert 
(LW) solutions of the Maxwell equations have a precise 
analogy in the class of solutions to the vacuum Einstein 
equations known as the Robinson-Trautman (RT) 
metrics. 2 It is one of the purposes of this paper to 
generalize this analogy. 

From the fact that the Maxwell equations can be ana
lytically extended into complex Minkowski space, 3 we 
will show that a class of solutions to the ordinary (that 
is, real) Maxwell equations exists which can be viewed 
as arising from a monopole source moving along a com
plex world line in the complex Minkowski space. These 
solutions [hereafter to be referred to as complexified 
Lienard-Wiechert (CLW) solutions] can be geometrical
ly characterized by the fact that they possess a princi
pal null vector field (p. n. v. f.) of the Maxwell tensor 
with the following properties: 

(1) the p. n. v. f. is the tangent field to a congruence 
of null geodesics; 

(2) the p.n.v.f. has nonvanishing divergence, 
(3) the shear of the p. n. v • f. vanishes. 

If the further condition is satisfied that 

(4) the twist (or curl) of the p.n.v.f. vanishes, 
then the Maxwell field is LW. 

The solutions to the vacuum Einstein equations which 
are analogous to the CLW Maxwell fields [in the sense 
that a p. n. v. f. of the Weyl tensor satisfies conditions 
(1)-(3)] are the regular, algebraically special type n, 
twisting metrics. 4 (As R. Kerr was the first to syste
matically study these metrics, we will refer to them as 
Kerr-type metrics; the Kerr metric is a special case 
of the Kerr-type metric. ) 

Once it is shown that CLW Maxwell fields exist, the 
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analogy [via conditions (1)-(3)] is then displayed. This, 
however, only superficially touches the full analogy. In 
both the Maxwell and gravitational cases the solutions 
are completely determined (aside from the constants, 
charge and mass) by a single complex function cp. The 
gradient of cp(l!" cp.,) is a complex null vector field 
which is a p.n.v.f., not of the Maxwell or Weyl ten
sors, but of their complexified versions, i. e., of F a8 

+ iF~B and C aBY6 + iC~BY6' the asterisk indicating dual. 

If the real manifolds are analytically extended, in 
one case to complex Minkowski space and in the other 
to a complexified Kerr-type manifold, then l! not only 
satisfies conditions (1)-(3) but condition (4) as well; 
the surfaces cp = const being complex null surfaces. 
Complex null coordinates can be introduced by using cp 
to label the (complex) null surfaces, r* as the (complex) 
affine parameter along l* and t*, 11* as two complex 
angles, constant along each l* ray. In this new coor
dinate (and associated tetrad) system the Maxwell and 
Weyl tensors have respectively poles of the form 1'*-2 
and r*-3, so that one can (in some sense) view the solu
tions as being similar to the LW fields or the RT 
metrics but with the pole (i. e., r* = 0) tracing out a 
complex, rather than real, world line. 

In Sec. 2 we describe and show the relationship be
tween two null vector fields, l* and l (in complex 
Minkowski space), which are defined from an arbitrary 
complex world line and which satisfy conditions (1)-(4) 
and (1)-(3), respectively. In addition, natural coordi
nate and tetrad systems associated with l* and l are 
introduced. In Sec. 3 we find the solutions to the (real) 
Maxwell equations that have l as a p. n. v . f. and then 
show that they can be analytically extended into complex 
Minkowski space where they can be viewed as CLW 
fields. Section 4 is devoted to reviewing the Kerr-type 
metrics and in Sec. 5 we show how these can also be 
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extended into a complex manifold with properties 
analogous to the CLW fields. In an appendix we show 
how many of the ideas developed here can be understood 
from the point of view of spinors and the Penrose theory 
of twistors. 

2. TWISTING, SHEAR-FREE CONGRUENCES IN 
MINKOWSKI SPACE 

We begin with a brief description of some properties 
of complex Minkowski space. It is a four-dimensional 
complex manifold (8 real dimensions) that can be 
covered by a single complex chart, with coordinates 
z" = x" +iy" (x,. ,y" real) and endowed with a complex 
line element, 

ds2=TJ,.vdz"dzv, TJ,.v=diag(1,-1,-1,-1). (2.1) 

The group of isometries is the ten (complex) param
eter Poincare group 

z'" =a~zv +b" (2.2) 

with b" being a complex vector and a~ being a complex 
matrix satisfying 

(2.3) 

(Although there is no intrinsic method of Singling it 
out, we will always consider the real four-dimensional 
subspace y" = 0 as the physical or real Minkowski 
space. This effectively reduces the group of isometries 
to the real Poincare group.) 

A complex world line (which will playa fundamental 
role here) is defined by the four analytic functions of a 
Single complex variable ¢ 

(2.4) 

If ¢ is chosen to be the complex proper length (times 
(2/2) along the world line, then (assuming the path is 
not null) 

(2.5) 

(It should be realized that the complex world line is not 
really a line but a two-dimensional surface.) 

We now introduce two different, but closely related, 
types of analytiC coordinate systems in the complex 
space (analytic in the sense of the new coordinates 
being analytic functions of z"), which are associated 
with an arbitrary complex time-like world line. The 
first system uses complex null coordinates ¢, r*, t*, 
and TJ* based on the complex line (analogous to real null 
coordinates based on a real line) and introduced by 

(2.6) 

with 

f: = ({"2/4pt)(1 + t*TJ*, t* +TJ* ,«t* - TJ*)/i), -1 + t*TJ*), 

(2.7) 

and 

V*(¢, t*, TJ*) = f: ~,,.. (2.8) 

I* is a complex null vector (i.e., I:I*" =0) which 
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sweeps out the complex light cone as t* and 1J* move 
over their respective extended complex planes. ¢ 
= const defines a complex cone, while t* and TJ* con
stant singles out a particular generator of the cone and 
r* is the (normalized) complex affine length (along each 
generator) from the world line ~,.(¢). We remark that 
"real" values of these coordinates (i.e., ¢ and r* real, 
TJ* = t*) do not correspond to real Minkowski space. In 
the new coordinates the line element (2.1) becomes 

ds2 - 2 (1 _ V'* r*) d¢2 _ 2d¢dr* _ r*2 dt* d1J* (2.9) 
- V* 2V*2 pt2 

and l* becomes 
o 

l*=or* or I*=d¢. (2:,10a) 

It is convenient to introduce a complete null tetrad m*, 
m*, and n* in addition to I* by 

* d1J* 
m = - 2pt V* p* , (2.10b) 

(2.10c) 

( 
v'*r*) n* =dr* + 1-~ d¢, (2.1Od) 

where p* = -1/r*. 

Considered as a field on complex Minkowski space, 
I* satisfies conditions (1)-(4). I* does not, however, 
have immediate geometrical or physical Significance 
for us because on the real Minkowski space (y" = 0) it is 
a complex null field. It will nevertheless be possible to 
find a real null vector field I (on the real Minkowski 
space) which satisfies conditions (1)-(3), by means of 
a "proj ection" on I*. (See Appendix A for a description 
of this in terms of spinors.) 

Perhaps the easiest way to understand the relation
ship of 1 to l* is to start with a description of the second 
coordinate system. 

We begin by first describing a particular parametri
zation of an arbitrary null geodesic congruence, C. 
Take a time-like geodesic with tangent vector t,. and the 
family of null cones emanating from it. The generators 
of these cones form a special null geodesic congruence 
S (not C) and are labeled by the three parameters u, t, 
and I where u is ({2/2 times) the proper time at the 
apex of the cone and t and t are "angular" variables 
(stereographic coordinates on the sphere) labeling the 
direction of each generator. To each geodesic, s, of 
S there is associated a unique null hyperplane in which 
s lies. The hyperplane can thus be labeled in the same 
manner as its associated geodesic, i. e., by u, t, and 
t. 

An arbitrary geodesic c from C will lie in one of 
these hyperplanes. Its position, relative to the geodesic, 
s, of S can be described by a connecting vector TJ,. lying 
in the hypersurface (i. e., with rt I,. = 0, where I,. is 
the tangent vector to s) and made unique by requiring 
TJ"t,.=O. 

The parametric form of c can then be written as 
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x"'=,[2t"'u+1'/'" + (r-ro)l"', t"'t",=I, 

where r is an affine parameter along c and ro specifies 
an arbitrary affine origin. Z'" is normalized by Z"'t", =1. 
The connecting vector can be written as 

1'/1' = -Lmj.l - Lm'" 

where mj.l and its complex conjugate mj.l are two space
like complex vectors defined (up to the transformation 
mj.l- el<l>mj.l) by 

m"'m", +1 =mj.lm", =m"'Z", =mj.lt", =0. 

and L = mj.l ~ is a spin weight 1 quantity. 

The congruence C can thus be described by taking the 
connecting vector as a known function of the hyperplane 
and thereby obtaining for the description of the geode
sics of C, the explicit form 

xl' = {2tj.lu- L(u, t,"t)mj.l{t, t) - L(u, t, t)mj.l(t, t) 

(2.11) 

where 

/2 ( - - t- t -) -Z"=4P
o 
1+tt,t+t'-i-,-1+l;t, Po=1/2(1+tt), 

(2.12a) 

(2.12b) 

-
and ro is an arbitrary function of u, t, and t. 

For future reference, in order for the divergence of 
the tangent field to C, i.e., Z"(t,I), to have a conven
tional asymptotic form, we choose 

r o= -!-(8"oL +LL +l'50L +1.,L). (2.12c) 

If L(u, 1;, I) is analytic separately in the three argu
ments, we can consider the "freeing" of t from the 
complex conjugate of I; and thus view L as an analytic 
function of the three independent complex arguments 
u, 1;, and 1) = "f. This is turn, permits us to replace in 
(2.12) t by 1'/ and consider (2.11) to be a three complex 
parameter family of null geodesics in complex 
Minkowski space. The affine parameter r is also per
mitted to take on complex values. 

It is now assumed that when working with (2.11) and 
(2.12) I and x" are replaced by 1) and z" . 

Equation (2.11) can be considered not only as the 
parametric form of the congruence C but also as the 
analytic coordinate transformation from the complex 
Minkowski coordinates z" to the natural coordinates 
associated with the congruence, namely u,r, t, 1'/. 

The function L will be chosen by the following pro
cedure. Beginning with the complex world line (2.4), 
z" = ~"(cp), we define 

(2.13) 

and thereby (impliCitly) define an analytic scalar func
tion of three complex variables, namely 

(2.14) 
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We also need a second analytic scalar cp(u, t, 1'/) which 
is obtained from the "complex conjugate" world line 
~j.I(cp} by 

(2.15) 

(The idea of a "complex conjugate" world line depends 
on our retaining the identity of the real Minkowski 
space. We emphasize that cp(u, t, 1'/) and if)(u, t; 1'/) are 
not in general complex conjugates of each other except 
when u is real and 1'/ = 1:. This eventually leads to the 
result that cp and cp as fields in complex Minkowski 
space are complex conjugates only on the real 
subspace. ) 

USing these scalar functions cp and ¢ we choose L 
and L to be . 

L ~oCP L 5o~ =-q;-' =:--r 
with <p= Cicp/Ciu. With this choice, the transformation 
between the z" and the new coordinates can (after some 
manipulation) be put into the form 

z" =: ~"'(cp(u, t,1'/» + (tL; +QoL)Z" 

(2.16) 

where Z'" and~oZj.I are given by Eq. (2.12) and:E, QO, 
and L (L == ilL/ilu) depend on cp and if) by 

2zL; =~ aI, + LI -80L - LL, 

L=:-~o~, L=-50} , 
cp cp 

Q0=: 50,cp _ ~. 
cp cp 

(2.17) 

(2.18) 

(2.19) 

[Alternate expressions for these quantities are easily 
obtained by impliCit differentiation of (2 .14) and (2 .15), 
e.g. , 

L=~oX, <p=X,·l.] (2.18') 

The line element (2 .1) becomes (after a lengthy 
calculation) 

with 

Z = Z",dxj.l = du - (1/2Po)(Ldt + Ld1'/), 

1 
m = m"dx" = - 2P

o
p d1'/, 

iii =iii",dx" = - (1/2Pop)d1'/, 

where 

1 _ -1 
P = - (r + i:E)' P =: (r - i:E)' 

and 

(2.20) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2.22) 

(2.23) 
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p is the complex divergence of 1 and is defined by 

In order to obtain (2.20) and (2.21), considerable 
use had to be made of 

fSoL + LL =0, (2.24) 

which follows directly from (2.13) and (2.18). Equation 
(2.24) states that the shear of the null vector field 1 
vanishes. 5 (See Appendix B.) Thus l, in general, satis
fies conditions (1)-(3). The function ~ is a measure of 
the twist of l, with ~ = 0 implying that 1 is proportional 
to a gradient. One can show that if the world line E,1L(cp) 
were real (for real cp) then ~ =0, and 1 would be the 
null tangent vectors to the ordinary light cones from the 
(real) world line and thus would, in addition, satisfy 
condition (4). 

We have introduced two null vector fields and their 
associated coordinate (and tetrad) systems in complex 
Minkowski space which are associated with a complex 
world line. The first, the simpler and more natural 
one, suffers from two drawbacks; real values of the 
coordinates correspond to complex points and the vector 
field l* at real pOints is complex. The second system 
is vastly more complicated to derive and work with but 
possesses the major advantages of having a real field 1 
at real points and having real coordinates (u and r real, 
7) = t) correspond to real pOints. 

The tranformation connecting the two coordinate 
systems is 

cp=cp(u,1;,7) or u=X(cp,I:,7), 

r* = [r + i~ (u, 1;, 7))]j ri>, 
7)* =7), 

1;*= [I; + cPQ°pA(cp, 7)]/[1- cPQopB(cp, 7)]' 

where A and B are defined from 

v*(A, 1;* *)=A(cp,7)*)+I;*B(CP,7)*) 
,/",7) 1+1;*7)* ' 

which follows from the definition of V*, (2.8). 

The tetrad systems are related by 

l* = (l- Qm)cP, 

iii* :::S(iii - Qn + Ql- Q2m), 

n* = (n + Qm)cP-1
, 

where Q=QoP, and 

PiQ(I;*7)*)V*(CP, 1;* ,7)*) 
S= Po(1;,7)4>-l(U,I;,'T/) 

From (2.26) we have 

1= cP-1l* + QSm* 

(2.25a) 

(2.25b) 

(2.25c) 

(2. 25d) 

(2.26a) 

(2.26b) 

(2.26c) 

(2.26d) 

(2.27) 

(2.28) 

which on the real Minkowski space gives the projection 
of the complex l* onto the real l. 

It is the real 1 field on the real Minkowski space that 
is of direct physical interest to us. 
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3. COMPLEXIFIED lIENARD-WIECHERT FIELDS 

In this section we will first find the (regular) solu
tions of Maxwell equations in real Minkowski space such 
that the 1 field of the previous section is a p. n. v. f. of 
the Maxwell tensor. Then we will study the analytic 
extension of these solutions. 

The easiest way to accomplish this is to use the spin
coefficient formulationS of the Maxwell equations in the 
tetrad and coordinate system associated with l, i. e. , 
with (2.20) and (2.21). We then have as basic 
variables 

CPo = Fs.</lllLm/l, 

CPl =~FIL/I(llLn/l+ms.<iii"), (3.1) 

CP2 = Fs.</l iiilLnv• 

The condition that 1 be a p.n. v.f. of the Maxwell tensor 
is 

(3.2) 

The Maxwell equations (under condition (3.2)] have 
already been partially integrated. 7 We simply quote the 
results: 

CPo=O, 

CPl = cp~p2. 
CP2 = cPgp + cp~p2 + cp~p3 , 

with 

and 

1 
p~-r+~ 

cP~ =8"oCP~ + LcP~ + 2icp~, . 
cP~ = 2icp~(8" o~ + I± + I~). 

cP~ and cPg satisfy the equations 

'6oCP~ + LcP~ + 2LCP~ = 0, 

'6ocpg + Lri>g + Lcpg::: cP~. 

(3.3) 

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

Although these equations appear rather formidable, 
they can be solved rather easily by changing the inde
pendent variables u, 1;,7) to cp,I;,7), with cP= cp(u, 1;,7) de
fined by (2.13). [It should be noted that cp is complex 
for real u and 7) = 1:. Although now this is just a formal 
means of solving (3.5) and (3.6), eventually we will be 
interested in the same field but expressed in the cp, r*, 
1;*, 7)* coordinates.] 

Equations (3.5) and (3.6) become 

'6~(cp~V2)::: 0, 

'6~(cpgV) = (cp~)' , 
(3.7) 

(3.8) 

where, as earlier' denotes differentiation with respect 
to cp, '6~ is '6 0 holding cp constant and 

V(cp, 1;,7)=X'(cp, 1;,7)= E,'IL(cp)llL(I:,7)= cP-1(u, 1;,7). (3.9) 

At this point we make the assumption that the complex 
world line is "time-like". By "time-like" we mean that 
the function V(cp, 1;,7) has no zeros for the values cp,1;, 
and 7) taken in the real Minkowski space, i. e., cp takes 
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on the values [from its defining equation (2.14)] q> 
=q>(u,t,71=f), u real, and 71=t. For a real world line 
this definition of time-like coincides with the usual one. 

The regular solution of (3.7) is 

for which (3.8) becomes 

15~(q>~V) = (elV2)' . 

(3.10) 

(3.11) 

When (3.11) is integrated over the surface of a sphere 
(using the properties of 50) we obtain 

(3.12) 

By explicit integration (or by more general methods) 
/V-2dO = 47T, so that e' = 0, or e = const= charge. 

The final equation to be solved is then 

V2t5~(q>~V) = - 2e(V'IV). (3.13) 

One can readily check that V from its defining equation 
(3.9) satisfies 

V25~5~ logPo V = 1, 

which, when differentiated, becomes 

2V' IV = - V215~5~(V' IV). 

By comparing (3.13) and (3.14), we have 

q>~ = e[ (11 V)5o (V' I V)], 

or in terms of the coord-lnates u, t, 71, 

q>~ = - e~oq>1 ¢)"". 

(3.14) 

(3.15) 

(3.16) 

This class of solutions of the Maxwell equations (Kerr
type Maxwell fields), Le., (3.3), (3.4), (3.10) (with e 
*0), and (3.15) constitutes the class of general regular 
solutions whose p. n. v. f. satisfies conditions (1)- (3) and 
which has nonvanishing charge. Note that the solution is 
determined completely by e and the function q>(u, t, 71), 
which is defined by the complex (time-like) world line. 

We now show that this solution analytically extended 
into complex Minkowski space coincides with the solu
tion of the complexified, analytically extended Maxwell 
equations with an electric monopOle source moving 
along an arbitrary, time-like, complex world line, i. e. , 
that it is a complexified Lienard-Wiechert solution. 

The complexified and analytically extended Maxwell 
field ~" (z") is, on the real Minkowski space, given by 
W""(x")=~(F""+iF*"") and satisfies (in the vacuum 
region) 

_o_W""=O oz" . (3.17) 

If one introduces a complex null tetrad (in the com
plex space) say, l*, m*, m*, n* satisfying the condi
tions l*· n* = - m* • m* = 1, all other scalar products 
being zero, then one can define 

q>~ = W,,)*"m*", 

q>~ =~W,,"(l*"n*" + m*"m*"), 

q>: = W,,"m*"n*v. 
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(If the tetrad is real in the real space, then (3.18) coin
Cides with the usual spin coefficient form of the Max
well field.] 

The spin coefficient form of the extended Maxwell 
equations (3.17) is identical to the usual spin coefficient 
form except that the spin coefficients are obtained from 
the extended complex null tetrad. 

On real space the p. n. v • f. for the real Maxwell field 
just discussed was real, unique, and given by 

In the complexified version there is no meaning to 
F"v (except on the real space), but only to W,,". This 
suggests the eigenvalue equation 

This, however, does not lead to a unique solution for L; 
there is, in fact, a complex plane of solutions (see 
Appendix A) at each pOint for each eigenvalue A. If we 
demanded that L be real on the real space we would ob
tain by analytic continuation that L = l. There is, how
ever, another natural chOice for L, namely the l* of the 
previous section, which has simple geometric meaning. 

We shall solve the extended Maxwell equations (in 
spin coefficient form) using the * coordinate and tetrad 
system of Sec. 2, assuming the l* is a p. n. v. f. of WI'" 
(i. e., assuming that q>~ =: 0) and then show that this 
solution COincides with the one just obtained. The equa
tions take the form (after a lengthy calculation) 

D*q>~ +2q>T!r* =0, 

D* q>: + q>:!r* = - (V* /r*)5~q>~, 

0= - (V*1r*)5~q>~, 

(3.19a) 

(3.19b) 

(3.19c) 

q>r - 1 - - r* D* q>~ - 2 ~ =: - - t5~ - • ( 
V'*) q>* V*2 (q>~) 
V* r r* V* (3.19d) 

Integrating the first two of (3.19) yields 

CPt =0, 

cp! = cP~* (cp, t*, 71*)1 r*2, (3.20) 

cp~ = q>~* (q>, t*, 71*)Ir* + (V* I r*2)8"~cp~*, 

which when substituted into the second pair of (3.19) 
yields 

15~cp~* = 0, 

(q>~*V*-2)' =: -5~(cpg*/V*). 

(3.21) 

(3.22) 

We have used in (3.22) the result from (3.21) that cp~* 
= cp~* (cp) which follows from the regularity assumption. 
The analySiS here is almost identical to that following 
Eq. (3.11) with the result that 

cp~* = e* = const, 

(3.23) 

cpg* = - e*V*8"t(V*'IV*). 
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This solution of the extended Maxwell equations can 
be naturally thought of as a complexified Lienard
Wiechert field. 1 

By subjecting the </>*'s to the coordinate transforma
tion (2.25) and the tetrad transformation (2.26) one can 
simply check that the CLW field is the same as the 
Kerr-type Maxwell field. 

We have thus proved our contention that a regular 
solution of the (real) Maxwell equations whose p.n.v.L 
satisfies conditions (1)-(3) when analytically extended 
can be looked upon as a CLW field. 

4. THE KERR-TYPE METRICS 

In this section we present a brief review of the spin 
coefficient formulation of the real Kerr-type metrics. 

In a four-dimensional Riemannian manifold with 
Signature (+, - , - , -) a null tetrad Z.", = (1"" n", m"" 
in ) is introduced composed of two real (l,n) and two 

'" complex (m, m) null vectors satisfying 

all other scalar products vanishing. Equation (4.1) 

implies the completeness relation 

g",v = 2(l("nv) - m(",mV ))' 

From the tetrad one can define the Ricci rotation 
coefficients 

y"bC = Z~ ;vZb '" zcv 

and the spin coefficients 

K = l", ;vm"'lv, 11= - n",;vm"nv, 

p= l",;vm"'mv, IJ.= -n",;vm"mv, 

a=l",;vm"'mv, .\=-n,,;vm"'mv, 

T=l,,;vm"nv, 1T=-n",;vm "'lv, 

O! = 1/2(l", ;vn"'mv - m", ;vm"'mV), 

f3= 1/2(Z,,;vn"'mv - m",;vm"'mV), 

y = 1/2(l", ;vn"'nv - m" ;vm"nV) , 

€ = 1/2(l", ;vn'" lV - m", ;vm '" lV). 

(4,1) 

(4.2) 

(4.3) 

(4.4) 

The tetrad components of the Weyl tensor are defined by 

1/10= - C",vpul"mvlPmu, 

1/11 = - C",vpu1"'nvlPmu, 

1/12 = - C",vpum"'nvlPmu , 

1/13 = - C"vpum"'nvlPnu , 

1/14 = - C",vpum"'nvmPnu• 

Directional derivatives have the form 

D</>=</>;",l"', A</>= </>;"n'" , 

(4.5) 

(4.6) 

The spin coefficient formalism then consists of three 
sets of first order [in the derivatives (4,6) J differential 
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equations (equivalent to the vacuum Einstein equations) 
for the three sets of variables: the spin coefficients, the 
Weyl tensor components, and the tetrad or metric 
components. 

The formalism can be readily adapted to yield the 
Kerr-type metrics by simply choosing the null vector 
field 1 to be a p,n,v.L of the Weyl tensor satisfying 
conditions (1)-(3). By condition (3) 1 is shearfree. 
Therefore, according to the Goldberg-Sachs8 theorem, 
1 is a degenerate principal null vector field of the Weyl 
tensor satisfying 

C",vp[ulTl1vlP = 0 

or, equivalently, 

We also introduce a null coordinate system, x'" 

(4.7) 

(4,S) 

= (u, r, t, 1/),1/ = "t, associated with the null tetrad such 
that r is an affine parameter along the null geodesics, 
labelled by (u, t, 1/), to which 1 is tangent. 

Integration of the three sets of equations may now 
proceed under the above assumption on 1. In performing 
the integrations considerable Simplification of the re
sults is gained through the use of available coordinate 
and tetrad freedom, For instance, the tetrad vectors 
m and n may be chosen to be parallelly propagated 
along 1", which leads to € = 1T = 0, Because the details .of 
these integrations appear elsewhere only the results7 

will be given here. 

The tetrad components of the Weyl tensor have the 
form 

1/10=1/11=0, 

1/12= 1/I~p3, 

1/13 = ~p2 + 1/I~p3 + 1/I~p4 , 

1/14 = 1/1~ + 1/I!p2 + -!-1/I;p3 + %1/I:p4 + t1/l!p5, 

with 

1/Ig=50R + LR, . 
1/1~ =8'01/l~ + L~~ + 3L1/I~, 
1/1~ = 3i1/l~(8' o~ + L± + i~), 
1/I~=R, 
1/1~ =g01/lg + L~g + 4t1/l~, 
1/1~ =g01/l~ + L~~ + 5i1/l~ + 4i1/lg(8'0~ + L± + t~), 
1/1:=8'01/1; +L~; + 6i1/l; + 6i1/l~(8'0~ +L± +i~), 
1/1! = Si1/l~(8'0~ + Li + i~). 

The spin coefficients become 

K=€=1T=a=T='\=O, 

p = - 1/ (r + i~ ), 
, 

a =t(8'o 10gPo + 2I)p, 

f3 = - -!- (50 10gPo)p, 

y =-!-1/I~p2, 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

(4.10a) 

(4.10b) 

(4.10c) 

(4.10d) 

(4.10e) 

(4.10f) 

(4. 109) 

(4.10h) 

(4.11a) 

(4.11b) 

(4.11c) 

(4.11d) 

(4.11e) 
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• 1 1 2 3 
v=N + zp~p +2ZP~p3 + SZP3Pl 

with 

L=-'6o</>/~, 
2iL ='6oL + Lt -goL - LL, 

N=gologPo + t, 
R =50N + LN + N2 - 2MSo logPo' 

The metric may be written in the form 

ds2 = 2(ln - min), 

with 

1 Ld!; 1 LdTj 
1 = 1 dx" - du - - - - - --

" 2 Po 2 Po ' 

m =m"dx" = - (1/2Pop)dTj, 

(4.11£) 

(4.llg) 

(4. 12a) 

(4. 12b) 

(4.12c) 

(4.12d) 

(4.13) 

(4.14a) 

(4. 14b) 

m=m"dx"=-(1/2PoP)d!;, (4.14c) 

n =n"dx" =dr- 2~0 [(wo +~ )d!; + (WO +~ )dTj J 
(4. 14d) 

+ [1 +t('6J + Lt +50£ + L1) +t(zpgp + ~gp)]Z"dx" 
where 

(4.14e) 

Finally, zpg must satisfy the differential equations 

'6 ozpg + L~g + 3Lzpg = 0, 

~g ='6oZP~ + L~~ + 2LZP~, 
with 

(4.15) 

(4.16) 

1m [zpg - ('60 + La~ )('60 + L a~) <8"oI + Ii)J == o. (4.17) 

In summary then the Kerr-type metrics constitute 
the most general solution to the vacuum Einstein equa
tions for which a p.n.v.L of the Weyl tensor satisfies 
conditions (1)-(3). 

Equation (4.15) can be easily integrated [compare 
with Eq. (3.7)] and has the general regular solution 

(4.18) 

From its defining equation (4.12a) we see that </> can 
always be replaced by an arbitrary function of </>. This 
freedom can be used, for example, to put m in (4.18) 
equal to a constant. 

Therefore, aside from m, the entire class of regular 
Kerr-type solutions to the vacuum Einstein equations is 
completely determined by the single complex function 
</>(u, !;, 1J), which in turn must satisfy the differential 
equation (4.16). 

Thus, the analogy between the solutions of this section 
and the Kerr-type Maxwell solutions discussed in the 
first part of Sec. 3 is established. The coordinate
tetrad system used here, Le., (4.13) and (4.14), may 
also be compared with its flat space analog (2.20) and 
(2.21) . 

Finally, if </> is real, the class of solutions reduces 
to the RT metrics. That is, Z becomes twist free (or 
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proportional to a gradient) and thus satisfies condition 
(4) in addition to conditions (1)-(3). The twist of 1 is 
given by the imaginary part of p, (4 .1lb), so that the 
function L is a measure of the twist. When </> is real, 
Eqs. (4 .12a) and (4 .12b) immediately lead to L = O. 

5. THE COMPLEXIFIED KERR·TYPE METRICS 

The real Kerr-type metrics as given in the previous 
section can easily be analytically extended into a com
plex manifold. First, we replace the Weyl tensor by its 
complexified analytically extended version W"vPO' which 
on the real space is given by 

(5.1) 

Then we allow the coordinates to assume the complex 
values z"==(u,r,!;,1J) so that the metric (4.13) and all 
of the null tetrad vectors (4.14), although unchanged in 
form, will now be complex. We are tacitly assuming 
that all functions considered in Sec. 4 are real 
analytic . 

The tetrad components of the Weyl tensor will be de
fined in terms of the extended complex tetrad as 

ZPo == - W"vpuZ"mvZPmu, 

ZPl = - W"vpuZ"nvZPrt' , 

ZP2 = - W"vpum"nvZPm u , 

ZP3= - W"vpum"nvZPnu, 

ZP4 = - W /J.IIpum"nvmPrf. 

(5.2) 

The spin coefficients will also be obtained from the 
extended tetrad. Because m and m are no longer com
plex conjugates, the list of spin coefficients will have 
to be doubled to separately include the now independent 
"conjugate" versions of those appearing in (4.4). 

On the real subspace of the complex space (charac
terized by u and r real and Tj = "f) the tetrad components 
of the Weyl tensor given by (4.5) and (5.2) coincide and 
everything else reduces to the results given in Sec. 4. 

For the general Kerr-type solutions, the field Z is a 
unique p.n.v.f. of the Weyl tensor on the real sub
space. In the analytically extended complex spac e, 
however, we have 

(5.3) 

or, equivalently, 

and 

(5.4) 

We know that Z and the null tetrad associated with it 
satisfy (5.3) and (5.4). But the question is are there 
other solutions as well in the complex space? We can 
find this out by determining the most general tetrad 
transformation we can make which preserves (5.3) and 
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(5.4). This transformation has the form 

1* =R(l +Am), 

n* =R-1(n +Bm), 

m* =S[m +Al+Bn +ABm], 

(5.5) 

where A,B,R,S are arbitrarily complex functions of the 
coordinates z". 

Just as in the corresponding situation in the Maxwell 
case, l in the analytically extended space is no longer 
unique. Instead there is a complex plane of solutions at 
each point and any null vector of the form R(I +Am) 
will be a p.n.v.f. of the complexified Weyl tensor. 

We will now show that among these possibilities, 
there is one complex p. n. v • f. of W""pa which is a 
gradient and thus satisfies conditions (1)-(4). In the 
process we will obtain the transformations from the 
complex coordinate-tetrad system associated with 1 to 
the one associated with l*. 

In order for l* to be a p.n.v.L of W"vpa it must have 
the form l* =R(l +Am). After substituting L from 
(4.12a) into the expression for l, (4. 14a), examination 
of m, (4.14b), leads to the result that if we choose R 
= ~ and A = - Q, where Q = QoP and Qo is given by 
(2.19), then l~ = CP'" • 

Writing the new coordinate system as z"'* 
= (u* ,r* , t* , 11*), we may choose r* to be a (complex) 
affine parameter along the l*. This means that r* must 
satisfy 

D*r* = ~(D- Qo)r* =1, (5.6) 

where D* '" Z*'" (a/az,,). The remaining three coordinates 
za* = (u*, t*, 11*) must satisfy 

D*Z4* =0 

in order to be constant on each ray l* • 

Equation (5.6) has the solution 

r*=(r+i'I:)/~, 

(5.7) 

(5.8) 

while both u* = <1> and 11* = 11 satisfy Eq. (5.7). Before 
finding t* = F(u, r, t, T) [which is also to be a solution of 
Eq. (5.7)], we will first choose convenient forms for 
the coefficients Sand B of Eq. (5.5). 

From the function u=X(CP,b,11), which is implicitly 
defined by cP CP(u,t,T) [compare with (2.13) and (2.14) 
in the flat space case], we can define [as in (3.9)], the 
quantity 

V(CP, t,T):;;; ~!(CP, b,11)= ~-l(U, b,T). 

In terms of V we see from (4. 14b) that m may be written 
as 

dT) (r + i'I: )d11 r* d11* r* d11* 
m == - 2PoP = (1 + tTl) = $-1(1 + t11) = V(cp, 1:, 11){1 + 1:11)' 

If we define the function V*(cp, t*, 11*) by 

(1 + 1:*11*)V* (CP, 1:*,11*) '" (1 + t11)V(CP, t, 11), 

we obtain from (5. 5) the result that 
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S (1 + t*1I*)V* (cp , t*,11*) P*(cp,t*,TJ*) 
= (1 + b11)4>-l PO$-l' (5.10) 

which may be compared with Eq. (2.27) in Sec. 2. 

Because the choice of the function B in (5.5) affects 
neither 1* nor the metric we will simply choose B = Q. 

The only remaining problem now is to determine the 
transformation 1:* = F(u, r, t, 11). This can be accom
plished by considering the form m*, which, from (5.5), 
is given by 

m* =m!dz"'* =S(ml +Q- Qn_Q2m ) 
(5.11) 

:=S(m",dz'" + Ql"dz'" - Qn",dz'" - Q2m ",dz"'). 

USing the facts that cp ... =1f.r =0 (mi=O from (m*'l*) 
= 0, m~ = r* /2P* from (m*· m*):= -1 J and equating the 
coefficients of the dr term on both sides of (5.11), we 
obtain 

r* 
-F =-SQ 2P* .r • (5.12) 

By using (5.10) and (2.19), Eq. (5.12) may be rewritten 
in the form 

F./(P*)2 = 2(~2/ pO) Qop2 , 

where ~, Qo' and Po are all independent of r. Integrat
ing we obtain 

(5.13a) 

where 

f dF 
G{CP,F,71)= [P*{cp,F,1I*}j2 (5.13b) 

and 

(5.13c) 

so that in the limit r- 00, t* -1:. 

The complete tetrad and coordinate transformations 
relating the land l* systems are given by 

l* = ~(l- Qm), 

n* = ~-l(n + Qm), 
(5.14) 

m* =S(m - Qn + Ql- Q2m} 

with Q= QoP, where Qo and S given by (2.19) and (5.10), 
respectively, and 

u*=CP(u,t,11), 

r* := (r + i'I:)/ ~, 

t*=F, 

T)* = 11, 

with F given implicitly by (5.13). 

Under the above transformations 

1/1: = 1/12= l/I~p3. 

(5.15) 



                                                                                                                                    

1111 R.W. Lind and E.T. Newman: Complexification 

But ~p=-I/r* and 1Ji~/~3=m(cp) from (4.18). 
Therefore, 

1Ji: = - m(u*)/ (r*)3 (5.16) 

in the new coordinates. This is the same form (but 
with complex coordinates) that 1Ji2 has in the class of 
RT solutions. 

In this way the analytically extended Kerr-type 
metrics can be thought of as complexified RT solutions 
and the analogy with the CLW solutions of Sec. 3 is 
complete. As an explicit example of how this works, the 
analytically extended Kerr metric is given in both co
ordinate systems in Appendix C. The starred coordi
nate-tetrad system of this section is the analog of the 
flat space system discussed in Sec. 2. 

APPENDIX A 

In the text, two null vector fields land l* were intro
duced on complex Minkowski space, both being defined 
in terms of a complex world line [z" = ~"(cp)]. The l* 
field was the tangent field to the generators of the com
plex light cones with apexes on the complex world line; 
l was, in some sense, a projection of l* such that for 
l* on the real Minkowski subspace the proj ection yields 
a reall. [See Eq. (2.28).] We wish to point out here 
(with no proof) that there is a simple way in terms of 
spinors to see the meaning of this projection. Using 
spinor notation, the complex world line is written as 

and a point on its complex cones by 

XAA' = ~AA' (CP) + ~WA' 

(AI) 

(A2) 

where ~ and WA' are two arbitrary spinors and ~WA' 
represents an arbitrary complex null displacement. 
(A2) is the spinor version of Eq. 2.6 where r*l*" 
- ~WA'. For a ~ and WA' such that XAA' is Hermitian 
(i.e., represents a real point) our "projection" is 
simply 7TA u.0' - ~ifA' -l". Though it is not obvious, a 
real null field so constructed satisfies conditions (1)
(3) • 

An alternate way to construct the l field from the 
complex world line is to use the Penrose theory of 
twistors .9 Since each point in complex Minkowski space 
is a line in twistor space, the complex world line is 
equivalent to a one complex parameter family of lines in 
twistor space, or an analytic (and in particular a 
developable) surface. By the theorem of R. Kerr9 this 
generates a shear free congruence in the real Minkowski 
space, namely the l field. 

As a final point we wish to show that although F""v 
has (in the nondegenerate case) two unique (real) null 
eigenvectors, the eigenvectors of W"v = t (F""v + iF*"v) 
are degenerate, forming null planes. (See Sec. 3.) 

In spinor notation 

F"v -eA'B'iA (A J.1.B) _eABi~(A' JIB'). (A3) 

It is known (and easy to check) that l"- AAXA' and 
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n"-J.1.A"ji.A' are the two real null eigenvectors. 

The spinor form of Wl'v is 

(A4) 

from which it is seen that 

eA'B' iA(A J.1.B) AA (]A' = iAA J.1.AABCfB' 

for arbitrary (]A" This is simply the statement that 
AA (]A' - L is an eigenvector of W""V(with eigenvalue 
iAA J.1.A). From the assumption that F"v is nondegenerate, 
the O'A can be written as a linear combination of AA and 
J.1.A' from which it follows that 

l* = O/l + 13m 

which 0/ and 13 arbitrary and m - AA MA , • 

APPENDIXB . 
One can prove that '15L + LL = 0 is necessary and 

sufficient for the congruence C to be shear free by 
simply computing the shear 

where l" and m" are given by (2.12) and 

at at 
l";v=l,,.c axv +l".~axV· 

a t/axV and a'f/axv are obtained by differentiating (2.11) 
with respect to xV. The result of this rather lengthy 
calculation is 

0' rf1 rf1 ='15L + LL 
(r + z"2::)(r - iL.) - rf1(jO , . 

from which it follows that O'=O-'15L+LL=O. 

APPENDIXC 

In this appendix we will apply the results of Secs. 4 
and 5 to the special case of the analytically extended 
Kerr metric, which is characterized in the l system by 

cp=u-ia[(I- t7)/(1 + 1;7)]. 

¢=u+ia[(I- 1;7)/(1 + 1;7)], 

(CIa) 

(Clb) 

with the only nonvanishing tetrad component of the Weyl 
tensor being 

where a and m are constants. 

After substituting (CO and (C2) into (4.14), using the 
definitions (4.12), we obtain 

2ia7) 2ial; 
l = du + (1 + 1;7)2 dl; - (1 + 1;7)2 d7), (C3a) 

{r+2ia[(I- 1;7)/(1 + 1;7)]} d 
m (1 + 1;7) 7), (C3b) 

- _ {r - 2ia[ (1 - 1;7)/ (1 + 1;7)]} dl; 
m- U+I;~ , (C3c) 

n = (1 - {r2 + 4a2[ (1 _~~)2/ (1 + 1;7)2]) ) dJ.1. + dr 

(C3d) 
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2ia~d1/ ) 
- (1 + ~1/)2 • 

From (4.13) the complexified Kerr metric is then given 
by 

_ 2ia~d1j) 2 

(1 + ~1/)2 (C4) 

and the real Kerr solution can immediately be re
covered from (Cl)-(C4) by simply taking u and r real 
and 1/ =""E. 

We will now transform the above solution into the 1* 
system. 

By substituting (Cl) into the definitions of the various 
quantities involved, we find that the tetrad transforma
tion relating the two systems is given by (5.13) with 

~=1, 

- 4ia~ 1 
Q= (1 + ~1/){r+2ia[(I- ~1/)/(1 + ~1/)}' (C5) 

and 

V*=1, 

so that 

S = (1 + t*1j*)/(1 + ~1/)o 

Similarly, after making use of (5.12), the coordinate 
transformation (5.14) becomes 

u* = <P = u - ia[(1 - ~1/)j (1 + ~1/)], 

r* = r + 2ia[ (1 - ~1/)/ (1 + ~1/)], 

~* = ~(r - 2ia)/ (r + 2ia)], 

1/* == 1/, 

or, in the form more useful to our purposes, 

u=u* +Hr* -R], 

r=Hr* +R], 
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~== t*[r* +R +4ia]/[r* +R - 4ia] 

1j =1/*, 

where 
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(C7) 

_ (2 2' (1 - t*1/*»)1/2 _ . (1 - ~1/) 
R= r* -16a -8zar*(I+t*1/*) =r-2za(I+~1/)' 

Performing these transformations on the tetrad (C3), 
we obtain 

1* ==du*, 

m* = r*d1/* / (1 + t*1/*) , 

-* _ r* t * 128ma2~ur*(r* +R) • *) 
m - (1 + ~*1/*) \d~ - (1 + t*1/*)2R[(r* +R)2 + 1602] d1/ , 

(C8) 

n* == (1- m~~R»)du* +dr* 

+ 8ima~*r* (r* + R) * 
(1 + ~*1/*)2R[r* +R)2 +16a2] d1j , 

so that the complexified Kerr metric in the * system 
becomes 

( r*2d~*d1/* ) 
ds

2 == 2 \du*2 + 2du* dr* - (1 + ~*1/*)2 

m(r* +R) ( 16ia~*r*2 d1/*)' 2 

- r*R \du* - [(r* + R)2 + 16a2 ] (1 + ~*1/*)2 
(C9) 

and the only nonvanishing component of the Weyl tensor 
is 

(CI0) 
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We show that for classical, relativistic particles (or systems of noninteracting particles) one can 
interpret the intrinsic (or spin) angular momentum as arising from a center of mass world line 
displaced from the real Minkowski space into complex Minkowski space. This interpretation is then 
connected with the Penrose theory of twistors. It is further shown that if the complex center of 
charge coincides with the complex center of mass, the resulting particle has the Dirac value of the 
gyromagnetic ratio, i.e., (e/mc). For massless particles, there is no unique complex line about which the 
angular momentum vanishes-instead, there is a complex 2-surface, which can be considered to be a 
Penrose twist or. 

I. INTRODUCTION 

It is the purpose of this note to point out the unusual 
behavior of classical, relativistic angular momentum 
when Minkowski space is viewed as a (real) subspace 
of complex Minkowski space. 1 

We consider a classical particle (or system of non
interacting particles) which is characterized by a con
served momentum, pa, and angular momentum Mab. 
The values of Mab depends on the choice of origin. Under 
the origin displacement X a , one obtains 

p,a=pa, M'ab= Mab _ 2xlapbJ. (1) 

It is well known2 that with a proper choice of xa the 
orbital part of the angular momentum can be made zero. 
[The spin part of Mab is uneffected by (1).] In fact if pa 
is timelike then a line (center of mass world line) can 
be found such that the orbital momentum is zero about 
any point on the line. In the case of a null pa (paPa = 0) 
a unique center of mass line cannot, in general, be 
found. 

If, however, we now permit complex translations 
(i. e., consider the complexification of Minkowski space 
and allow the origin to be complex) then not only can we 
always find a unique complex center of mass line in the 
massive case, but we also discover that the total angu
lar momentum is zero about each point of the line. The 
spin angular momentum can thus be conceived as aris
ing, like orbital momentum, from a translation away 
from the center of mass but now an imaginary one. In 
the massless (null momentum) case, there does not 
exist a unique complex line about which the total angular 
momentum vanishes. Instead there is a totally null com
plex 2-surface for which the angular momentum vanish
es about each point on the surface. This surface is 
equivalent to a Penrose twistor. 

In Sec. II the ideas concerning the (real) center of 
mass world lines are reviewed while Sec. III is devoted 
to the complex center of mass lines. In Sec. IV we 
point out the connection between the complex center of 
mass planes and the Penrose theory of twistors. Final
ly in Sec. V we show that one can define a complex cen
ter of charge for the system. If the centers of charge 
and mass coincide then one obtains the Dirac value of 
the gyromagnetic ratio. 

II. CENTER OF MASS 

The material of this chapter is essentially a restate
ment of the work of Penrose and MacCallum. 2 
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We consider separately the two cases pap a> 0 and 
paPa=O. 

A. paPa> 0 

In this case the angular momentum can be decom
posed into orbital and spin parts 

Mab=Lab+S"b, (2) 

the orbital part being given by 

L ab ==2A[apb l(p"pcrt, (3) 

with 

and the spin part by 

S"b = TJabcaScPa(P"Perl 

with 

(4) 

(5) 

(6) 

with TJabctl the totally skew tensor defined by TJ0123 
==(_g)1/2, g=detgab • Sa which is referred to as the spin 
vector is unchanged by (1). 

From (1) and (4) one sees immediately that 

(7) 

is the equation for the center of mass, i. e., around the 
new origin one has L lab = 2A I[ap 1 = O. The general solu
tion for the center of mass line is thus 

x a ==Aa(pbpb)-l + IIPa (8) 

with A an arbitrary parameter along the world line. 

B. paPa = 0 

This case is slightly more complicated than case A. 
We assume that 

~Pb=lpa 

from which it follows that 
* S"= Mabpb = spa. 

(9) 

(10) 

This assumption is necessary in the theory of represen
tations of the Poincare group in order to avoid the con
tinuous spin representations. From our point of view it 
is necessary in order to find points about which 
M'abpb==O. 

From (1) we then have 

O=M,abpb==M"bPb +pa~Pb (11) 

Copyright © 1974 American Institute of Physics 1113 
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or 

X"Pa=-l (12) 

as the condition for the displacement to the center of 
mass. As (12) is the equation for a null hypersurface, 
one obtains the result for null momentum that the center 
of mass is a three-dimensional region. 

In the special case when s = 0 (or sa = 0) one can show 
that 

M"b = 2A lapl> 1 

for some vector A a
• Then from (1) 

0= M 'ab = 2A lap b l_ 2Xlapl>l 

and one does obtain a unique center of mass line 

X"=Aa+Apa. 

(13) 

(14) 

However when s '" 0 there is no (real) means of local
izing the null hypersurface (12) to a center of mass line. 

III. COMPLEX CENTER OF MASS 

Again we consider the two cases paPa> 0 and paPa = 0 
separately. 

A.papa>o 

If we define the self-dual, angular momentum tensor 
* W ab = Mab + iMab

, (15) 

then from (1) we have 

* Wlab = W ab _ 2Xlapl>l_ 2ixlapbl. 

Now let X a = za be complex and demand that 

WlabPb = 0= WabPb _ zapbpb + paZbP
b 

or 

za= WabPb(P"Pe)"l + Apa 

as the equation for the complex center of mass. 

(16) 

(17) 

(18) 

Using the notation of (2)-(6), one easily checks that 

za= (Aa +iSa)(pbPb)-l + Apa. (19) 

If (19) is substituted into (16), then 

wlab=o, (20) 

i. e., around the complex world line the total angular 
momentum vanishes. 

B. paPa = 0 

There is first the trivial case when pa is a degenerate 
(double) eigenvector of Mab to be considered. One then 
has that 

(21) 

and 

za=xa=Aa + Apa (22) 

gives the center of mass line. This is the s = 0 case of 
Sec. II. 

In the nondegenerate case M ab has two real null eigen
vectors pa and N°; N a is normalized by 
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N"Pa= 1. 

One can show3 that Mab has the canonical form 

Mab = 21p laffl_ 2spla}t>l 

and therefore 

* W ab = 2¢(pla~l+iplaN'l), ¢=l +is. 

It immediately follows from 

Wlab~ 0= W ab _ 2Z lap bl_ 2iZ laPl 

that 

za= _ ¢Na + Apa + vMa, 

(23) 

(24) 

(25) 

(26) 

(27) 

where v and A are arbitrary and Ma is a complex null 
eigenvector of ~ with eigenvalue is. Thus we do not 
obtain a complex null line but instead a complex plane 
which is totally null, i. e., AZa fl.Z a = 0 with fl.Za = pa fl.A 
+ Mafl.v 

IV. TWISTORS 

If (27) is written in spinor form, i. eo, 

ZAAI ~ _ ¢NAAI + ArrrA l + vLArrA 1 with L A7fA = 1 

or 

ZAAI = _ ¢NAA' + ~ArrAl with ~A = Ar + VL A, 

(28) 

then one can immediately define the associated twistor2 

z" = (IJ-A, 1TA/) 

with 

IJ-A = _ i¢NAA'1TA,. 

From the normalization NaPa = 1, one also has 

IJ- A7iA = - i¢ 

and thus the twistor scalar product is 

Z" Z" = IJ- A7fA + /iAI1TAI = i(Ci) - ¢) = 2s, 

(29) 

(30) 

(31) 

(32) 

A twistor can thus be thought of as the complex center 
of mass line "null plane" of a null momentum particle 
of spin s. 

V. ELECTRIC AND MAGNETIC DIPOLE TENSOR 

If the classical particle (with pa = 0, pa = me Y", 
Y" Va = 1) has a charge e '" 0 and a magnetic moment, 
the dipole tensor Dab can be defined by 

Dab = wlayb 1 + 7J abed Me Vd, (33) 

where Da and Ma are respectively the electric and mag
netic dipole moments with Da Va = M a Va = O. (Alternative
ly, one could begin with a skew tensor Dab and define 

* Da=DabVb and Ma = Dab Vb' ) Under a shift in origin, X a, 
(since D'a =Da _ eX a) it foilows that 

(34) 

and an analogy is established between Dab and M"b. By 
repeating the arguments of Secs. II and III the (real) 
center of charge line and complex center of charge line 
can be defined by 

(35) 
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and 

(36) 

A further curiosity arises if Dab is proportional to 
Mob, i. e., if the complex center of mass line coincides 
with the complex center of charge line. It then follows 
from (19) and (36) that 

or that the real centers of mass and charge coincide, 
i.e., e-1D'=A'(.pbpb)-1, and moreover 

M" = (e/me)(S" /me). 

In terms of usual dimensions, Sa/me corresponds to 
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(37) 

(38) 

the spin-angular momentum vector. We thus see, from 
(38), that one obtains the Dirac value of the gyromagne
tic ratio (e/me) when the complex center of charge and 
mass lines coincide. 4 

*Supported by the National Science Foundation, Grant No. GP-
35773. 
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A new method for constructing the relativistic Grad polynomials employed in relativistic kinetic 
theory is presented. It simplifies considerably the labor involved in their construction compared to 
previous methods and at the same time exhibits orthogonality properties between the components of 
the polynomials that were not apparent from the forms obtained by these earlier methods. 

INTRODUCTION 

In attempting to obtain approximate solutions of the 
relativistic BoltZmann equation, a number of authors1 
have made use of a family of orthogonal polynomials 
defined on 4-momentum space analogous to the 
Hermite-Grad polynomials2 employed in constructing 
approximate solutions to the classical Boltzmann 
equation. In particular, these polynomials, like their 
classical counterparts, have been used most extensively 
in conjunction with the Grad moment method to calculate 
transport coefficients for a relativistic gas. However, 
although it has been shown3 that these polynomials re
duce to the Hermite-Grad polynomials in the classical 
limit, they have not been shown to possess, in their 
relativistic form, a number of properties possessed by 
the Hermite-Grad polynomials. Furthermore, while 
there exists a well-defined algorithm for their con
struction, it is extremely tedious to apply in practice, 
and hence explicit expressions for only the first few 
polynomials appear in the literature. In this paper we 
will give an alternate prescription for constructing these 
polynomials which is much easier to apply and which, 
at the same time, leads to closed form expressions for 
the polynomials that are completely analogous to those 
for the Hermite-Grad polynomials. 

1. COVARIANT SPHERICAL HARMONICS 

As a first step in our construction of a family of 
orthogonal polynomials of the 4-momentum P"' of a 
particle of mass m, we introduce a family of poly
nomials that are the covariant form of the generalized 
spherical functions of three dimensions. For this pur
pose we assume that there exists a time like unit vector 
field u"'(x) in the region of space-time occupied by a 
gas of particles of mass m, which we take to be the 
local 4-velocity of the gas. With its help we decompose 
P"' at a point according to 

P"'=EuU+pl U, (1. 1) 

where IIJ. is a unit spacelike vector orthogonal to uu: 

(1. 2) 

(Indices are raised and lowered with the space-time 
metric g",", which we take to have a Signature + 2.) 
Since u"'uIJ. = 1 and PIJ.p" =m2, it follows that 

E=uUP"' (1. 3) 

and 

p=(E2_m2)1/2. (1. 4) 

Also 

1" = (l/p) h" "P", (1.5) 
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where 

(1. 6) 

is the projection operator onto the hyperplane ortho~onal 
to u"'. 

The desired polynomials are now constructed with the 
help of the generating function 1/1, where 
1=(h,,)"1")1/2. We first define the quantities 

X"l"Z'" Un ",.i., 1'+1 an 1 
n, 01 01 ... az T . 

eLl "'-2 IJ.. n 

(1. 7) 

The spherical function Y U 1 ... "n is then the value of 
X"1'" Un on the unit sphere Z = 1: 

(1.8) 

From its definition, Y"l"'"'n is seen to be a polynomial 
of the components Z" of order n. More specifically it. 
follows from Eqs. (1. 7) and (1. 8) that 

• 
Y"1"'U2n= L Ae Z("1 ... l"2mh"'2m+1u2m+2 ••• hU2.-1 u2.>, 

m::::O mn 

(1. 9a) 

where 

LIe -(_1).-m _1_ (2n+ 2m)! , 
""'n- 22n (2m)!(n+m)!(n-m)! 

n 
Y U1'" U2n+1= L A~n l("'1 ... 1u2m.1h"2m+2 IJ.Z m +3 ... hU2n"2n.1), 

m=O 

(1. 9b) 

where 

Ae (1)n-m.1 (2n+2m)! 
mn = - 22n (2m + l)!(n+m)!(n-m)! ' 

and where round brackets around a set of indices in
dicates the symmetrization of the terms enclosed, e. g. , 
A (IJ.B"C P) = (1/3!) (A" B" CP +A" BPC" +A" BPC" +A" BPCu 
+ AP Bu C" + AP B" CU). Thus we have, for example, 

Y=l, Y"'=lu, Y""=t(31 Ul"-h UV ), 

Yu VP = t[15 1 "'ZVl P _ 3 (hU"ZP + hP"' 1"+ hVP ZU)], etc. 

The above expressions for A~n and A~n are most easily 
obtained by noting that, in the frame in which 
u"'=(l,O,O,O), Y U1"'u n !",1;Uz;"';"n;3=Pn, whereP.is 
the nth order Legendre polynomial, and by using the 
expansion for Pn(z) in powers of z. 

We see from its definition that YU1'''U n is completely 
symmetric with respect to interchange of its indices. 
It also follows from Eqs. (1. 2) and (1. 3) that 

(1. 10) 

Copyright © 1974 American I nstitute of Physics 1116 
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There are, therefore, 2n + 1 independent polynomials of 
order n corresponding to the 2n + 1 spherical harmonics 
of nth order. Finally, from the definition of X"l''''', 
one can show that 

(1. 11) 

where \72 =" - h"V 02 10l"oZV. It therefore follows that 

f f Y"l"'''"yvl'''vm dO=O, ni'm, (1. 12) 
s 

where the integration is over the unit sphere l2 = 1. (The 
integral appearing here will be defined more precisely 
in the next section. ) The polynomials of different order 
are thus seen to be orthogonal to each other on the unit 
sphere. 

The properties of Y"l'" '" lead to the conclusion that 
it is a linear combination of spherical harmonics 
Y;:'(8, cp) =P;:'(cos8) exp(imcp), where P;:'(x) is an as
sociated Legandre polynomial. To determine this linear 
combination, we introduce an orthogonal tetrad 
nr (i = 1, 2, 3) orthogonal to u" so that 

(1. 13) 

Then l" can be expressed in terms of n't and the angles 
8 and cp as 

(1.14) 

We next define the complex unit vectors n~ and n~ by 

n~ = 2-1/2 (nl" ±in2") 

to obtain the relations 

n_'""l .•• n_t.Lln+U I +1 ••• n/'21+mn3t.L21+m+l .... n3 IL " Y /L .'0lJ. 

1 " 

=(_1_) m+21 (n-m)! Y m(8 ,J,). (1.15) 
V2 n! "' 'f' 

These relations are most easily verified by trans
forming to the local rest frame where u" = (1,0,0,0), 
taking n't = o~ and making use of the known4 relations 
between y"m(8, cp) and the derivatives of l/r. It then 
follows that 

YlLIO.oU n == t ~n+(j.J.l ••• n+lLl 
m-= -n 1 

( 
1 '\ 2/+m 

X(_I)k ..f2! 

where 

k=l, m 3 0, 

=l+m, m<O, 

and where the sum on 1 is over all positive integer 
values of 1 that satisfy the conditions 

1 + m '" 0, 21 + m "" n. 

(1. 16) 

Finally we will need the expansion of products of the 
l's in terms of the Y's. They are given by 

" 1"1 ... lIL" = z::: Be Y< IL 1"'''2mh''2m+1''2m+2 ... h IL 2"-1"2") 
m=O mn 

(1. 17a) 
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l"l ... l"2 ... 1 = z::: B::', Y<"1"'''2m+l h"2m+2 "2m+3'" h"2, "2"1), 
m=O 

where 

BO _ (2m + 1) 2n (2n - 2) .. • (2n - 2m + 2) 
m,- (2n+3)(2n+5) ... (2n+2m+l) 

(1. 17b) 

Again, the above expressions for B:'n and B~n are most 
easily derived in the frame in which u" = (1,0,0,0) using 
the expansion of z" in terms of Pm' 

2. REAL TIVISTIC GRAD POLYNOMIALS 

The relativistic generalization of the Hermite-Grad 
polynomials as developed by MarIe and Anderson and 
stewart are a set of polynomials HU1'" u", n 
=0,1,2, . " , 0() with the following two defining 
properties: 

(a) H"l"·"'=P"l .. ' p""+terms of lower order in the 
p's, 

(2.1) 

(2.2) 

where w(x,p) is a weight function to be specified, 

rr=..J-g 0+(P"pU._m2)d 4p (2.3) 

is the relativistic volume element in momentum space, 
and 0, is the positive-frequency I) function defined by 

(2.4) 

In addition to these properties H"l'" Ii" can be shown to 
be completely symmetric under interchange of its 
indicies and to satisfy 

(2.5) 

The weight function W appearing in Eq. (2.2) is re
quired to vanish sufficiently rapidly as t u.P" - 0() for any 
time like vector t" that all of the integrals used to con
struct the H' s exist but is otherwise arbitrary. In 
practice w is usually taken to be a local equilibrium 
distribution for the gas that is isotropic about its local 
4-velocity u", that is, a function only of position and 
E = u "p". In what follows we shall conSider only such 
isotropic weight functions. 

MarIe has shown that the two properties (a) and (b) 
are sufficient to determine completely and uniquely the 
full set of H's. The method used to date to construct the 
H's amounts to essentially a Schmidt orthogonalization 
process and although in principle it is possible to 
proceed in this fashion to obtain the components of 
HILl'''''" for arbitrary large n, the fact that the H's are 
functions of four variables makes the labor involved 
prohibitive for all but the first few polynomials. In this 
section we shall give a new method of constructing 
these polynomials in terms of their expansions in terms 
of the spherical functions Y"l'''''n developed in the 
preceeding section that greatly reduces the labor in
volved in their construction and at the same time ex
hibits the orthogonality properties of polynomials of 
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the /lame order which is lacking in the previous 
construction. 

It is clear that if the weight function appearing in 
Eq. (2.2) is a function only of E and position, H"l"'''" 
will be a linear combination of nth order and lower 
spherical polynomials with coefficients that are also 
only functions of E and position. The problem then is to 
determine these coefficients in such a way that Eqs. 
(2.1) and (2.2) are satisfied. The uniqueness of the 
polynomials satisfying these conditions will then assure 
that these coefficients are unique. 

We begin our construction by noting that any product 
of p's can be written as a unique linear combination of 
spherical polynomials. The coefficients are determined 
by substituting for each p" its decomposition (1. 1) and 
then expressing the various products l's in terms of Y's 
by means of Eqs. (1. 17). In this way we obtain 

" p" ~ E2n-2mp201 (2n)! pl... 2n= L.; (2 ) I (2 _ 2 ) I 01=0 m. n m. 

and 

m 
L: B:mY(" 1'" "2P h1'2P+1 "2P+2 ... h"2m-1 "2". 
p=o U"201+1 ... U"2"l 

+ ~ E2n-2m-1 p2m+1 (2n)! 
m=O (2m + 1)!(2n - 2m -1)! 

m 

X L: B~m y( "I'" "2P+1 h"2P+2"2P+3 
P=O 

P" I ., .pu2n+l = t E2n-2m+l p2m (2n + 1)! 
m=O (2m)!(2n-2m+1)! 

m 

x6 Be y(Ul"'''2P h"2P+1 u 2P+2 
p=o Pm 

(2.6a) 

+ t E 2n-2m p2m+l (2n + I)! 
01=0 (2m + 1) !(2n - 2m)! 

m 
X L: B~m Y"l'" "2P+1 hU 2P+2"2P+3 

p=o 

(2. 6b) 

We next replace each factor of p multiplying a Y in the 
above sums in excess of the order of this Y by its 
value (E2 - m2)1/2. It will be seen that in all cases the 
number of such factors is even. This fact allows us to 
rewrite the above equations in the form 

n-l 
+ 6 E2n-2.-1 p2.+1 T~: ... "2" + terms in m 

q=O 

(2. 7a) 

and 
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(2.7b) 

where 

T"l'" "2" _ t (2n)! 
qtJ - r=. (2r)! (2n- 2r)1 

"1"'''2n "-1 (2n)! 
T.o = ~ (2"Y}!(2n- 2r-l)1 

S"1"'''2n+I_"t (2n+1)! 
•• - ro. (2r)!(2n- 2r+ 1)! 

and 

s.";-" "2"+1 = t. (2n + I)! 
r=. (2r+l)!(2n-2r)! 

x B~r y( "1'" "20+1 h"2.+2 "2.+3 ••• h"2r"2r+l u"2r+2 

•• • UlJ.211+1) • 

In these equations "terms in m" indicate terms which 
contain at least one power of m 2 and hence at least two 
powers of p less than does the product of the p's on the 
left side of the equation in which they appear. If now we 
contract both sides of one of the above equations over 
any two free indices, we get a factor of m2 times two 
powers of P less than before the contraction on the left 
side. It follows therefore that the contraction of any 
term in the sums appearing in Eqs. (2.7) over any two 
indices must vanish since these terms contain no 
factors of m. 

We now assert that the expression for H"l'" "n is equal 
to the sum of the terms in the expression for p"l ... p"" 
which contain no factors of m with each power Em in the 
sum replaced by a polynomial in E of the form Em + am_1 
E",-l + ... + ao' The resulting expression for HUI'" "n 
clearly satisfies Eqs. (2.1) and (2.5). Furthermore, 
there are just enough coefficients a~ in this expression 
to satisfy Eqs. (2.2). There are in fact n(n + 1)/2 such 
coefficients in the expression for H"1'" Un and, because 
of the orthogonality conditions (1. 12) which the Y's 
satisfy, the orthogonality conditions (2.2) which must be 
satisfied by H" l"'''n reduce to this same number of 
linear equations in the a's. 

In order to find the equations for the a's, we must 
reexpress the volume element 11 given by Eq. (2.3) in 
terms of the variables E, p, and l" or E, p, B, and ¢ 
in order to make use of the orthogonality of spherical 
functions of different orders. It is not difficult to see 
that 
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(2.8) 

where dn = sin BdBd</> when the Y's are expressed as 
functions of B and <I> by means of Eqs. (1. 16) or dn 
=1i(u,.z")1i.W-l)d 41 when they are expressed as func
tions of the l" by means of Eqs. (1. 9). The equations 
for the a's will then be seen to involve the integrals 

Ikn=I I Enpl<uJ(E)o.(E2_p2_m2)p2dEdP 

=m"+k+2 j" cosh"xsinhk+2x w(m coshx)dx. (2.9) 
o 

If w is a local Maxwellian distribution exp(a - (3u"P"), 
these integrals can all be expressed in terms of 
modified Bessel functions of the second kind. 

Consider now the expression for H". From Eq. 
(2. 7b) with n = 0 we obtain, according to our above 
prescription, 

HI' = (E - a) U U + Pyu. (2.10) 

The second term is already orthogonal to H =:: 1 because 
of the orthogonality of the Y's. The first term will also 
be orthogonal to H provided that 

(2. 11) 

The expression for H"v is gotten from the sum in Eq. 
(2. 7a) with n == 1 and is of the form 

+ 1p2YuV 

and will be orthogonal to H and HI' if 

102 -101 a l - 100a2 =0, 

103 -lo2al-lo1a2=0, 

121 -120 b1 O. 

(2.12) 

(2. 13) 

More generally, if we designate by <I>"k(E) the polynomial 
in E which is a coefficient of Pl'" vk in the expansion for 
HUI''''' n , we have 

12k •O 12k.l' ., 12k •n - k 

1 f2k'l 12k ,2 ... 12kt n-k+l 

<l>nk=C .................. ~ ........... , (2. 14) 
nk 

12k,n-k-l 12k, .. -k" • 12k,2n-2k-l 

1 E E n-k 

where G nk is the minor of E n-
k in the determinant above. 
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The polynomials so obtained are seen to form families 
of orthogonal polynomials analogous to the aSSOCiated 
Laguerre polynomials and satisfying the orthogonality 
conditions 

L"" w(E)(E2 - m2) (2k.}) /2 <l>nk(E) <l>mk(E) dE =0, n* n. 

(2. 15) 

Finally then we have the desired expressions for the 
H's: 

(2.16) 

and 
n 
"" n. SUI" • "2 ... 1 
L.J o/2n+l,2 q q6 .=0 

n u. HOlL + "" n. S 1 2 •• 1 
~ '+'2"+1 ,2q+1 qo , (2. 17) 

where the T's and the S's are given by the expressions 
following Eq. (2.7b). 

Unfortunately the polynomials <l>nk(E) introduced above 
are not equivalent to any of the classical orthogonal 
polynomials5 and hence do not satisfy self-adjoint 
second-order differential equations nor do generalized 
Rodrigues' formulae exist for them. Nevertheless, Eq. 
(2.15) allows us to construct anyone <I> without a 
knowledge of the others and together with Eqs. (2.16) 
and (2.17) yield closed form expressions for the 
relativistic Hermite-Grad polynomials. 
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An axiomatic foundation is provided for the theory of spinor calculus on the space-time manifold of 
general relativity. The methods, which deal directly with concepts in a coordinate free manner, allow 
not only elegant and compact statements of definitions and formulas but also have served as 
powerful analytical tools for the derivation of some interesting new results and for the unification 
and clarification of the previous work of other authors. The most general spinor connections are 
defined and related to the standard spinor connection (the unique spinor connection which is 
compatible with the spinor inner product and generates the Riemann 4-vector connection). By means 
of the intrinsic formalism presented here an interpretation is given to the spinor theory of Infeld and 
van der Waerden. The most general spinor curvature tensors are derived, and two alternate 
expressions result from two bispinor connections which satisfy the desirable requirement of producing 
the standard 4-vector connection by two different prescriptions. Another application of the techniques 
developed here results in an interesting expression for the spinor connection coefficients in terms of 
Dirac gamma matrices for four component spinors and arbitrary spinor connections which is' much 
simpler and more general than others given in the literature. 

I. INTRODUCTION 

Modern differential geometry has provided powerful 
tools for tensor analysis which are based on abstract 
methods dealing directly with concepts in a coordinate 
free manner. The advanced level of development of the 
subject can be seen by consulting, for example, Hicks. 1 

In particular, two areas elegantly treated by modern 
methods are: (1) algebra of tensors including the defini
tion of tensors and algebraic operations on tensors, (2) 
calculus of tensors including the linear connection and 
covariant differentiation of tensors. 

The old method of defining tensors in terms of the 
transformation properties of its components is re
placed in a modern development by a direct definition 
as multilinear functionals. Transformation properties 
of components of a tensor is not a part of the definition 
of a tensor but is easily proved as a consequence of the 
definition. This conceptual approach to the definition of 
tensors as well as algebraic operations on tensors is 
simple and direct. 

The old method of defining a linear connection in 
terms of components is replaced in a modern develop
ment by a direct method which first treats vectors 
axiomatically as derivation operators and then defines 
a linear connection as a map that associates with each 
derivation operator a covariant differentiation operator 
on vector fields such that a certain set of basic axioms 
is satisfied. The operation of covariant differentiation 
of tensor fields is next defined very simply. The dis
cussion is coordinate free, but the expression of the 
results in terms of coordinates is easily derived. 

Although the theory of spinors has been discussed ex
tenSively in the literature, 2 it has not reached the high 
level of modern development as the theory of tensors. 
As a first step in the development of an intrinsic spinor 
formalism, the algebra of two and four component 
spinors from an axiomatic viewpoint has been discussed 
in a previous paper3 (hereafter referred to as I). On 
the other hand, the calculus of spinors has not been 
given an axiomatic foundation as has been done for ten-
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sor calculus in works of modern differential geometry. 
The present paper is intended to provide this founda
tion in the case of spinor calculus on the space-time 
manifold of general relativity. The formalism devel
oped here has greatly aided in the derivation of some 
useful new results which are included in the paper .. Also 
it unifies and clarifies the previous work of others on 
spinor calculus. 

The presentation is divided into foul' parts. It begins 
with a discussion in Sec. II of the various spinor spaces 
in which the quantities used later in the paper are locat
ed. This section also serves the purpose of making the 
material in the remaining sections more self contained. 

In Sec. III we consider connections and curvature in 
the general relativity manifold. It is intended as a 
summary of methods and results needed for the rest of 
the paper. 

Section IV deals with spinor connections. First the 
most general connections are introduced for two- and 
four-component spinors, and their relation to the stan
dard spinor connection (the unique spinor connection 
which is compatible with the spinor inner product and 
generates the standard four-vector connection) is estab
lished. By introducing separately the requirements of 
compatibility with the spinor inner product and of gen
erating the standard four-vector connection, four 
theorems are proved to permit the discussion of the 
important cases which comprise the various spinor con
nections conSidered in the literature. Also the general 
spinor coefficients of connection are derived and special 
cases are conSidered. 

The spinor theory of Infeld and van der Waerden4 is 
interpreted from the point of view of our axiomatic ap
proach, and the differences between the two formalisms 
are discussed. Bispinor connections are also discussed 
intrinsically, and an expression for the bispinor con
nection coeffiCients in terms of Dirac gamma matrices 
is derived using arbitrary spinor bases. To conclude 
this section, the Fock-Ivanenko coefficients5 are ob
tained by a further particularization of these results. 

Copyright © 1974 American Institute of Physics 1120 
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Finally in Sec. V, we discuss spinor and bispinor 
curvature tensors, and show how they are related to the 
Riemann curvature tensor in the special cases of the 
spinor connections discussed in the previous section. 
These results are compared then with those given in the 
literature. 6 

II. SPINOR SPACES AND SPINOR ALGEBRA 

In order to make the discussion of the following sec
tions more self-contained, we review here spinors and 
spinor-tensors from the abstract point of view intro
duced in I. Although some of the material contained 
here has already been discussed in I, it is felt that a 
more complete and systematic presentation is desira
ble, particularly since the intrinsic notation that we 
employ, with its natural advantages over the standard 
component notation, is not commonly utilized. 

At the end of this section we give a summary of the 
spinor and tensor spaces discussed in the following, as 
well as the special intrinsic notation required for later 
sections. 

A. Spinor spaces S 2 and S 2 

52 is a two-dimensional vector space over the field 
C of complex numbers with an antisymmetric inner 
product and with a conjugate spinor space 52 associated 
with it. 

The inner product in 52 associates a complex number 
U. v with every pair of spinors u and v in 52 in such a 
way that the following axioms are satisfied: 

(a) u ... v = -v ... u (antisymmetry), 

(b) (au + {3W) ... v = a(u ... v) + fj(W.ll.v) 

u ... (av + {3W) = a(u ... v) + ,B(uw) 
(linearity) , 

(c) u ... v = 0 for fixed u and all v implies u = 0 
(nondegeneracy), 

where u,v,wE52 and a,fjEC. 

(1 ) 

The conjugate spinor space 52 is also a two-dimen
sional vector space over the field of complex numbers 
with an inner product satisfying axioms (a), (b), (c). 
The spaces 52 and 52 aIe relatedl1y a map (conjugation 
operation) u E 52 - U E 52 and WE 5 2- iii E 52 such that 

(d) au=au, 

(e) U+V=u +v, 

(f) UAV = U ... V, 

(g) u=u 

(2) 

for all u,vE52 and £lEe, 

where a is the ordinary complex conjugate of the com
plex number (II. It follows that the properties (d), (e), 
(f), (g) are also satisfied for u, v in ~. We shall usual
ly write elements of 52 with a bar, e. g., U, expressing 
it as the conjugate of an element u in 52. 

A basis hI' h2 of 52 is formed by any two independent 
spinors in 52. The reciprocal basis hI, h2 is defined to 
satisfy 

ha.ll.hb = o~. 
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The relations between a spinor U in 52 to its contra
variant components u1

, u2
, and its covariant components 

U1> u2 , are given in I [Eqs. (5) and (6)]. 

The conjugate hI' h2 of any basis for 52 is a basis in 1. 
The corresponding reciprocal basis is hI, "fi2. 

B. Spinor space 54 

The direct sum spinor space 54=52EB52 consists of 
all pairs u,vof spinors with uE52' VE52' which we 
write formally as U + v. In the special cases where U = 0 
or v= 0 we write v== 0 + v and u==u + O. Addition and 
multiplication by complex numbers are defined by the 
equations 

(u + V) + (y + Z) = (u + y) + (v + Z), 

a(u + V) = au + av. 

The inner product in 54 is defined by the equation 

(u +v) ... (y + z) = uy +v ... z. 

(3) 

(4) 

Note that U.II.I"=O and v ... y=O. It follows that the prop
erties (a), (b), (c) for spinors in 52 are satisfied if 
u, v, ware replaced by arbitrary spinors in 54. The 
conjugate of </J = u + v in 54 is defined as 

(5) 

and is also an element of 54. This operation in 54 has 
the properties (d), (e), (f), (g) if u, v are replaced by 
arbitrary spinors in 54' We shall regard 52 and the sub
space 52 E!l {O} of 54 as being identical and shall write 
52 == 5 2E!l {oJ-; likewise we write .3': == {O}EB.3':. 

Given any basis 11> 12' 13' 14' in 54' the reciprocal basis 
II, 12

, 13
, 14 is defined by the equation 

(6) 

where a,{3=l, .. 0 ,4. We have the following relations 
for a spinor 1/!E 54' its contravariant and covariant com
ponents </J'" and 1/!", respectively: 

</J= </J"'1", = 1/!",l"', 

1/!"'=l"'.II.1/!, 

1/!",=</J ... l"" 

and for any two spinors 1/! and l: in 54: 

</J.II.l: = 1/!,,l:'" = - </JOtl:Ot 

C. Spinor-tensor spaces 

(7) 

(8) 

A second order spinor-tensor T is defined to be a 
complex bilinear functional T(~, 1) for ~,1)E 54' i. e., it 
has the properties 

T(aX + {3~, 1) =aT(X, 1) + (3T(~, 1), 

(9) 
T(~, aX + {31) = aT(~, X) + {3T(~, 1) 

for all X, ~,1) r= 54 and a, (3 EC. We shall use the notation 
T for the spinor-tensor, T(~, 1))F=:C for the value it as
sociates with the pair ~,1)!= 54' and 54(X) 54 for the space 
of all second-order spinor-tensors. The sum R=S+T 
for S, T E 54 (X) 54 is an element of 5418154 defined by the 
equation 

(10) 
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for every ~, 7J r= 54' For a r= C and T r-= 54 054, the product 
p'; aT is an element of 54054 defined by the equation 

P(~, 7J) =aT(~, 7J) 

for every ~,7J E 54' 

(11) 

For an arbitrary pair of spinors I/!, I; E 54' its tensor 
product T = I/! 0 I; E 54 054 is defined by the equation 

(12) 

for all ~,7J r= 54' We shall use the abbreviated notation 
I/!I; for I/! 0 1;. 

The subspace 1052 of 54054 is the set of all ele
ments which can be expressed as a linear combination 
of tensors of the form iiv with it r-= 1 and v E 52' The sub
spaces 52 0~, 5 2052, and ~ 0 ~ can be defined in a 
similar way. 

The space f:T of rth order spinor-tensors is the set 
of all complex functionals of r arguments in 54 which is 
linear in each argument. Addition of rth order tensors, 
multiplication of rth order tensors by complex numbers, 
the tensor product of r spinors in 54 can be defined by a 
straightforward generalization of the definitions we have 
already given. 

Given A r= 54054 and ~ E 54 we define A. ~ and ~AA in 
the special case where A = I/!I; as 

(I/!I;). ~ = (I;.~)I/!, 
(13) 

and since each A is a linear combination of elements of 
the form I/!I;, the assumption of linearity in A, 

(aA + .BB).~= a (A.l;) + J3(B.1;), 

1;.(aA+.BB)=a(~.A) +J3(l;.B), 

is sufficient to extend the definition to include all A. 

(14) 

The operations A. (scalar of A), A.B (pE,oduct of A 
and B), AtB (double product of A and B), A=AT 
(transpose of A), and A (complex conjugate of A) for 
A, B r= 54 054 are defined in the special cases where 
A = I/!I; and B = X 1;; the assumption of linearity in A and 
B extends the definitions to arbitrary A and B in all the 
above operations except A in which case antilinearity is 
assumed: 

(1/!1;)s=I/!·I;, 

(1/!1;).(x1;) = (l;.x)(I/!~), 
(1/!1;)t(X~) = (I/!.x)( 1;.1;), 

(I/!I;)T = I;I/!, 
(I/!I;) = ~t. 

We also define 

A+=A (Hermitian conjugate of A), 

A0 B = -A:B (inner product of A and B). 

The unit spinor tensor 1 = lc,l" = -lOll", in 54 (Xl 54 is 
defined to satisfy 

(15) 

(16) 

I.I/!=I/!.I=I/! (17) 
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for all spinors I/! in 54' Moreover, we also have 

1=12 +~ 
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(18) 

where 12 and 12 are the unit spinor tensors in 52 (Xl 52 and 
101, respectively, which we introduced in I [Eqs. 
(22), (23), (24), (25)]. 

Bases and components of spinor tensors in 52052 are 
discussed in I [Eqs. (19), (20)]. The generalization of 
these equations to 54054 and various subspaces such as 
~ 052, etc., is self-evident. 

We define the space 1114 =~ 0 H 52 to be the set of all 
Hermitian tensors in 1052, Each element in 1114 is a 
real linear combination of tensors of the form Uu. The 
space 1114 is closed under the operations of addition and 
multiplication by real numbers; it also follows thatl114 
is a vector space over the reals, and has dimension 
four. The inner product A\olB for A,B inl114 is real, 
symmetric, bilinear, and nondegenerate. Taking the 
basis Eo, Eu E 2, E3 given by Eq. (52) in 1,7 

Eo = (2)-1/2(~~ + h2h2) , 

El = - (2)-1/2(h1h2 + h2h1) , 

E2 = - i(2)-1/2(~~ - h2~)' 

E3 = - (2)"1/2(~~ - h2h2) , 

with ~,h2 chosen such that ~ .h2 = 1, one can easily 
show that 

gu =g22 =g33 = - goo = 1, 

g "V = 0 for J.1. * II, 
where 

(19) 

Therefore the vector space fr 4 with the inner product 
A (i)B is a Minkowski space. We shall disregard 
isomophisms, and regard this space as identical to the 
space of four-vectors used in special relativity theory. 
We shall also sometimes use the notation a in place of 
A and a °b in place of A (o)B. 

With the above basis E", the reciprocal basis E" de
fined by the relation E" (0) Ev = 6~ becomes EO = - Eo. 
Ek=Ek for k=1,2,3. 

Elements of the space C1114= 1052 can be expressed 
in the form Z=A + iB with A,B r= S2(XlH5 2' thus S20 52 
is the space of complex four-vectors. The Hermitian 
conjugate of Z is 

Z+ =A+ - iB+ =A - iB. 

Thus Hermitian conjugation is the appropriate operation 
in this space which corresponds to the usual concept of 
complex conjugation of complex four-vectors. 

Elements A in 1114 and also in CI11 4 can be expressed in 
terms of the basis E" of 1114 or the reciprocal basis E" 
as 

A=A"E" =A"E", (20) 

and it follows that 

A"=E"(o)A, A,,=E,,(o)A. (21) 

The space/h4=520H 52 is the set of all Hermitian 
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TABLE 1. Spinor and tensor spaces. 

Space 

54 =5zEB 52 

54<s-54 

52@52 

52@52 

S2@52 

52@Sz 

iYI4=52°H52 

lfi4=52@H.52 

iYl s =/J'J 4 EBs 1h4 
i/J'J S 

C/Yi4=~052 

Clfi4=5z<S-Sz 
/Yi 40iY) 4 

Notation and expressions 
of elements of space 

U,V,s,t 
U=u 

1);=U+v, 
ij;=v+u, 

S = 1);1; + • ", T = ~1J + ... 
S = 1);1 + ••• , S' = ~ 
ST'" S= /;1/!+'" 

M=uv+''', N 

Y=UV+"', Z 

Y=VU+" " 
Y=uv+" " 

a=A=A+=uu+'" 
= st+ ts+'" 

b=B,c,d 

A =A =uu+" ·=tS+ sr+'" 

As As As = UN'2)(A+A} 

A[=A[ -A[={2i(A+A) 

y=Y=a+ib=A+iB 
z =Z, Y+=A - iB 

Y=A+iB 

W =ab+"', V=cd+'" 

tensors in 52 @52 • Each element offti4 is a real linear 
combination of tensors of the form uii. The one-to-one 
map A- A from/J'J4 onto;1/4 preserves real linear com
llinations and inner products. i. e., A (0) B = A (.) ii: thus 
ft14 is isomorphic to to ft14• Similarly the space Cft1 4 

= 5 2 0 S 2 is iso!?orphic to Cft14~.5 2,.0 52' Also note that 
if A E ft14' then A Em 4 because A =A. 

The spaceft1s =ft14El'>sfti4=CSz0H52)El1-t.(520H~) is 
the set o.!,all symmetric tensors inft1 4 eft1 4 =Cfz0H 52) 

@ (52 ° H 52)' Each element in /J'Js is a real linear com
bination of tensors of the form iiu +uil. The one-to-one 
map A - As= 2-1/2(A + A) from ft14 onto ft1s preserves 
real linear combinations and inner products, i. e. , 
A(.)B=As <ilBsi..,thus_ft1s is isomorp~c to ft14 • Similarly 
Cft1s =Cft14~S Cft14 =(52 052)A's (52 °52) is isomorphic to 
Cft14 = ~ 052, Also note that As =As =As for AsE ft1 s' 

The space ift1s is the set of all elements of the form 
iAs with A~ in ft1s. The one-to-one map A - A[ =2iAs 
= 21/2i(A + A) from ft14 onto ift1s preserves real linear 
combinations, but inner products are related as AI (i\BI 
=-4A<ilB. We also have the useful relationS 

(22) 

The operators 

r" =Ef =2iE~=21/2i(E" +E") (23) 
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Inner product 
and properties 

U.V=-V.U 

U.v=-v.u 
ii.v=u .... v 

1);./; = - 1;.1);=u .... s +v ..... f 
~ .... I=1); .... !; 

SGT=- [(1);.WI;~1J)+···J 
=TGS=SGT 

8GT=SGT 

MGN 

YGZ 

YGZ=YGZ, 
Y0Z=YGZ, 

a'b=AGB 

A0B=AGB 

As GBs =AGB 

-!A]GB]=AGB 

y·z =YGZ 

YGZ=YGZ 

W :V= (a'c)(b'd)+-" 

Bases and 
reciprocal bases 

hI, ~ and hI, h2 

(ha.hb=og) 

nl ,Ii; and Ii) ,liZ 
(1ia.n

b 
= og) 

I" and 1'" (0; = 1, ... ',4) 
(l"'.la = o~) 

l",la and -1"11l 
l"lll and 1'" la 

hahb and - hahb 

hahb and hahb 

Ii Ii and - h'-Jib 
,tfig and Jian a b 

7iahb and - 7iahb 

1iahb and 1iahb 

hahb and - haJib 
haJib and hahb 

e" =E" and e" =E" lJ.t= 0, ••• ,3) 
(e" 'ey =E" GEy = 0t) 
(e" 'ey =E" GEy =g"v) 

E" and ElL, etc. 

(E)s and (EIL)S' etc. 

r IL (E)] and r IL = (ElL)] 

elL =EIL and e" =E" 

E" and E" 
elL e,., and eILe-' 
ejL eV and eILey 
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form a basis for ift1s, and Eq. (22) for these operators 
is 

r".r" +r" .... r" = -2(E" <ilE")I= - 2g"'1 

Hence the r" are the Dirac gamma operators. 

Note that 

AI = -AI =AI for all AT in ift1s• 

Recall now the linear operation 

(24) 

(25) 

defined in Eq. (73a) in 1. It follows from the linearity of 
this operation that if A, B <= S 46i' S 4' then 

(26) 

The permutation operator (12) on ~Ij! and on ~CP1JX by de
finition gives 

(12) ~CP=CP~, 
(12) ~cP rlX = cP ~rIX, (27) 

and therefore 

(28) 

It follows from the linearity of the (12) operation that 
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[(12) (AB)t] 01ji/;== (12)[AAljiBA/;] ==BA/;AAlji. (29) 

The unit tensor ~ 4 in ftU'01f14' defined to satisfy 

(30) 

for all A in!f14, also acts as a projection operator onto 
C!f1 4 • It can be expressed as 

(31) 

Its action on 1ji/; where If == u + v and /; == s + t is as follows: 

The properties of the unit tensor i 4 in iii 4 &1 iii 4 are 
analogous to those of 14 in/Y}40!f14> and we have 

(32) 

14= (12~);' (33) 

14 (0) 1ji!; ==ut. (34) 

The unit tensor !,cs in!f1.0!f1s' defined to satisfy 

(35) 

for all A5 in!f15' also acts as a projection operator onto 
C115' Since 14 +14 is a projection operator onto C!f14 tl' 
C!f1~ and the symmetrizer M:~ +(12)] acting inC!f1 4 
r+>C/I1 4 proj ects onto C!f1 4 r+> 5 or; 4' it follows that these two 
operators acting in succession give an expression for 
145; i.e., 

145 =:: U 1 + (12) ](14 +14) 

= t[1 + (12) ](1212 + 12 I2)~' 

The action of 145 on 1ji!; is 

145 ® 1ji!; = Ul + (12) ](14 +14) (0) (u + ij)(s + t) 

= t[l + (12)](vs +ut) 

== t(vs + sv +ut + iu) 

D. Summary 

Some additional operations not in the table: 

SA ~ == (1ji!; + ... )A~= (!;A~)lji + .. . 

~AS = ~A(lji!; + ... ):::: (~Alji)!; + .. . 

S. = (1ji!; +"')s '= ljiA!; + .. . 

SAT == (1ji!; + ... )A(~7J + ... ) == (!;A~)1ji7J + ... 

(36) 

(37) 

StT = (1ji/; + ... )t(~1) + ... ) = (ljiA~)(!;A1) + ... = - S (O)T 

W· c = (ab + .•• ) • c == (b. c)a + .. . 

c·W=c .(ab + ..• )=(c oa)b + .. . 

Unit tensors: 

12= ha ha = -haha in 52°52, 12 Au=u, 12 Av=O 

f 2=h;ha =-T/ha in101, 12 AU=0, I.Av=v 
1=12 +12 =1",1"'=-1"'l", in 54°54, IAlji=1/! 

14=e"e"=e"e" in !f14 0 !f14' 14' a==a 

and in (C!f14) ° (C!f14 ) , 14 ' z == Z 
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14s ==(E,,)s(E")s ==(E")s(E,,)s in !f1s ® !f1s, 145 ColAs =As 

Property of elements of iftl s : 

ArABr + B1AA1 == - 2A @BI 

r"Ar" +r"Ar" = - 2g""1 

'III. CONNECTIONS AND CURVATURE IN THE 
GENERAL RELATIVITY MANIFOLD 

As a preliminary to the discussion of spinor connec
tions and spinor curvature tensors we summarize some 
modern methods of differential geometry in the treat
ment of the four-vector connection and the Riemann 
tensor. This section serves the twofold purpose ot 
establishing the formalism and deriving equations which 
are utilized in the next two sections. First we shall 
briefly introduce tangent vector spaces and vector 
fields. We will be using the general relativity manifold 

!f1 which is a four-dimensional manifold in which the 
tangent vector space ftI. at each point q in!f1 has a 
Minkowski inner product. 

A tangent vector X. at a point q in !f1 is a map that 
associates a real number X.f with each differentiable 
real function f on !f1 for which the following properties 
hold: 

X.(j+g)=X.f +X.g, 

xq(a/J = aX.f, (38) 

X.(jg) = (X./Jg(q) + f(q)(X.g) 

for each real number a and differentiable functions f and 
g. The product aX. of a real number a with X. and the 
sum X. + Y. of two tangent vectors at q are defined by 
the equations 

(ax.)! =a(X./J, 
(39) 

(X. + Y.)f==X.f + Y.f 

for all f. It can be shown that the space !f1. of all tangent 
vectors at q is a vector space over the real numbers and 
that !f1. has the same dimension as the dimension of the 
manifold!f1, which in this case is four. The domain of 
operation of a tangent vector X. can be extended to com
plex differentiable functions f == m + in, where m and n 
are real functions, by the definition 

X.f==X.m +iX.n, 

and the properties given by Eqs. (38) are easily shown 
to hold, where a is now any complex number, andf 
and g are complex functions. Furthermore, (X./) ==x.f.. 

We shall use two notations for tangent vectors, for 
example X. and x(q) will stand for the same tangent 
vector at q. Whenever we are using it to operate on a 
function, we shall write it as X. and call it a derivation 
operator at q. Otherwise we shall use the notation x(q) 
and call it a tangent vector or a four-vector or Simply 
a vector at q. For example, when we are considering 
its inner product with another tangent vector y(q) at q we 
shall write x(q) .y(q). We shall relate the two notations 
by the formal relation X.p = x( q), where X. is regarded 
as operating on the identity map p( r) = r of !f1 onto ftI . 

A vector field x associates a vector x(q) in !f1. with 
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each point q in ftJ. The other symbol X for the same 
vector field will be called a derivation operator on ftJ 
and it associates a derivation operator X. at q with each 
point q inftJ. The derivation operator X operates on each 
differentiable function f on ftJ to produce another function 
Xf on ftJ. We also have the formal relation x=Xp. 

It can be proved easily that the Lie bracket [x, Y] of 
two derivation operators X and Y defined by the equation 

[X, Y]f=X(Yj)- Y(Xj) 

for all functions f is also a derivation operator. Fur
thermore, it can be proved that in any coordinate sys
tem I, ri, ri, r;f any derivation operator X can be ex
pressed in the form 

X=X"o", 

where X"(q) are real functions on ftJ and 0" '= oloq" (we 
are uSing the summation convention on repeated in
dices). Also, we can define the natural basis e,,(q) of 
ftJ. for arbitrary q by the equation 

and, using this, we get 

x=Xp=x"o"p=X"e". 

(40) 

The reciprocal basis e"(q) of ftJ. corresponding to e,,(q) 
is defined uniquely by the equation 

(41) 

A four-vector connection Die on ftJ associates an 
operator Dle on vector fields with each derivation opera
tor X such that, for each vector field v(q), Dlev is an
other vector field having the following properties: 

Dx(v +w) =Dicv + Dicw, 

Dle(jv) = (Xj)v + fDxv, 

Dle+yv=Dlev +Dyv, 

D;xv=gDlev 

(42) 

for arbitrary real vector functions v(q) and w(q) and 
arbitrary real functions f(q) and g(q). The operator Die 
is also called the covariant derivative operator in the 
direction of x. For the derivation operator X = 0" in any 
coordinate system q", we shall use the abbreviated no
tation D~ ,=D'a , and call this the covariant derivative 
operator with" respect to q". 

The operation of Dx on complex four-vector fields 
v(q)=m(q) +in(q), where m(q) and n(q) are real four
vector fields, is defined as 

DxV =Dxm + iDxn. 

It is easily shown that the same properties of Eqs. (42) 
hold, where v(q) and w(q) are now arbitrary complex 
four -vector fields, j(q) is complex, and g(q) is still 
real. 

The torsion tensor T(q) of a connection Dx, which has 
values inlfJ.0IfJ.0IfJ., is defined by the equation 

xy: T=DxY -D~x - [X, Y)p (43) 

for arbitrary vector fields x(q) and y(q). It can be shown 
that the value of the right-hand side of Eq. (43) at any 
point q depends on the value of x and y at q only. It can 
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also be shown to be linear in x and in Yj therefore the 
tensor character of this expression is established. 

A connection Dx is said to be symmetric iff'l the tor
sion tensor T(q} vanishes for all q, 1. e. , 

DxY -Dyx - [X, Y]p=O 

everywhere for all vector fields x and y. 

A connection Dx is said to be compatible with the 
inner product iff'l 

X(y .z) = (DxY) ·z +y. (DxZ) 

for arbitrary vector fields x(q), y(q}, and z(q). 

(44) 

(45) 

It can be shown that there exists a unique connection 
Dx on Iii which has both properties of being symmetric 
and being compatible with the inner product. We shall 
call this the standard four-vector connection. 

We now show how the expression for the covariant 
derivative of a vector field v(q} with respect to a set of 
coordinates q'" can be converted to component form in 
the case of the standard connection. First we can write 
v(q) in terms of contravariant components v"'(q) and 
covariant components v", (q) respective ly as 

(46) 

From this equation and Eq. (41), we get 

v"=e"'v, v,,=e,,·v. (47) 

The contravariant components v"';v(q) of the covariant 
derivative of v with respect to qV are then 

v"';v=(Dvv).e'" =[Dv(vXex)J·e'" 

= [(ovvX)e x +v)'(Dve x)]' e'" 

(48) 

where the Christoffel symbols r~x(q) are defined by the 
equation 

Dvex = r~xe,.., (49) 

from which we immediately obtain 

The covariant components v",; v(q) of the covariant 
derivative of v with respect to qV are 

v"';v = (Dvv). e,.. = [Dv(vxeX) j.e,.. 

= [(ovvx)e
X + vx(DveX) j.e"" 

and, since 

(DveX) .e" = ov(ex• e,..) - eX. (Dve,..) 

= ova~ - r~,.. = - r~", 

we get 

(51) 

Equations (48) and (51) agree with the usual definitions 
of covariant derivatives of contravariant and covariant 
vectors in the component notation. 

An arbitrary connection Dx differs from the standard 
connection Dx by an operator Cx(q) which is just a linear 
transformation onlfl. for each q. To prove this, first 
note that the equation 
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(Dx -Dx)jV = j(Dx -Dx)V (52) 

follows from the axioms for a connection. Taking any 
c~ordinate system q" and using Eqs. (46) and (47), we 
obtain 

(Dx -Dx)v =(Dx -Dx)(v"e,,) 

=v"(Dx -Dx)e" = [(Dx -Dx)e,,]e".v 

=Cx·V, 

where 

Cx(q) = [(Dx -Dx)e,,(q)]e"(q) 

is in /J1. 0 /J1. for each q. Therefore, 10 

DxV =DxV + ex·v 
for an arbitrary vector field v(q). 

The operation of the standard covariant derivative 
operator Dx on any second order tensor field M(q) in 
/n.0/11. is defined by the equation 

(53) 

(54) 

(DxM):yz=X(M :yz)-M :(DxY)z- M:y(Dxz) (55) 

for arbitrary vector fields x(q), y(q), z(q). The value of 
the expression on the right at each q can be shown to 
depend on the values of x, y, z at the point q only. It 
can also be shown to be linear in x, y, and z; therefore, 
the tensor character of this expression is established. 

The Riemann tensor m (q) is in the space In. 0/J1. 0/J1. 
0/11. for each q, and in the case of the standard connec
tion is defined by the equation 

(56) 

for arbitrary vector fields x(q), y(q), z(q). It can be 
shown that the value of the expression on the right side 
at q depends on the values of x, y, and z at the point q 
only. It can also be shown to be linear in x, y, and z; 
thus its tensor character is established and the definition 
is therefore valid. 

For the next part of the discussion, we need the 
property 

Dx(Y. M) = (DxY). M +y .(DxM) (57) 

for vector fields y(q), and second order tensor fields 
M (q). Equation (57) follows easily from the fact that the 
standard connection is compatible with the inner product. 

The expression for the Riemann tensor m (q) can now 
be put in another convenient form. Using the covariant 
gradient operator D defined by the equations 

x.(Dv) =Dxv, 

x.(DM) =DxM 
(58) 

for vector fields v(q) and tensor fields M (q) of second 
order or higher, we can rewrite Eq. (56) with the aid of 
Eq. (57) and the symmetry property of the standard con
nection as follows: 

xy: m.z =Dx(Y .Dz) -Dy(X .Dz) - ([X, Y]p). (Dz) 

= (DxY -DyX- [X, Y]p) • (Dz) +y • (DxDz) 

-x.(DyDz) 

=y' (x· DDz) -x· (y. DDz) 
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(59) 

for arbitrary vector fields z(q). Observe also that Eqs. 
(56) and (59) also hold true when z(q) is a complex vec
tor field. 

Still another expression for m is obtained by noting 
that e e" is the unit tensor; then by using Eq. (59) with 

" z=e", we get 

m=m.e"e"=(DADe,,)e". (60) 

IV. SPINOR CONNECTIONS 

At each point q in the general relativity manifold /J1 
we associate a spinor space (S~). and its ~rresponding 
conjugate spinor space <S2)q' The space U~). 0 H U~). of 
Hermitian tensors at q is isomorphic to the tangent 
space Ih., and we shall treat them as being identical. 11 

In addition to the notations such as y(q) and Yq for a 
tangent vector at q, we will also use the notation Y(q) 
for the same vector whenever it is useful to emphasize 
the fact that it is also a spin tensor. In addition to the 
notation y(q) • z(q) for inner products, we shall also use 
the notation Y(q) 0 Z(q), which was introduced in I for 
the inner product of spinor tensors. 

A spinor connection Dx on/J1 associates with each 
derivation operator X an operator Dx on spinor fields 
such that if u(q) is any spinor field with values in (2)q 
then Dxu is also a spinor field with values in (.)2)q where 
the follOwing properties are satisfied: 

(a) Dx(u +v) =Dxu +Dxv, 

(b) Dx(ju) = (Xj)u + jDxu, (61) 

(c) Dx+yu=Dxu +Dyu, 

(d) D~xu=gDxu, 

where X, Yare derivation operators, j(q) is any com
plex function, g{q) is any real function, and u(q) and v(q) 
are any spinor fields with values in U~) •. The operator 
Dx is also called the covariant derivative operator on 
spinors in the direction of x. In a coordinate system 
q"" we shall use the notation D~ =Da,,' 

The covariant derivative Dxu of spinor field u(q) with 
values in (52). is defined as 

Dxu=(Dxu). (62) 

It follows that axioms (61) and Eq. (62) are satisfied if 
u and v are replaced by u and V respectively. 

The covariant derivative DX'J! of spinor field ?p(q) =u(q) 
+v(q) with values in (54)q=U~)qffi<S2)q is defined as 

(63) 

It follows that axioms (61) and Eq. (62) are satisfied if 
u and v are replaced by l/! and ~ which have values in 
U~)q. 

To any connection Dx can be associated another con
nection D'x*, which we call the dual connection, and is 
defined by the equation 
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(64) 

for arbitrary u(q) and v(q). It is easily verified from 
this definition that Djl satisfies the axioms (61) for a 
connection. (The relation of the dual connection to the 
corresponding concept used in the literature is dis
cussed in Appendix A.) USing the defining Equations 
(62) and (63) we extend the operation Dx* to spinor fields 
u(q) and 1j!(q), and it follows that 

(65) 

and 

(66) 

The covariant derivative DxA for any second-order 
spinor tensor field A(q) with values in (54). ® (J4). can 
be defined by the equation 

(DxA)t~1j =X(At~1) -A t(Dx*~>n -At~(Dx*1) (67) 

for arbitrary spinor fields Hq) and 1)(q) with values in 
U~) •. Note that if A(q) has its values in any of the sub
spaces of (54). ® (4). such as ( 2). ® U~). or G~)q 
®H U~). for all q then DxA(q) will also have its values 
in the same subspace for all q. 

It easily follows from the above definition and Eq. 
(66) that 

D~(¢~) = (D~¢) ~ + ¢(D~ ~), 

D~(A41) = (D~A) 41/ + A4(D~*1/), 

Dx{~4A)== (Dfc*~)4A + ~4(D~A), 

(DiA)==D~A. 

(68) 

An obvious generalization of Eq. (67) can be used for 
defining the covariant derivative of higher order spinor 
tensor fields. 

A spinor connection D~ is said to be compatible with 
the inner product iff 

(69) 

for all spinor fields ¢(q) and ?;(q). Note that D~ is com
patible with the inner product iff Dfc* = D~. 

We now show that a spinor connection D~ is compati
ble with the spinor inner product iff D~I2 = 0 for every 
derivation operator X, where Ia(q) is the unit tensor in 
UaVs Ua). for each q. From the definition of covariant 
differentiation of spinor tensors and the definition of 
Dfc* in Eq. (64), we get 

u4(D~Iz)4v = X(u4Iz4v) - (Dfc*u)4Iz ' v - U4Ia4(D~*v) 

=X(U4V) - (D~*u).v - u.(D~*v) 

= u4(D~v - D~*v) 

for arbitrary spinor fields u(q) and v(q). Consequently, 
D~Ia = 0 for arbitrary X iff D~ = D~* for arbitrary X, 
which is true if D~ is compatible with the spinor inner 
product. QED 

A spinor connection D~ is said to generate the stan
dard/our-vector connection iff D~A==DxA for all spinor 
tensor fields A(q) with values in (~).®H(52).' i. e., for, 
four-vector fields, where Dx is the standard four-vec
tor connection. 
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We shall later show that there exists a unique spinor 
connection which has both properties of being compati
ble with the inner product and of generating the standard 
four-vector connection. From now on we shall use the 
symbol Dx , when operating on spinor and spinor tensors, 
to denote this spinor connection, and we shall call it the 
standard spinor connection. 

Now we shall derive an expression for the contravari
ant components of the covariant derivative D~u of a 
spinor field u(q) with respect to a set of coordinates qlJ.. 
Let h1(q), ha(q) be spinor fields that form a basis for 
Ua). for each q. The spinor fields hl(q), h2(q) are de
fined to be a reciprocal basis for Us). for each q, 1. e., 

(70) 

We can write the spinor field u(q) in terms of its con
travariant components ua(q) and covariant components 
ua(q) respectively as 

From this equation and Eq. (70) we get 

U"=ha4U, ua==u4ha· 

The contravariant components u'allJ. of D~ u, defined by 
the equation 

are then 

u,allJ. == h·.(D~u) = ha.[D~ (ubhb)] 

="ha.[(a!LUb)hb +ub(D~hb)] 

(71) 

where the spinor connection coefficients A~~ are defined 
by the equation 

from which we get 

A~~=h·4(D~hb)' 

(72) 

(73) 

For the covariant components U~I!L of D~u, defined by 
the equation 

we get 

U~I!L = (D~u).ha= [D~(Ubhb)].h" 
= [(a!Lub)hb + ub(D~hb)].ha. 

Moreover, by making use of 

(D~hb)4ha = a!L (hb .ha) - hb .(D~*h") 

= aIL Ii: _ A~~b == _ A~!b, 

where A'::: are the spinor connection coefficients for the 
dual connection D~*, we find 

(74) 

In the case where the connection D~ is compatible with 
the spinor inner product, it immediately follows that 

In the case of the standard spinor connection D!L we 
shall denote the connection coefficients by Ata [an ex-
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plicit expression for these in terms of the Christoffel 
symbols is given in Eq. (119) below J. 

By arguments analogous to those used for arriving at 
Eq. (54) we shall prove that any spinor connection Dfc 
differs from Dx by a linear transformation. To this end, 
take a spinor basis ha(q) for each (.)2).' Then by virtue 
of the axioms for a spinor connection, we get 

(Dfc - Dx)u = (Dfc - Dx )(uaha) = ua(D~ - Dx )ha 

= [(Dfc -Dx)haJhaAU=KxAU, 

where the operator Kx(q) defined as 

(75) 

is an element of (.)2).0 (.)2). for each q, and does not 
depend on the spinor field u. Hence (Dfc - Dx)u is linear 
in U and its value at q depends on the value of U only at 
q. Since D~ and Dx are linear in X, so is Kx. We can 
therefore write 

(76) 

The complex conjugate of this equation with ii replaced 
byv is 

D~V=DxV+KxAV. (77) 

Summing these two equations gives 

Dfc1j!= Dx1j! + Mx A1j!, (78) 

where 

Mx(q) = Kx(q) + Kx(q), (79) 

and 1j!(q) = u(q) + v(q) is an arbitrary spinor field with 
values in (.)4).' 

The above results allow us to express the dual con
nection Dfc* in terms of Dx. We merely substitute Eq. 
(76) into Eq. (64) to get 

(Dfc*u)AV =X(UAV) - UA(Dfcv) 

=X(UAV) - uA(Dxv + KxAV) 

= (DxU)AV - uAKxAv 

= (Dxu + KxAU)AV, 

for arbitrary spinor fields v. Hence 

Dfc*u= Dxu + KxAU. 

From this it follows also that 

D';v = Dxv + Kx .... v 
and 

(80) 

(81) 

(82) 

Moreover, by virtue of Eq. (76), Eq. (80) can be ex
pressed as 

Dfc*u = Diu - (Kx - Kx )AU 

= Dfcu + ~(Kx - Kx).I2Au 

= Dfcu + (Kx).I2AU, (83) 

where we have made use of Eq. (A9) of I. We also have 

(84) 
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(85) 

= (Dfcu)AV + uA(D~v) + (Kx).UAV (86) 

and Eq. (67) as 

t A(DxA) A1j = X(tAAA17) - (Dfc*t)AAA17 - tAAA(Dfc*17) 

==X(tAAA17) - (Dx t)AAA17 - (MxAt)AAA17 

- tAAA(Dx17) - tAAAMx "17 

== tA(DxA)A17+ tAMxAAA1)-I:AAAMx~17. 
Therefore 

DfcA == DxA + MxAA - AAMx . (87) 

In particular if A(q) has values in the subspace (}2). 
0(.)2)., then Eq. (87) becomes 

D~A == DxA + KxAA - AAKx . (88) 

We next prove three theorems based on the above 
results. 

Theorem 1: A spinor connection Dfc is compatible 
with the spinor inner product iff Kx = Kx (i. e., Kx is 
symmetric) . 

Proof: From Eq. (86) we see that the connection D~ 
is compatible with the inner product iff (Kx ). = O. More
over, in the appendix of I we have shown that (Kx)s = a 
iff Kx is symmetric. QED 

Theorem 2: A spinor connection Dfc generates the 
standard four-vector connection iff Kx can be expressed 
as 

Kx = i(x' cp)I2 (89) 

where qJ(q) is a real four-vector field. 

Proof: From Eq. (88) we see that the spinor connec
tion D~ generates the standard four-vector connection 
iff 

(90) 

for arbitrary A(q) with values in (}2).0H (.)2).' To prove 
the necessity of Eq. (89), let us suppose that Dfc gen
erates the standard four-vector connection. Choose A 
=UU where u(q) is an arbitrary spinor field. Then Eq. 
(90) becomes 

(Kx.uc)u + U(KXAU) = o. 
It follows from this that 

(91) 

and 

where Oix(q) is scalar function. Consequently, Oix(q) 
must be linear in X and pure imaginary; thus it can be 
written as Oix = ix • qJ with qJ(q) being a real four-vector 
field. Equation (89) is an immediate consequence of 
Eq. (91). To prove the sufficiency of Eq. (89), we need 
only to substitute it into the left-hand side of Eq. (90) 
to verify that it is true. QED 
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Theorem 3: A spinor connection D~ has both the prop
erties of being compatible with the spinor inner product 
and of generating the standard four-vector connection 
iff Kx == 0 everywhere. 

Proof: This follows from the two previous theorems 
and the fact that Kx can be both symmetric and antisym
metric iff Kx == O. QED 

Theorem 3 establishes the uniqueness of the standard 
spinor connection. 

The consequences of these three theorems on the form 
of Eqs. (86) and (88) can be summarized in the following 
four cases: 

Case 1: Kx==Kx¥O. i.e., Kx is symmetric. 

X(U4V) == (D~U)4V + u4(D~v), (92) 

D~A==DxA+Kx4A-A4Kx; (93) 

thus D~A"DxA except where Kx == 0 or A== O. 

Case 2: Kx == ix 0 cpIz, where cp(q),. 0 is a real four
vector field: 

X(U4V) == (D~U)4V + U4(D~v) - 2ix 0 cp(U4V) , (94) 

D~A=DxA. (95) 

Case 3: Kx=xocpIz where cp(q)¥'O is a real four
vector field: 

X(U4V) == (D~U)4V + u4(D~v) - 2x 0 CPU4V, (96) 

D~A== DxA + 2x 0 cpA. (97) 

Case 4: Kx=O. ThenD~u==Dxu and 

X(U4V) == (D~U)4V + u4(D~v), (98) 

D~A==DxA. (99) 

The covariant derivatives DJeA [defined by Eq. (67)] 
and D~*A of a spinor tensor field A(q) with values in 
(.)4)q iZ (4)q are not the only ones possible within the 
general framework of our formalism. We can also de
fine the covariant derivatives D~<"*) A and D;/* 0) A, by 
means of the equations 

(D~h) A)t~17==X(At~17) - Ai(D~* ~)17 - AtHD~17), 

(D~<* ')A)t~17==X(At~17) - At(D~~)17 -At ~(DJe*r;) (100) 

for arbitrary spinor fields ~(q) and 17(q) with values in 
(.)4)q. Also, for purposes of comparison, we include the 
defining equation for DJc* A, 

(D~* A)t~17==X(At~17) - Ai(D~~)17- At~(D~17) 

obtained by interchanging DJc and DJc* in Eq. (67). 

The following identities, which are easily proved, 
illustrate how these covariant derivatives operate on 
the tensor files by consideration of the simple case 
where A== </!I;: 

DJc(</!I;) == (D~</!)I; + </!(DJcI;), 

D~*(</!I;) = (D~*</!)1; + </!(D~* 1;), 

DJc<"* ) (</!I;;) == (D~</!)I;; + </!(DJc* 1;), 

DJc<*')(</!I;) == (D~*</!)I;; + </!(D~I;;). 

It also follows readily that 
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(102) 

This shows how the operator D~('*) on second order 
spinor tensors A arises naturally when that tensor field 
is being used for expressing a linear transformation 
A4 ~ of the spinor field ~. 

That Dfc(o*) is the natural operator to use on second 
order spinor tensors when viewed as linear transforma
tions on spinor fields can also be seen when considering 
the parallel transportation of spinors ·along a curve q 
== q(t) in t11. To this end let W) and 17(t) be functions with 
values in (S4)q(t) and A(t) a function with values in 
(S4)q (t) ® (S 4). (t) for each t. Suppose that 

17(to) == A(to)4 Wo). 

Here A(to) is acting as a linear transformation on ~(to) 
to produce 17(to). Suppose that ~(t), for each t, is given 
as the parallel transport of ~(to) via the connection D~ 
from q(to) along the curve to q(t), and likewise 17(t) for 
each t is given as the parallel transport of 17(to) via the 
connection D~ along the curve from q(to) to q(t), i. e., 
W) and 17(t) satisfy the differential equations 

DId /dt) W) == 0, DId /dt)17(t) = O. 

Now, if A(t) is given as the parallel transport of A(to) 
via the operator D~("*) along the curve from q(fo) to q(t), 
i. e., it satisfies the differential equation 

DId i!~)A(t) == 0; 

then by using Eq. (102) we get 

D[d /dt) [A(t)4 ~(t)]= [DIJi~~)A(t) ]4~(t) + A(t)4[Dld1d t) W)] 

=0 

which is the same differential equation for A(t) • W) as 
the differential equation for 17(t) with the same initial 
values at to. Consequently, by a uniqueness theorem for 
differential equations, we have 

17(t) = A(t)4 W) . 

In summary, if W) and 17(t) are given by parallel trans
port of their initial values at q(to) via the operator D~ 
along the curve, and if A(t) is given by parallel trans
port of its initial value at q(to) via the operator D~('*) 
along the curve, then the relation 17(to) == A(to)4~(to) at 
q(to) implies that the corresponding relation 17(t) 
== A(t) ... ~(t) also holds at all points q(t) along the curve. 

The covariant derivative operator D~("*) acting on 
four-vector fields leads to an alternate way of generating 
the standard four-vector connection. We shall say that 
a spinor connection D'x alternately generates the standard 
four-vector connection iff DJc('*) A= DxA for all spinor 
tensor fields A(q) with values in Cfz)qiZH (S2)q, where Dx 
is the standard four-vector connection. 

In this context, the alternate to Theorem 2 is 

Theorem 4: A spinor connection D~ alternately gen
erates the standard four-vector connection iff Kx can 
be expressed as 

Kx =X' cpIz 

where cp(q) is a real four-vector field. 

Proof: By definition of DJ/,*lA for A(q) having values in 
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(S,}.~ (54). and using Eqs. (78) and (82) gives 

!;A(D;/"*) A)An=X(!;AAATJ) - (Dfc*!;)AAATJ- !;AAA(DfcTJ) 

=X(!;AAATJ)- (Dx!;)AAATJ- !;AAA(DxTJ) 

- (MxA!;)AAATJ - !;AAA(MxATJ) 

= !;A(DxA)ATJ+ !;A(MxAA-A.Mx)ATJ 

for arbitrary spinor fields !;, TJ; therefore, 

(103) 

In particular if A(q) has its values in (52).O (Sa)., then 
by Eq. (79) we get 

(104) 

Thus, in order that Dfc<'*) A = DxA, it is necessary and 
sufficient that 

KxAA - AAKx = O. 

By an argument entirely analogous to the one used in 
Theorem 2 we can show that this is true for all A iff 
Kx has the form 

Kx=x·rpla QED 

We can now give a correct interpretation of the paper 
of Infeld and van der Waerden, the review paper of Bade 
and Jehle, as well as other papers in the literature 
based on theirs. 4 In essence, their approach consists in 
taking the covariant derivative according to one con
nection when the spinor is expressed by contravariant 
components, and taking the covariant derivative accord
ing to what we call the dual connection when the spinor 
is expressed by covariant components (see Appendix A 
regarding our interpretation of expressions involving 
both covariant and contravariant spinors). To elaborate 
this point, let Dfc be an arbitrary spinor connection that 
generates the standard four-vector connection but is 
not necessarily compatible with the spinor inner prod
uct. It follows from Eq .. (80) and Theorem 2 that the 
dual connection Dfc* also generates the standard four
vector connection. For a spinor field u(q) with values in 
(52)., the contravariant components U"'JJ, and the co
variant components U~'JJ, of D~u are defined by the 
equations 

D~u= U"'JJ, ha = u~'JJ,ha. 
Also, the contravariant components u'*a,JJ, and the co
variant components J.l'*alJJ, of D~*u are defined by the 
equations 

Infeld and van der Waerden use only the contravariant 
components u,a , .. of D~u and the covariant components 
U'*., .. of D~*u in their theory. Their Eqs. (16) would 
then be expressions for these two quantities, but with
out any marks such as the asterisk to make a distinction 
between the dual covariant derivative and the original 
covariant derivative. According to this view of their 
formalism, the covariant derivative operator D~ is the 
indicated one to use whenever contravariant spinor 
indices occur, and the covariant derivative operation 
D~* is indicated whenever covariant spinor indices oc
cur. The product rule then follows easily from the 
equation 
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(105) 

The generalization of these results to spinor tensors 
of second or higher order in the Infeld-van der Waerden 
formalism when indices are all contravariant or all 
covariant is evident: D~ is used in the former case and 
D~* in the latter. 

In the case of mixed spinor indices their formalism 
implies that the operation of covariant differentiation on 
such a tensor is the joint operation of D~ and D~* on the 
files with contravariant and covariant indices, respec
tively. For example, for a spinor tensor field N(q) with 
values in (Sa). 18- (Sa). take the covariant derivative 
D~('*)N as defined by Eq. (100). In the Infeld-van der 
Waerden component formalism this would be denoted by 
making the first spinor index contravariant and the 
second spinor index covariant, i. e., it would be written 
as N\,.. in their notation. 

In summary a desirable feature for a spinor connec
tion is that it produce the standard four-vector connec
tion by some prescription; thus the usual four-vector 
calculus will result in a natural way from spinor calcu
Ius. Both the spinor connections for which Kx = ix • rplz 
and Kx = x • rpla have this desirable feature, but in dif
ferent ways. The first one "generates" the standard 
four-vector connection as seen by Theorem 2, and the 
second one "alternatively generates" the standard four
vector connection as seen by Theorem 4. The first one 
corresponds to Infeld and van der Waerden's connection 
as is indicated by the requirement stated in their Eqs. 
(19) or (20). This is also the connection considered by 
Schmutzer, la who follows closely Infeld and van der 
Waerden's approach. 

Moreover, for the extension of arbitrary spinor con
nections D~ on (52). valued spinors to give a bispinor 
connection [i. e., a connection for (54). valued spinors], 
our Eq. (63) leads to 

D~I/J= D~(u + V) = D~u + D~v = Dxl/J + MxAI/J, 

where 

Mx=Kx+Kx. 

Using the connection which "alternately generates" the 
standard four-vector connection, i. e., taking Kx = X· rpla 
yields 

Mx=x·rpI. (106) 

U sing the connection which" generates" the standard 
four-vector connection, 1. e., taking 

Kx = ix • rpIa, 

yields 

Mx =X' rpr5
• (107) 

On the other hand, according to our intrinsic interpreta
tion of Schmutzer's13 equations (37), (38), (39) for his 
bispinor connection, which we denote as D~( B), one has 

Dfc(B)I/J=Dfcu + Df/v= Dxl/J + NxAI/J, 

where Mx is replaced by Nx given as 

(l08) 
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Nx=Kx +Kx 

and Kx=ix·fP1a. Hence 

Nx=iX·fPl. 

As another interesting result of our formalism we 
show how a simple and elegant derivation of an equation 
relating the standard spinor connection to the standard 
four-vector connection may be obtained. For any 
derivation operator X and spinor fields t(q), u(q), v(q) 
with values in (Sa)., we have 

fAu,(DxV) = HtAU(DxV) - uAt(Dxv)} 

i. e., 

= HtA [Dx (uv) - (Dxu) v ] - UA[Dx(tv) - (Dxt) v ]} 

= HiA[Dx(Uv)] - UA[Dx(tv)] - tA(DxU)v 

- (Dxt)AUV} 

= HtA[Dx(uv)] - UA[Dx(tv)] - [X(tAU)]V}, 

tAu(Dxv) = HtA[Dx(Uv)] - UA[Dx(tv)] - [X(tAU) ]v}. 

(109) 

On the left side of this equation, Dx is the standard 
spinor connection operating on the spinor field v. On 
the right side, Dx is the standard spinor cOIl.!,lection 
operating on the spinor tensor fields UV and tv. But such 
spinor tensors are also regarded as complex four-vec
tors; thus, due to the fact that the standard spinor con
nection generates the standard four-vector connection, 
the operator Dx on the right side is also interpreted as 
the standard four-vector connection operating on com
plex four-vector fields. 

In order to derive Eq. (109), the existence of the 
standard spinor connection was assumed. A brief sketch 
of this existence proof is as follows: We start by de
fining Dxv for spinor fields v by means of Eq. (109), 
where the operator Dx on the right side of the equation 
is the standard four-vector connection operating on 
complex four-vector fields. We must show that the 
equation is consistent in that the right side is actually 
a quantity that can be expressed in the form appearing 
on the lef!, side. It is easily shown that the right side is 
linear in t and in U an~ its value at every point q de
pends on the value of t and u at the point q only. 
Furthermore, the right slde is also antisymmetric 
under the interchange of t and U. It follows from th~se 
facts that the right side is expressible in the form tAu 
times a spinor; this is consistent with the form of _the 
expression on the left side in that it is written as tAU 
times a spinor Dxv. Thus this equation is consistent and 
therefore defines the spinor field Dxv, i. e., the opera
tion of Dx on each spinor field v is defined. One can then 
proceed to show that this operator Dx on spinor fields 
satisfies all the properties of a spinor connection, that 
it is compatible with the spinor inner product, and that 
it generates the standard four-vector connection. This 
completes the proof that the operator Dx on spinor 
fields is the standard spinor connection, and its ex
istence is then established. 

For the purpose of re-expressing the above results in 
another convenient form, let us take a basis h.(q) for 
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each (Sa). and note that hdha is the unit tensor in (Sa). 
181 ( Sa). for each q. Then 

_ 2=hcAhc= h~(hahd)Ahc= - haAhdhcAhd, 

from which we get 

thoAhahoAhd = 1, 

theA hdhcAhd = 1. 

Using this, we write 

Dxv = thoAhdhaAhdDxv, 

and from Eq. (109) with "1 = ho and u = iiII' we find 

(110) 

Dxv= ihcAhd{hcA[Dx(hav)]- ~A [Dx(hcv)] - [X(hcAha)]v} 
1- -c- - l-C -tiL -

=-4ifAh hcA[Dx(hav)]-4h Ah hdA[Dx(hcv)] 

- ihcAha[X(hcAha)]V 

= thc A [Dx(hcv)] - ihc Aha [X(hcAha)]v. 

But since if Aha and hcAha are zero when c = d, we can 
write the preceding equation as 

Dxv= thCA[Dx(hcv)]- th1Aha[X(h1Aha)]v. (111) 

For the same reason, Eq. (110) becomes 

hlAhahlAha= 1. 

Therefore, 

hlAJi2 = (hi Ahar1. (112) 

Putting this in Eq. (111) yields 

Dxv = thc A[Dx(hcv)] - Mx In(h1Aha)]v. (113) 

We shall use this result to derive an expression for 
the spinor connection coefficients in terms of the 
Christoffel symbols. From Eqs. (73) and (113) with 
X= a" and v==h. we have 

A~. = - (D"h.)Ah
b 

= - thc A[D" (hcha)]Ahb + traIL In (hi Aha) ]haAhb 

= - HD" (hcha)] 0 OiChb) - taIL In(hlAha) 0:. (114) 

From Eq. (48) we get 

D"z= z\"eA = (a"zA + r~vzV)eA (115) 

with z(q) in place of v(q). Recall7 now the definition of 
some of the hybrid components of the unit tensor field 
I.(q) with values in !fJ.®!fJ. given as 

14 ==IAcaeAhcha = I/beAhchb' 

from which we find 

IAca = - eA 
0 (hcha), 

I/'b = _ e A 0 (hChb ). 

If we let z = hcha' then 

zA= eA. z == eA
@ (hch.) = - lAc.' 

Putting this into Eq. (115) gives 

D" (hcha) = - (a"I
A
ca + r~iVca)eA' 

Substituting this result into Eq. (114) and using Eq. 
(117) results in14 

(116) 

(117) 

A~a= - t(a"lca + r~iVca)IACb - taIL In(hlA~)O~. (118) 
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If we choose the spinor basis ha such that halll.hb = const 
for all q, then we get 

Ab - l.(a 1~' + r~ 1'. )1 cb (119) tLa- - 2 IJ. ca /LV ca A , 

which agrees with the expression given by Ruse15 

except for sign. 

To conclude this section, we derive an expression for 
5 4-spinor connection coefficients in terms of Dirac 
gamma matrices in an arbitrary spin representation. 
For (54).-valued spinors our results will be shown to be 
much simpler and more general than those obtained by 
Fletcher. 16 To this end, note that the procedure used in 
deriving Eq. (109) can be generalized to give 

~1I.1JDxl; = H~II.[Dx(1JI;)] -1JII.[Dx ( W] - [X(~II.1J) ]I;}. 

(120) 

Moreover, since 

1 = - ~12). = - t(III.~). = tWZaIl.12). = - t lalll.l211.la 

= - t(laIl.12) II.WII.12) , 

m~king use of Eq. (120) with ~=laIll.12' 1J=laIl.12, I; 
= 12.1/1, and X = a"" we can write 

D", (12.1/1) = - t(laIl.12)"WII.12)D", (12111.1/1) 

= - tWaIll.12)II.[D", (la 1I.12I2 11.1jJ)] - W 1II.12)III.[D", (laIll.IJ2111.1/I)]), 

(121) 

where the contribution from the last term in Eq. (120) 
drops out because 

a", Wa1ll.12)II.W .12)] = a", (- 2) = 0 0 

Also, since 12.12 = 0, we have 

0= - HaIl.1211.1211.[D", WI2111.1/I)] = - t(laIl.12)II.[D", (12 II.Z al2 .1/1) ] 

(122) 

and 

0= tw 1I.12)III.[D", (la'-121211.1/I)]. (123) 

Adding Eqs. (121), (122), and (123) gives 

D", (12111.1/1) = - t(laIll.12)III.{D", W 1II.(IJ2 +1212)1I.1/I]} 

+ tWII.12)III.{D" [Zall.(I;l2 +1212)1I.1/I]}. (124) 

Now recall that by virtue of Eq. (74) of Paper I and Eqs. 
(31), (33) of Sec. II we can write 

za .(1;12 +1212).1/1= (IJ2 +1212) 0Za1/l 

= (IJ2 + 1 212)t0Za1/l= (14 +14) 0Za1/l 

and corresponding equations with la replaced by La. 
Consequently, 

D,,(l211.1/I) = - tZaIll.1211.{D",[(14 +14) 0 W1/I)]} 

+ t Za 1I.1211.{D", [(14 +14) 0 (la1/l)]). (125) 

Similarly 
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+Halll.{D,,[(14+14)@(la1/l)]}. (127) 

It then follows immediately that 

A~a= Z"II.(D",Za) = t(V") 0{D" [(14 +14) 0 Wla)]} 

- tWZ") 0 {D", [(14 +14) @ (lala)]). (128) 

Furthermore, with the help of Eq. (48), we can write 
for any A, B E (54).0 (54). 

A0 [D,,(140 B)]=A0 [D",(EvEV 0B)] 

=A0 Ev(EV 0B);"" 

where 

(EV @ B);" = a", (EV @ B) + r:~(E~ 0 B), 

and 

r~~= EV 0 (D"E~)=Ev @ (D"E~). 

In the same fashion 

A0 [D,,(i4 @B)]=A0 [D,,(EvEV 0 B)]= A@ Ev(EV@B);". 

Hence, Eq. (128) can be expressed in the form 

A~a= t[laIl.EvIl.Z"W II.Ev II.la);", + lall.Evlll.l"W II.Ev II.la);" 

_za III.Evlll.l" (lall.Ev II.la);", _la III.Evll.l" (lalll.Ev III.la);",]. 

(129) 

In order to put the above result in terms of Dirac 
gamma matrices, observe that from [cf. Eqs. (100) and 
(132) of I] 

r'" = (2)1/2i(E'" + E"), r 5=i(12- 12) 

we get 

E" = - (2)"3 /2i(1 + ir5)lI.r"', 

E'" = _ (2)-3/2i(l_ ir5)lII.r"'. (130) 

Substituting these expressions into Eq. (129) yields, 
after some straightforward operations and rearrange
ment of terms, 

A~a= - fg [(Zall.rvIl.1")W .1'" 1II.1a);", - (r III.rvll.l")(lall.rv III.l g);",] 

+ isWall.r5 II.rvll.l")W III.r5 .1'" II.la);", 

- W II.r5 II.rvll.l")(lall.rS .1'" II.l a);.,l· (131) 

Although this result is only valid for the standard spinor 
connection, its generalization to arbitrary spinor con
nections follows most simply from Eq. (78). We thus 
have 

D~la = D",la + M,,1II.1a, 

or 

(132) 

where A~Lis given by Eq. (131) above, and M,,(q) 
=K",(q)+K",(q). In particular, for the speCific cases 
K" = icp,,12 and K", = cp",12, Eq. (132) becomes 

(133) 

and D", (12.1/1) = - t ZaIl.1211.{D", [(14 +14) 0 W1/I)]} 

+ Hall.lzlI.{D,,[(h +14) G)(la1/l)]}· (126) A~"e = A~a + cp", o~, (134) 

Adding the last two equations and using 12 + 12 = I gives 

D"I/!= - t lalll.{D",[(l4 +14) 0 WI/!)]} 
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Fletcher, note first that the derivation of his Eqs. (30) 
and (37) is based on his Eq. (7). This equation, how
ever, is not true for an arbitrary spinor connection. In 
Appendix B we derive an alternate expression which is 
always valid, and show that for the Cases 3 and 4 dis
cussed previously in this section it reduces to Fletcher's 
Eq. (7). Thus, his Eqs. (30) and (37), for n = 4, corre
spond to our Eqs. (134) and (131). Equation (133) is not 
contained in Fletcher's results because for K" = icp,.Iz 
his Eq. (7) is not valid. A comparison also shows that 
our results are considerably simpler without any loss in 
the arbitrariness of the four-dimensional representation 
of the Dirac gamma matrices. Note, moreover, that 
our Eq. (132) has been derived without making any re
strictive assumption. It is, therefore, completely 
general. 

Equation (131) can be expressed in a somewhat differ
ent form by noting that 

(laAr5 Arv &la);" = (la&r5 AITl' &rv Ala);" 

= [a" (laAr5 &IT)](f Arv Ala) 

+ (laAr5 &IT)W &rv&la);" . 

Hence, recalling that r5 &r5 = - I, and also that ~&rs & 1) 
= _1)Ar5 &~ and ~&r,,&1)= 1)&r,,&~ for arbitrary ~,1), we 
get 

W &rs &rv Al"')(laAr5&rv &la);" 

= [a" (laAr5 AIT)]W &rv &la)WAr5 Arv&l"') 

+ (l"'Arv&lT)WArv Ala);,,· 

Similarly 

(laAr5 ArvAl"') (la&r 5&rV Ala);" 

= a.,(la&r5&lT)(lT&rv&laHla&r5&r v&l"') 

- (1"'&rvA1T)(fArv&la);,,· 

Also note that 

(135) 

(136) 

WArvA1"')(la&rv &la);" = WArvA1"')(la&lTl' Arv Ala);" 

= W &rvA1"')(l' Arv &la) a" (laA1T) 

- (1'" &rvAIT)(l' &rv &la);" . 

Substituting Eqs. (135), (136), (137) into Eq. (131) 
yields 

A~a = - i(l'" &rvA1a)(1'" &rv&la);" 

+ isw&rv&l"')(l' &rv&la)a,,(la&lT) 

+ isW Arv Ala)(laAr5&rv&1"')a"W&r5AlT) 

(137) 

- isW Arv&la)WAr5Arv&1"')a,,(laAr5AIT)' (138) 

This expression can be simplified further if the spinor 
basis is chosen so that 

za &~Al' = const, 

la &IzAlT = const 
(139) 

for all a, T. It readily follows from these assumptions 
that 
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la &lz&lT = const, Za &Iz&ZT = const, 

ZU&r5&ZT = aa &(Iz - Iz)&lT = const. 

Consequently, Eq. (138) reduces in this case to 

A~ a = - HZ'" &r v&Za)W &r" &la);" 

=-HYvY';,,)"'a 
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(140) 

(using the matrix notation with suppressed spinor indices 
introduced in Appendix B). The quantities in this last re
sult are the so called Fock-Ivanenko coefficients, 5 and 
are quoted in the literature in various forms. 17 

V. SPINOR CURVATURE TENSORS 

By analogy with the Riemann tensor defined in Sec. 
III, we introduce spinor curvatures IU', andO' for a gen
eral spinor connection, D~, by the following equations: 

xy: IU' &U = (D~D~ - D~D~ - D~x ,Y j)u (141) 

and 

xy :,o'&v= (D~D~-D~D~ -D~ .nlv (142) 

where 1U'(q) takes values in/l1/~)/I1.r~9 (5z).0 (5z)., and 
,o'(q) takes values18 in/l1. 0 /11. 0 ()z).0 (~'z) •. Adding the 
above defining equations yields 

xy :15' &1/!= (DJcD~ - D~DJc - D[x, y])1/!, (143) 

where 1/!=u+v, and@5'=IU'+,o' has values in/l1.0/11. 
0(54).0 (54).' The curvature tensors 113,,o,@5for the 
standard spinor connection Dx are defined in exactly the 
same manner as above but without the primes. We shall 
now establish the relationship between these standard 
curvature tensors and the Riemann tensor and later 
extend these relations to general spinor curvature 
tensors. 

Putting z = uv in Eq. (56) gives after some simple 
operations 

xy : ffi@ (uv) = (DxDy - DyDx - D(X ,y])uv 

= [(DxDy - DyDX - D(X ,Yj)u]v 

+ u[(DxDy - DyDx - D[X ,y j)v] 

= (xy:,o AU)V + u(xy: \l3&v) 

= [(xy :,0)12 + Iz(xy: 113)] ~ (UV) 

= [(xy :,o)lz + I 2(xy: 113) r 0 (Uv), 

where we have used the special operations previously 
defined by Eqs. (73) and (74) of I. Since Ii and v are 
arbitrary we can therefore write 

By an inner multiplication with Iz we get 

xy :ffi<:>12= [(xy :,o)lz +Iz(xy :IU)]· <:>Iz 

= [(xy :,o)lz + Iz(xy :IU)]@ Iz 

= - 2xy: ,0+ (xy: IU @ Iz)Iz. 

Consequently, 

where P '" 113 tV Iz. Alternatively, we can also write 

- C(6, 8)W= - 2,0+ Plz. 

(144) 

(145) 

(146) 
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Here the symbol C(i,j) denotes contraction of the ith 
and jth files of the tensor »1, regarded as a spinor ten
sox:,.in the space (S2I81H5 z)18I CS2181H 52)18I (S2i81H5z) 

181 (52 181H 5 z), where the files are numbered from left to 
right. 19 Similarly by an inner multiplication with 12 from 
the left, Eq. (144) yields 

or 

Iz <:> (xy :\n) = lz <:> [(xy :0)12 + 12(xy : 1lJ)]t 

= 12 ° [(xy :O)lz +I2(xy : Ij)] 

=XY :00 121z- 2xy:1j) 

= xy :Q12 - 2xy:1j) 

- C(5, 7)>>1= Qlz - 21j), 

where 

Q=0012• 

(147) 

Next we show that both P and Q are zero. To this end, 
note that: 

A 
xy: 1j).6.(uv) = (xy :1j).6.v).6.u= [(DxDy- DyDX - D[X .dV]AU. 

(148) 

The first term on the right can be put in the form 

(DXDyV)AU=X[(Dyv)AU] - (DyV)A(Dxu) 

=X[(DyV)AU] - Y[V.6.(Dxu)] +v.6.(DyDxu ). 

By exchanging X and Y we also have 

Finally, rewriting the last term in the right of Eq. 
(148) as 

(D IX , yIV)AU = [x, Y](V.6.u) -VA(DIX , nul, 

and substituting these results back into Eq. (148) yields 

xy: \lJ: (uv) = - v.&[(DXD y -DyDx - D[X YJ)u] 

Therefore 

+ XY(VAU) - YX(VAU) - [X, Y](VAU) 

=[(DXDy-DyDx-Dlx n)U].6.V 
A =xy:Ij).6.(VU). 

(xy :')r"'" (xy: Ij), (149) 

i. e., , is symmetric in the last two files. It follows 
immediately from this result that 

Pc::'012 =0 (150) 

and similarly that 

Q=oe1 2 =0. (151) 

Consequently, Eqs. (146) and (147) become 

C(6, 8)>>1= 20 (152) 

and 

C(5, 7)>>1= 21j). (153) 

Combining these two results and using @i=1lJ +0, we 
also have 

[crG, 8} + C{5, 7) ]9l= 2@i (154) 
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In order to modify these results so that they apply to 
the general spinor connections, we need to find the 
relationship between Ij) and Ij)'. This follows straight
forwardly by substituting Eq. (76) into Eq. (141); we 
thus get 

or 

xy: !lI' AV = Dx(DytI + KyAV) + KxA{Dyv + K y.6.v) 

-Dy(Dxv + Kx AV) -KyA(Dxv + Kx AV) 

-DIX,Ylv -KIX,yIAV 

=xy:Ij)AV + (DXKy-DyKX +KxAKy 

-KyAKX -KIX•YI ).6.V, 

xy: !P' = xy : !P + (DXKy - DyKX + Kx.6.Ky 

-KyAKX -KIX,YI)' 

Similarly, for 0' we obtain 

xy: 0' =xy: 0+ (DxKy-DyKX +KxAKy 

-KyAKx -KIX, YI), 

and adding the two results gives 

xy: 5' =xy: 5 + (DXMy - DyMX + Mx.6.My 

-MyAMX -MIX,YI)' 

(155) 

(156) 

(157) 

Clearly then, the generalization of Eqs. (152), (153), 
(154) follows merely by substituting into them the ex
preSSions for 0,!P, and 5 in terms of 01, !P' and @i 
respectively, as given by the above results. 

For the special case Kx = ix 0 cpl2 (Case 2 in the pre
vious section) we find 20 

xy: !lI' =xy:!P + [iX(y ocp) - iY(x ocp) - i{[X, Y)p) ocp JI2 

=xy: !lI + i[y 0 (DxCP) - x 0 (DrfP) ]12 

or 

=xy:[!P + i(D J\cp )12 ] 

!P' =!lI + i{D I\CP)12 ° 

Similarly 

0' = 0- i{D A cpjI2 , 

and furthermore 

5' = 5+ i(D 1\ cp)(~ -12) 

=5+(DACP)T5
, 

(158) 

(159) 

(160) 

where r 5 is the Dirac operator defined by Eq. (130) in 
I. For this particular case Eqs, (153), (152), and (154) 
generalize to 

C{5, 7)!R =2!P' - 2i(DACP)12, 

C{6, 8)!R = 20' + 2i(DI\CP)!2' 

[C(6, 8) +C{5, 7)]!R=25' -2(Dl\cp)r5 • 

(161) 

(162) 

(163) 

It is readily seen that for the case Kx =X 0 cpl2 (Case 3 
in the previous section) one obtains 

C(5, 7)!R=2!P' -2(Dl\cp)I2, 

C(6, 8)!R = 201 - 2(DI\CP)!2' 

[C(6, 8) +C(5, 7)]!R=25' -2(DI\CP)I2' 

(164) 

(165) 

(166) 
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where 1 = 12 + 12, We emphasize at this point the fact that 
by virtue of Theorem 2 of the previous section, Eqs. 
(161), (162), and (163) are the ones that apply for a 
spinor connection DJe which generates the standard four
vector connection, while by virtue of Theorem 4, Eqs. 
(164), (165), and (166) are the ones that correspond to 
a spinor connection which "alternately generates" the 
standard four -vector connection. 

In order to compare our results with others appear
ing in the literature, note that 

C(6, 8)lR=C(6, 8)(DI\DE,,)E IL = (DI\DE ,,)AE" 

and 

C(5,7)!R=(DI\DE...)AEIL 

Moreover, recalling the definition of the Dirac opera
tors in Eq. (23), we find 

[C(6, 8) +C(5, 7)]9/ = (DI\ DE,..)AEIL + (DI\DEIL)AEIL 

= [D 1\ D(E IL + E.J lA(E" +E") 

= - t(Dl\ Dr ,,)Ar". 

Consequently, Eqs. (163) and (166) can be written as 

- t(DI\DT ,,)AT" = 2@(-2(DI\q1)r5 

or 

(167) 

and 

Sf = - i(DI\Dr JA T" + (D 1\ (1)1 (168) 

respectively. In terms of the usual component notation 
these last two results become 

S;~ =EKE~: Sf = - iRK~cr"rcr Ar" + (DK'P ~ - D~'P .)rs, (169) 

S:~ = EKE~: Sf = - iRK~crILrcrAr" + (DK'P ~ - D~'P.)I. (170) 

Note that Eq. (170) differs from the spinor curvature 
tensor usually given in the literatures,lS by a factor of 
i in the last term. Referring to Schmutzer's derivation 
of the spinor curvature tensor, which agrees with 
Schrodinger's result, shows that the factor i can be 
explained by the fact that the bispinor connection he 
uses is not the same as the one we use in arriving at 
Eq. (170). Specifically, this factor i is direct conse
quence of the fact that the Nx in Eq. (108) differs from 
Mx in Eq. (106) by the same factor. It is also interest
ing to note that although in the derivation of Eq. (169) 
we start with the same spinor connection for (52)0 
valued spinors as Schmutzer, the different prescription 
we used for obtaining the bispinor connection leads to 
the factor r 5 in the last term in place of iI. 

APPENDIX A 

In the intrinsic spinor formalism introduced in I and 
further elaborated in Sec. II of this paper, we have 
omitted consideration of the dual space 5: of 52; L e. , 
the space of linear functionals on 52' As will be seen 
from the following discussion, this omission is quite 
intentional and leads to a simpler abstract formalism 
without the need for unnecessary complications. 

In order to relate our point of view with the approach 
followed in the literature reviewed in this paper, we 
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first remark that, in this literature, elements of 52 are 
called contravariant spinors and elements of 5: are 
called covariant spinors. For each element w* in 5t, 
its operation as a linear functional on 52 associates a 
complex number w* ou with each U in 52' The quantity 
w* oU is linear in u; furthermore, the operations of 
multiplication by scalars in 5: and addition in 5: are 
defined such that w* 0 U is linear also in w*. The inner 
product in 52 gives rise to a natural one -to -one map B 
from 52 onto 5; which takes each spinor v in 52 into a 
unique spinor v* =Bv in 5t according to the equation 

(BV)OU=VAU (AI) 

for all U in 52' Thus, wherever other writers have an 
expression involving spinors v+ in 5t, we reinterpret 
the expression as an equivalent one in which each v* is 
replaced by v = B -lV* in 52; for example, the expreSSion 
v* °U is reinterpreted as vAU. To explain this in terms 
of components, let us take a basis hI' h2 for 52' its cor
responding reciprocal basis hl, h2 for 52 and its dual 
basis h*l, h*2 for 5;. By definition, we have 

and it follows that 

h*"=BIf. 

(A2) 

(A3) 

A spinor v in 52 can be expressed in terms of compo
nents as 

v = v"h" = valf 

and its image v* in 5: as 

v* =v;h*". (A4) 

In the literature reviewed here only the components va 
of v, and the components v; of v* are used, but without 
the star on v;. Thus there the symbol va denotes the 
components of a contravariant spinor (in 52) with re
spect to the basis ha' and v; (with the star omitted) 
denotes the components of a covariant spinor (in 5;) 
with respect to the basis h*". In our work we do not 
consider v* but use only v, and we use both the com
ponents va and va; i. e., we are using only the space 52' 
and the words contravariant and covariant are used in 
reference to the components only and not to the spinors 
themselves. We therefore use the symbol va to denote 
the "contravariant components" of the spinor v in 52 
(i. e., with respect to the basis hal, and va to denote the 
"covariant components" of the same spinor v in 52 (i. e., 
with respect to the basis If). It follows from the above 
that 

v* ou=v;ua, V4U=VaU\ 

and since v* oU=VAU, then v;u" =vaua. Hence, expres
sions such as v; ua appearing in the literature (with the 
star on v; omitted) with the above meaning for v; and 
ua are reinterpreted in our formalism as vaua with the 
above meaning for va and u". We therefore have an 
equal expression with v; replaced by va' Moreover, 

v;=v*oha=VAha=Va' (A5) 

i. e., v; and va are equal regardless of their different 
meanings. 

In a like manner in our discussion we have also omit
ted consideration of the dual space 5; of 52' Conse-
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quently, expressions in the literature involving vt (star 
omitted) and va, which are the complex conjugates of 
v; and va respectively, are replaced in our interpreta
tion by an equivalent expression involving the corre
sponding equal quantities va;: (v) and v. '" (va). 

The operation of a spinor connection Dx for (52\ 

valued spinors is extended to (5;-). valued spinors by 
the equation 

(Dxv*) ou=X(v* 01.4) -v* ° (Dxu) , (A6) 

where u(q) is an arbitrary (52). valued spinor field, and 
v*(q) is any (5;) valued spinor field; Now for each q 
we have a map B~q) from (52). to (52). which takes each 
v(q) in (52). into v*(q) =B(q)v(q) according to the 
equation 

(BV)oU=V4U 

for all spinor fields u(q). Given any expression involv
ing the (5t>. valued spinor fields v* and Dxv*, we re
interpret it as an equivalent one in which v* is replaced 
by the (52). valued spinor field v=B-1v* and likewise 
Dxv* is replaced by B-1(Dxv*). It is important however 
to observe that 

(A7) 

where Dx* is the dual connection introduced in Sec. N, 
as we shall now prove. 

To this end, note that the equivalent of Eq. (A6) in 
our reinterpretation is 

[B-1 (Dxv*) ]41.4 =X(V4U) - V4(Dxu) 

and the definition of Dx*v is [cf. Eq. (64)] 

(Dx*V)4U=X(V4U) -V4(Dxu). 

Consequently, 

[B-1 (Dxv*) ]4U = (Dx*V)4U 

for arbitrary u, i. e., 

B"l(Dxv*) =Dx*v, 

(AS) 

(A9) 

For the sake of completeness, and in order to facili
tate comparison with the usual formalism given in the 
literature, we list the definitions of the components of 
the following various covariantly differentiated 
quantities: 

D~v* =v~tlh*a, 

D~u == u,a r,fla = u~ I".ha, 

D~*u == 1.1,*a I".ha =u~i".h". 

We see then that the familiar Leibnitz product rule 

(AIO) 

(All) 

(with the star usually omitted) is the component form 
of the equation 

a,,(v* 01.4) =(D~v*)ou +v* ° (D~u), 

which is the defining equation for the operation of Dx 
on v* as already stated in Eq. (A6). The equivalent of 
this equation in our reinterpretation is 

a ,,(V4U) = (D~*v) .... u + v .... (D~u), 

which is just the defining equation we have used [Eq. 
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(64) in the text) for the dual connection D~*. Further
more, since the map v* - v=B-1v* preserves the value 
of the components, i.e., v; =va, it follows from Eq. 
(A9) that 

(A12) 

The reinterpretation of spinor tensor equations is 
illustrated by the following example. A tensor L in 
5: ®52 is reinterpreted as a tensor Min 52 °52 , and, 
by recalling that L can be defined as a bilinear func
tional of the form L(u, v*) and M can be defined as a 
bilinear functional of the form M(u, v), the corre
spondence is made such that 

L(u,v*)==M(u, -v). (A13) 

It will follow then that tensors of the form s* t in 5; 052 

will correspond to st in 5261)52' In addition, the com
ponents La band M/ defined by the equations 

L==Labh*ahb 

M=Mablt'hb 

of the corresponding tensors Land M are equal, i.e., 

Lab==M/. 

Finally, if a spinor tensor field L(q) is (52).°(52)., 

(5;). 0(5;)., (5;->. ® (52).' or (52). ® (5;\ valued and if 
it corresponds in our reinterpretation to the (5 2 ).61) '(52) 
valued tensor field M(q), it will follow that the covariant 
derivative D~L will correspond to D~M, D~*M, D~(*' )M, 
or D~('*)M respectively. 

APPENDIX B 

Schrodinger6 has derived an expreSSion for what he 
calls the "covariant derivative" of the Dirac gamma 
matrices which is quoted and used by several au
thors. 16,21 This expreSSion is not true for arbitrary 
spinor connections; the purpose of this appendix is to 
derive an alternate result which is generally valid. To 
help in the presentation, we list some additional re
sults and definitions that we will be USing: First we 
have 

(B1) 

which was obtained by adding Eq. (49) to its transpose 
and using Eq. (23). We define the standard spinor con
nection matrix A" by 

A" =" A~al"la = l".(D ".la)l"la = (D "laW, (B2) 

which can also be expressed in the form 

A" = D ,,(lala) -la(D "l&), == - la(D )a). (B3) 

Note that 

A" .... Za=D".Za' Z0I 4A,,==-D,,10l. (B4) 

In analogy to Eq. (B2) we define an arbitrary spinor 
connection matrix by 

A~ ;:A~~l"le==A" +M", (B5) 

where we have made use of Eq. (132). 

Using now Eq. (67) in the case of the standard spinor 
connection, we can write 
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iJ ~ (l"'.&r v.&le) = 111 .&(D ~r ).&le + (D ~la).&r v.&le + l"'.&r v.&(D ~lrJ 

= r:.z"'.&r )...&lB _1'" .&A~.&r v.&la + z':'.&r v.&AjJ..&le' 

If we define 

(l"'.&rv'&Za);,,:= iJ ~(l"'.&r v.&la) - r:vl"'.&rA.&la' (B6) 

then the above expression can be put in the form 

(1 "'.& r v.&lrJ; ~ = 1 "'.&(r v.&A" - A~.&r v).&la' 

In terms of the A~ Eq. (B7) becomes 

(l"'.&r v.&la);~ -l"'.&(r v.&A~ - A~ ... r v).&la 

(B7) 

= 1"' ... (M" ... r v -rv ... M,,)"'Zs (B8) 

after making use of Eq. (B5). By introducing the 
operator 

V'~\I", ... rv ... lrJ (l"'.&rv"'Za);jJ. -l"' ... (rv ... A~ -A~ ... rJ",zB' 

(B9) 

Eq. (B8) reads 

V'~(l"' ... rv ... la) =l"'.&(M~ ... rv -rv"'M~) ... lB' (BlO) 

Observe that the right side of Eq. (BIO) is always zero 
iff M~ =cP ~1; thus we have 

Theorem. The equation 

(Bll) 

is always true iff K~ has the form K" = cP ",12 , 

Consequently, the requirement in Eq. (Bll) restricts 
the spinor connection to cases 3 and 4 in Sec. IV of the 
text. Note, in particular, that for case 2 of Sec. IV 
where K", = icp ",12 , we get 

V'~ (1 "'.&rv"'zs) =cp"l'" ... (rs ... r v - r v ... rS).&Zs 

(B12) 

For the purpose of comparing our results with 
Schrodinger's matrix notation, let Yv' A~ and M", be the 
matrices whose (J, T-th elements are 

(Y V)"T=Zo ... rV"'z1 , (A~)"T=lo ... A~ ... ln (M")OT=zo ... M",,,ZT 

respectively. Then Eqs. (B6), (B7), (B9), (B 10) 
become 

Y v; jJ. := iJ "I' v - r~ vI' A' 

YV;jJ.=YvA" -A,.Yv' 

V'~Yv:= Yv;" - (YvA~ - A~Y), 

V'~Yv=M,.Yv -YvM". 

(B13) 

(B14) 

(B15) 

(B16) 

The quantity V"~Yv defined by Eq. (B15) is what Schro
dinger and others call the covariant derivative of the 
Dirac gamma matrices (in their notation they have - r ,. 
for our A~). Note, however, that by virtue of Eq. (B16), 
V'~Y v '* 0 in general. Hence Schrodinger's Eq. (8), which 
corresponds to our Eq. (Bll), is not valid for arbi
trary spinor connections, in which case it should be re
placed by Eq. (B16). 
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IN.J. Hicks, Notes on Differential Geometry (Van Nostrand 
Reinhold, New York, 1965); also see R. L. Bishop and S. I. 
Goldberg, Tensor Analysis on Manifolds (Macmillan, New 
York, 1968). 
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The Hamiltonian and generating functional for a non relativistic 
local current algebra *t 
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The nonrelativistic current algebra with conserved current consisting of p(x), the particle number 
density, and J(x), the flux density of particles, is studied. The Hamiltonian for any time reversal 
invariant system of spinless particles, interacting via a two-body interaction potential, is expressed as 
a Hermitian form in the currents. This leads to a functional equation for the generating functional, 
which is the ground state expectation value of exp[ifdxp(x)f(x)]. In the N IV limit an expression 
for the generating functional in terms of correlation functions is given. Representations of the 
exponentiated current algebra which are translation invariant satisfy the cluster decomposition 
property, and those which have different Hamiltonians are shown to be unitarily inequivalent. 

1. INTRODUCTION 

Several physicists l-5 have investigated the possibility 
of expressing field theory in terms of local currents 
instead of the canonical fields. To gain further insight 
into writing field theory in terms of local currents, we 
study in this paper the nonrelativistic equal-time cur
rent algebra conSisting of p(x), the particle number 
density, and J(x), the flux denSity of particles. We seek 
to determine representations of the current algebra 
suitable for describing physical systems associated with 
a specific Hamiltonian H. A generating functional is 
used for this purpose. The representation incorporates 
certain general physical constraints on the system, 
such as current conservation, time reversal invariance, 
and translation invariance. The dynamics, which is not 
studied here, would be obtained by considering the time 
dependent local currents, p(x, t) == exp(itH) p(x) exp( - itH) 
and J(x, t) == exp(itH)J(x) exp( - itH), in the representation 
determined by the equal-time current algebra and the 
Hamiltonian. 

In this approach we start with nonrelativistic quantum 
mechanics in second quantized form. Then p(x) and J(x) 
can be written in terms of the canonical annihilation and 
creation field operators, and their commutation rela
tions computed. The commutation relations between 
p(x) and J(x) are taken as our starting point. 1 We will be 
especially interested in representations corresponding 
to the "N IV limit, " since they describe systems with 
"an infinite number of degrees of freedom" and have 
many features similar to those of quantum field theory. 
In this case the quantum mechanics of N particles in a 
box of volume V is considered. The limit is taken as 
N - 00 and V - 00 in such a way that tV IV - (5, the average 
density of the system. In statistical mechanics this is 
known as the thermodynamic limit. It is applicable to 
systems with a large number of particles when surface 
effects can be neglected. In this paper we deal only with 
the case of zero temperature. 

In Sec. 2 the p, J current algebra is defined as in 
Ref. 1. For our purposes it is more convenient to deal 
with the group obtained by exponentiating the currents. 
This is reviewed along with its unitary representations 
as given by Goldin. 6 The generating functional L(f), the 
ground state expectation value of exp[i f dxp(x)!(x)], is 
introduced and its use in defining a representation is 
discussed. 

In Sec. 3 we consider the Hamiltonian for a time 
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reversal invariant system of spinless particles. Dashen 
and Sharpl have given a formal expression for the 
Hamiltonian in terms of currents as the sum of a kinetic 
energy term plus a potential energy term. A rigorous 
definition for the kinetic energy term has been given by 
Goldin and Sharp7 for the Hamiltonian of a system of 
free bosons by considering it as a densely defined 
Hermitian form. We generalize this form to obtain the 
Hamiltonian for a system of interacting particles. The 
resulting expression for the Hamiltonian combines the 
kinetic energy and potential energy into one factored 
term. Two points of view may be taken in this section: 

(i) Given a representation in which a Hamiltonian 
exists, the Hamiltonian is expressed in terms of p(x) 
and J(x) as a densely defined Hermitian form, or 

(ii) given a representation, an operator with all the 
properties of a Hamiltonian is defined from a densely 
defined Hermitian form. 

The form of the Hamiltonian leads in Sec. 4 to a func
tional equation for the generating functional. Supple
mented by the appropriate boundary conditions, this 
equation determines a representation associated with 
the Hamiltonian. 

In Sec. 5 the generating functional for a representa
tion corresponding to a system of N particles is ex
pressed in terms of correlation functions. This form of 
the generating functional is extended to the N IV limit 
representations. Next, we consider the consequences of 
translation invariance and the cluster decomposition 
property. The results are analogous to those in field 
theoryB; the ground state is unique and is the only 
momentum eigenfunction. Furthermore, it is shown that 
representations corresponding to different Hamiltonians 
are unitarily inequivalent. Finally, the particle nature 
of the N IV limit representations is studied. The rep
resentation restricted to a finite volume is found to be 
the direct sum of N-particle representations. Thus the 
N /V limit representation is "locally Fock." 

These results are illustrated by examples in the 
following paper (to be published) where, in the N/V 
limit, the generating functional along with the Hamil
tonian and functional equation are given exactly in the 
following cases: (i) free Bose gas, (ii) noninteracting 
bosons in an external potential, (iii) free Fermi gas, 
(iv) bosons in one dimension with the two-body inter
acting potential U(x) == 2/ x 2 

0 

Copyright © 1974 American Institute of Physics 1138 
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2. REVIEW OF THE NONRELATIVISTIC CURRENT 
ALGEBRA 

This section contains a brief review of the nonrela
tivistic current algebra and its representations. (For a 
more extensive review see Refs. 7 and 9. ) 

In terms of the canonical field operators l/J(x) and 
l/J t (x) which satisfy either the commutation (-) or anti
commutation (+) relations 

[l/J(x) , l/J(y)t= [l/Jt (x), l/Jt(y)].=O, 

[I/J(x), l/J t (y) l. = 6(x - y), 

the particle density and flux density are given by 

p(x) = l/J t (x) l/J(x) , 

(2.1) 

J(x) = (n/2im) [l/J t (x)V l/J (x) - V ¢t (x) l/J(x) l. (2.2) 

Henceforth the mass of the particles and n will be set 
equal to 1. Dashen and Sharpl showed that the equal-
time commutation relations between p(x) and J(y) are 
given by 

[P(fl)' p(f2)l=o, 

[P(f), J(g)l=ip(g. Vf), 

[J(gl)' J(~)] = iJ(g2" Vgl - gl' V~) 

for both bosons and fermions. We have used the 
smeared currents p(f)= r dxp(x)f(x) and J(g) 

(2.3) 

= r dxJ(x)· g(x), where f(x) and each component of g(x) 
belong to a suitable class of test functions, for example, 
Schwartz's space 5, the set of Coo functions of fast de
crease at infinity. 

The commutation relations (2.3) will be taken as the 
starting for the work of this paper. We will also assume 
current conservation, (d/dt) p(x, t) + V· J(x, t) = O. This 
is expressed in terms of a Hamiltonian by 

[H, p(f)l = - iJ(V f). (2.4) 

Since the local currents correspond to physical ob
servables, we require them to be self-adjoint operators, 
p(f)t =p(f) and J(g)t =J(g). However, they may be un
bounded operators. For this reason it is convenient to 
work with the unitary operators formed by exponentiat
ing the currents, 6 

U(f)=exp[ip(f)] and V(411)=exp[itJ(g)l, (2.5) 

where (d/dt)41~(x)=go 411(,x), 41g(x)=x, and "0" stands 
for composition, i. e., go 41 (x) = g (41(x». 

Remark: 411(x) is the flow corresponding to the vector 
field g(x). This has the following physical interpreta
tion. Imagine a fluid with velocity field v = g(x). Then 
411(,x) is the position of a particle which starts at point 
x, after a time t. 

The exponentiated currents form a group with the 
following multiplication law: 

U(fl)U(f 2) = U(fl + f2)' 

V( 41) U(f) = U(f 041) V(41), 

V(41l) V(412) = V(412 0411)' 

(2.6) 

Throughout the rest of this paper we will be concerned 
with representations of the group of exponentiated cur-
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rents. Goldin6 has analyzed these representations using 
the Gel'fand-Vilenkin formalism for "nuclear Lie 
groups. "10 The results listed below will be used in our 
study. 

The Hilbert space for every continuous representation 
of U(f) and V(41) is unitarily equivalent to one with 
direct sum decomposition, 

H = fEE! dJ.J.(F)HF , 

FES' 
where J.J. is a cylindrical measure on 5', the continuous 
dual of 5 (i. e., 5' is the set of continuous real linear 
functionals on 5). For phYSical reasons explained below 
we will only be concerned with the case when dimH F = 1. 
The Hilbert space is then the space of square integrable 
functions on 5' with respect to the measure J.J.; i. e. , 
H=L2,.(S')· 

U(f) acts as a multiplication operator on elements of 
H, i. e., 

U(f)'iJ(F) = exp[i(F, f)] 'iJ(F) , 'fI'iJ(F) E H. (2.7) 

In order to express the action of V(41), we need the 
mapping 41* from 5' onto 5' defined by 

(41*F,f)=(F,fo 41), 'fiFe;. 5' and fES· 

The action of V(41) is then given by 

(
dJ.J.(41*F»)l/2 

V(41)'iJ(F)=X",(F)'iJ(41*F) dJ.J.(F) , 'fI'iJ(F) E H, 

(2.8) 

where dJ.J.(41*F)/dJ.J.(F) is the Radon-Nikodym derivative 
of J.J.(41*F) with respect to J.J.(F) and X",(F), called the 
multiplier, is a complex valued function of modulus one. 
In order for the Radon-Nikodym derivative to exist, the 
measure J.J. must be quasi-invariant with respect to the 
set of flows; i. e., for any measurable set XeS' and any 
flow 41, J.J.(X)=O iff J.J.(qJ*X)=O. The group law requires 
the multipliers to satisfy the equation 

(2.9) 

A representation of U(f) and V(41) is thus completely 
determined by a measure J.J. and a system of multipliers 
X",(F). 

The representation corresponding to the quantum 
mechanics of N identical particles has a measure con
centrated on delta functions6 ,1l; i. e., the measure is 
only nonzero on functionals of the form 

N 

F(x) = E 6(x - Xj) and dJ.J.(F) = da(Xl'~' ... , x N ). 
j=l 

By a suitable choice of measure the ground state for 
a given Hamiltonian may be taken as n(F) = 1. [In the 
N-particle representation the measure is given by dJ.J.(F) 
=dl/J*l/J(x1 ... x N ) where l/J (Xl'" x N ) is the ground state 
wave function. ] 

Remarks: (1) The ground state In) is cyclic with 
respect to U(f). In other words, the set of states of the 
form 'i'/..l ap(fj)/n) is dense inH=£2,.(S'). The con
tinuity of the representation then implies H is separable. 

(2) Dicke and Goldin12 have proposed a definition of 
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statistics for representations of the exponentiated cur
rent algebra based on the multipliers. They found that 
the only "well-behaved" irreducible representations of 
U(f) and V(lP) with dim HF= 1 are those corresponding 
to either bosons or fermions. 

(3) X_(F) = 1 always satisfies Eq. (2. 9). This cor
responds to a representation for bosons. 12 Thus a boson 
representation can be completely defined by giving a 
measure Jl and setting X" (F) = 1. There may be other 
systems of multipliers corresponding to bosons. 

(4) The representations with dimH F > 1 have the 
following physical significance: 

(i) If U(f) and V(lP) are reducible, the representation 
can correspond to particles with different masses or 
with internal degrees of freedom (e. g., spin). In the 
latter case, additional local currents need to be added 
to obtain a complete set of observables (e. g., spin 
density). Spin has been treated briefly by Grodnik and 
Sharp13 and Goldin. 6 

(ii) If U(f) and V(lP) are "well behaved" and irredu
cible, the representation corresponds to 
parastatistics. 14 

Thus by restricting ourself to the case dim H F= 1, we 
only will be conSidering identical spinless particles 
(either bosons or fermions). 

Much information about the representation can be 
obtained from the ground state expectation value of 
U(f). This is known as the generating functional and is 
denoted by L(f). Thus, 

L(f) = (0, U(f)o) = IS' dJl(F) exp[i(F, I)]. (2010) 

The generating functional for any representation has 
the following properties: 

(i) L(f)=L(-f)*. (2. 11) 

This follows from the relation U(f) t = U( - f). 

(ii) L(O) = 1. (2. 12) 

Since the ground state is normalized, (0, 0) = 1. 

(iii) [L(f) [ "" 1. (2. 13) 

This follows from the condition that U(f) be a unitary 
operator. (iv) L(f) is a positive functional. This means 

N 

z::; a/ akL(fk - fj) ~ 0, Va j,=- C, Ij E S, and finite N. 
j ,k=1 

(2. 14) 

This property follows from the requirement that the in
ner product on H be positive: i. e. , 

It can be shown that a continuous functional L(f) 
satisfying the above four properties determines a mea
sure Jl for a representation of U(f)o 6 If IJ. is a quasi
invariant measure and the multipliers are known (e. g. , 
this is the case for bosons), a representation of both 
U(f) and V(lP) is completely determined. Otherwise, it 
is necessary to know, L(f,9')=(O, U(f)V(lP) 0), in 
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order to completely determine a representation of the 
exponentiated currents. 

Remark: The exponentiated algebra and generating 
functional techniques we will be using are similar to 
those introduced by Araki8 in studying the CCR's. They 
have been applied to find representations of the canoni
cal commutation relations describing a nonrelativistic 
infinite free bose gas by Araki and Woods. 15 A similar 
approach was used in a study of the CAR's by Araki and 
WysS.16 

3. THE HAMILTONIAN EXPRESSED IN TERMS OF 
CURRENTS 

In this section we will express the Hamiltonian of a 
phYSical system in terms of the currents p(x) and J(¥). 
A formal expression for the Hamiltonian abstracted 
from canonical field theory was given by Dashen and 
Sharp. 1 In terms of the canonical field operators (satis
fying either the CCR's or CAR's) the Hamiltonian for a 
system of particles with a two-body interaction potential 
V(x) is given by 

H =~ J dxv I/J\x), V I/J(x) 

+ ~ 1 J dxdYl/Jt(x),pt(y) V(x- y)l/J(y) I/J(x). (3.1) 

The potential energy term can be written as 

P. E. = ~ 1 J dxdy p(x) [p(y) - 6(X - y)] V(x - y)o (3.2) 

To obtain the kinetic energy term, we introduce the 
quantity K(x) = Vp(x) + 2iJ(x). In terms of the canonical 
fields K(x) = 21/J t (x)v I/J(x). Then formally the kinetic 
energy is given by 

K. E. =t 1 dxK(x)t p(!) K(x). (3.3) 

By combining Eqs. (3.2) and (3.3) the Hamiltonian is 
given by 

H = t J dx K(x) t ptx) K(x) 

+ ~ 1 1 dxdy p(x)[p(y) - 6(X - y)] V(x - y). (3.4) 

In the N /V limit there are two problems with writing 
H as the sum of the total K. E. plus the total P. E. : 

(i) The K. E. /particle and the P. E. /particle are finite. 
However, the total K. E. and the total P. E. are infinite. 
Therefore, it is unclear just how each term in Eq. (3.4) 
is to be defined. 

(ii) From statistical mechanics the ground state ener
gy is proportional to the number of particles; Eo - EN 
as N becomes large. In the limit, Eo= 00. Thus, the 
sum of the two terms in Eq. (3.4) is also ill defined as 
it stands. 

These problems lead us to consider an alternative 
expression for the Hamiltonian. First, it is necessary 
to define the quantity "l/p(x)" which appears in the 
kinetic energy term. In the representation corres
ponding to a free Bose gas, a rigorous definition has 
been given by Goldin and Sharp. 7 By extending their 
definition we can combine the K. E. and P. E. into one 
term and obtain a well-defined expression for the 
Hamiltonian as a densely defined Hermitian form. 
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We denote the Hamiltonian for a free Bose gas by 

Ho=i J dxK(x)t p~x) K(x). 

It is defined as follows7
: 

Let 

v = Span { w(x)p(x)<I>; <I> E Hand w(x) E COO functions 

of polynomial growth at infinity}. 

v is a set of vector valued distributions "proportional" 
to p(x). "l/p(x)" is defined as a map from vX v-5' in 
the following way: Let Vi =w1(x)P(X)<I>l and 
v2 = w2(x)P(X)<I>2' Then 

(Vi' ptx) V2)=(<I>l' Wl(X)w2(X)P(X)~). 
Let L) = Span { exp[ip(f)] Q; 'd f E 5 and Q = the ground 
state}. 

f) is a dense linear manifold in H. For the free Bose 
gas it can be shown K(x)LJc v. As a result 

(<1>1' Ho <1>2) = i J dx (K(X)<I>l' P(~) K(X)<I>2)' 

is a well-defined Hermitian form for all <1>1 and <1>2 E L) • 

Remark: The seemingly natural operation of l/p(x) 
on v=w1(x)P(X)<I>l' [l/p(x)]v=Wl (X)<I>l' is not in fact 
well defined, since, if V can also be written as 
V = w2(x)P(X)<I>2' it does not necessarily follow that 
Wl(X)<I>l =W2(X)<I>2' 

By generalizing the form of Ho we will show for an 
interacting system that: 

(1) H is defined as a bilinear form on the dense do
main, 

L) = Span{U(f)Q;fE 5 and Q=the ground state}, 

by 
-- t 1 -

H = i J dx K(x) p(x) K (x), where K(x) = K(x) - A(x, pl. 

The operator A(x, p) will be defined precisely later. 

(2) H is both Hermitian and positive. 

(3) (<I>,HQ)=O, <l>EL), where Q=the ground state. 

We start by assuming there is a representation of 
U(f) and V(cp) on a Hilbert space H along with a 
Hamiltonian H satisfying the following conditions: 

(i) There is a normalized state of lowest energy; the 
ground state Q. We require H ~ O. Thus the zero of 
energy is chosen such that 

(3.5) 

(ii) L) = Span {U(f)Q;fE S} is dense in Hand L) c the 
domain of H. 

(iii) Current conservation 

rH, p(f)] = - iJ(V' f)· (3.6) 

(iv) There is an antiunitary time reversal operator 
T such that 

Tp(f)T- l = p(f), T J(g)r-l = - J(g), and TQ = Q. 
(3.7) 
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We will also make use of the relation 

00 1 
eABe-A = 6 ,(ad"A)B, 

n=0 n. 
(3.8) 

where (adOA)B = Band (ad"A)B = [A, (adn-1A)B]. 

Two simple results we will need can easily be derived 
from Eqs. (2.3), (3.6), and 3.8. These are 

and 

[eip(fl ,J(g)]= - ~i[exp(ip(f)),K(g)]=- p(g. V' f) 

x exp[ ip(f)] 

(3.9) 

[exp(ip(f)) , H] = [- J(V' f) + ~p(V' f· V' f)] exp[ip(f)]. 

(3.10) 

Our first theorem shows time reversal invariance and 
current conservation are sufficient to determine the 
matrix elements of J(g) and H in terms of those for p. 

Theorem 1: Suppose there is a representation of 
U(f) and V(cp) satisfying conditions (i)-(iv) above. Let 
If> = exp[ip(f)]Q. Then, 

(fll J(g) I f2> = ~(fll p(g. V' (fl + f 2)) I f2> (3. 11) 

and 

(fliH If2>=~(fllp(V fl' Vf2) If2>. (3.12) 

Proof: Using time reversal invariance [Eq. (3.7)], we 
have 

(flIJ(g) I f2> = (T J(g) exp[ip(f2)] Q, Te ip(fl) Q) 

= - (Q, exp[ip(f2)]J(g) exp[ - ip(fl)]Q). 

Substituting in Eq. (3.9) twice and also using Eq. (2.6), 
we obtain 

(fll J(g) I f2> = - (Q, exp[ - ip(fl)] 

x [J(g) - p(g. V(fl + f 2))] exp[ip(f2)]Q). 

Therefore, 

Next, by applying current conservation and using Eqs. 
(3.5), (3.10), and (3.11) we have 

(fliH I f2> = (exp[ip(fl)] Q, [H, exp(ip(f 2))]Q) 

= (exp[ip(fl)]Q, [J(V f2) - ~p(V f 2· V f 2)] 

x exp[ip(f2)]Q) 

= ~(fllp(V fl"V f 2) If2>' 

Remarks: (1) A Hermitian form on a dense set of 
states does not necessarily determine an unbounded 
operator. If the form determines a Hermitian operator 
it may have many (or no) self-adjoint extensions de
pending on the choice of its domain. Therefore, Eqs. 
(3.11) and (3. 12) are not sufficient to determine J and 
H as operators. 

(2) As a result of Eq. (3.12) 

(P(fl)Q, H P(f2)Q) = HQ, p(V fl • V f2)Q) 
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In the N /V limit, for a translational invariant system 

(0, p(x)O) = p, the average density. 

Therefore, (P(f)0, H P(f2)0) =! pI dx V fIe V f 2• 

Now, using the matrix elements of H given by Eq. 
(3.12) an expression for H will be derived in terms of 
p(x) and J(x). For this purpose, we first determine an 
operator A(x, p) having the property that K(g)O=A(g, p)O. 
Consider a representation with Hilbert space H =L!(S') 
and ground state O(F) = 1. Let A(g) be the operator of 
multiplication by (K(g)O) (F) defined by 

(A(g)<p) (F) = (K(g)n) (F)<p(F) 

and 

Domain A(g)={<p(F)<=: H; 1 dJ..L(F) 1 (A(g)<p) (F) 12 < oo}. 

Since exp[ip(f)] is multiplication by exp[i(F,j)] we have 
[A (g) , exp(ip(f»]=O. AlsoA(g)exp[ip(f)]O 
=exp[ip(f)]K(g)O. As a result the domain of A(g) in
cludes the set j), and therefore it is a dense set. By 
time reversal invariance it follows that (K(g)O) (F)* 
= (K(g)O) (F). Thus A(g) is Hermitian. Moreover, A(g) 
is self-adjoint. To prove this, it is sufficient to show 
that [Range(A ± i)} = {O}. Let <p(F) E [Range (A ± i) f . 
Then 

Is' dJ..L(F)<p(F)(A(g) ± i) lJr(F) = 0, VlJr(F) <=: Domain 

A(g). 

Pick lJr(F) = Xc(F) = the characteristic function for the 
set C c S'. Then 

J dJ..L(F) <p(F) [(K(g)n)(F)± i]= 0, VCcS' 
c 

and therefore 

<p(F) [(K(g)O)(F)±i]=O, 

Since [(K(g)O)(F)±ihO, we have <p(F) =0. Therefore, 
A(g) is self-adjoint. 

It will be useful to express A(g) as a function of p. 
This is possible since the p's are multiplication opera
tors and polynomials in p applied to the ground state 
are dense. We proceed as follows: Let 
t = {If; j = 1, 2, .. ·} be a countable dense set of test 
functions (e. g., in Schwartz's space, finite linear com
binations with rational coefficients of the Hermite 
functions). 

Let f)' = Span{ exp[ip(f)n]; f E ]}. Since j) is dense 
in H, by the continuity of the representation it follows 
that j)' is also dense. However, the states 
{exp[ip(f)]O; fE]} are neither orthogonal nor linearly 
independent. It is therefore convenient to orthogonalize 
them using the Gram-Schmit procedure. Let 

I hI> = U(fl)O, 

Ih,.>= tt a~n)U(f)O, such that (hi' hj)=oi,j' 

Clearly, Span {hJ; j = 1, 2, ... }= j)'. Since this set is 
dense, we can write 
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The desired operator A(g, p) is defined by 

A(g, p) = it bn(g)(~ a~n)U(fJ~. (3.13) 

Furthermore, K(g)O depends linearly on g. As a result 
bn(g) is a linear distribution; bn(g) = r dxbn(x). g(x). 
Therefore we can write, A(g,p)= r dxg(x)· A(x, p), 
where 

A(x, p)= t; bn(X{~ a~n) U(fJ»)' 

Next, define K(x)=K(x)-A(x,p). By construction we 
have 

K(x)O=O 

and 

[exp(ip(f», K(x}] = [exp(ip(f», K(x)] = - 2iV f(x)p(x) 

xexp[ip(f)] 

(3.14) 

Theorem 2: i r dxK(x)t [1/p(x)]K(x) is a well-defined 
Hermitian form with domainj). Furthermore, 

\ <PIli f dxK(x) t P(~) K(x) I <P~ = (<PI' H <P 2), V<PI, <P2 <=:j) . 

(3.15) 

Proof: Observe that 

(fl I if dxI{(x)t P(~) K(X)lf2) 

= t 1 ax \K(X) exp[ip(fl) ]0, p~X) K(X) eXP[iP(f2)]0) 

= i 1 dX(- 2iV nx)p(x) exp[ip(fl)]O, 

x p~x) (- 2i)V f 2(x)p(x) exp~p(f2)]0 ) 

= !(exp[ip(fl)]O, p(V fl • V f 2) exp[ip(fa) ]0) 

=(flIHlfa)' 

This can be extended by linearity to the domain j) . 

Formal manipulations can easily be performed with 
this form of H. For example, we can verify current 
conservation: 

[i f dxK(x) t p~x) K(X), p(f)] 

=t 1 ax(K(X)t P(~) [K(X), p(f)] 

+ [K(x) t, p(f)] p~X) K(X») 

=tl dX~(X)t P(~) p(x)Vf(x)-Vf(x)p(x) P(~) K(X») 

= t 1 ax V f(x) [K(x) t - R(x)] = - iJ(V f). 

In the last step we used A(x, p) t = A(x, p), which follows 
from time reversal invariance. 
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These manipulations can be cast into a rigorous form 
by showing that (~1' Hp(f)~2) - (P(f)~l' H~2) 
= - i(~l' J(V f)~2)' V ~1' ~2 ~ f) follows from Eqs. 
(3.11) and (3. 12). 

In an alternative approach, only a representation of 
U(f) and V(cp) is assumed. Then the Hermitian form in 
Eq. (3.15) is used to define an operator with all the 
properties of a Hamiltonian. It is necessary to show the 
Hermitian form is positive. This can be done if one 
assumes (~, p(f)~):;:" 0, V f~ 5 such thatf(x):;:" 0 and 
~ EO Domain of p(f). This is phYSically necessary since 
the expectation value of the density in any state must be 
positive. In the representation with the Hilbert space 

H =L!(5 '), 

(~, p(f)~) = J dj..t(F) (F,t) 1 ~(F) 1
2. 

Therefore, the measure is concentrated on functionals 
F~ 5' such that (F, f):;:" 0, V f(x):;:,. o. 

Theorem 3: 

t J dx K(x) t P(~) K(x) 

is a positive Hermitian form. 

Proof: Let 

n 
~=6 ap(f})n, 

J=l 

Ic 1f - t 1 - ) \~, 8 dxK(x) p(x) K(x)~ 

" =i .6 ak*a}<tklp(Vfk' vfj)lf}> 
J ,k=l 

=i J dj..t(F) (F, I~ ajVfJexp[i(F,N]\2 ):;:"0. 

The following theorem of Friedrichs17 tells us that the 
Hermitian form in Eq. (3.15) defines a positive self-
adj oint operator. 

Friedrichs' theorem: A positive semidefinite 
Hermitian form N1' 1/!2} defined on a dense linear set R 
in a Hilbert space H can be extended by continuity to a 

. positive semidefinite Hermitian form on a larger linear 
set R' > R which consists of elements 1/! ~ H such that, 
for some sequence 1/!n~ R, II1/! -1/!"II- 0 and 
{1/!n-1/!m' 1/!n-Wm}-O. Furthermore, there exists a 
unique positive self-adjoint operator A such that 
f) (A)c R' and {1/!1' lP2} = (WI' A1/!2)' VWI ~ R' and W2 EO f) (A). 

Therefore, the expression t f dxK(x)t [l/p(x)] K(x) 
can be used to define an operator with all the properties 
of a Hamiltonian. If we had begun with a Hamiltonian, 
it would not be clear whether this would be the same as 
the one constructed from Friedrichs' theorem due to 
the technical question concerning the domain of H. We 
will not pursue this matter further here. 

Remarks: (1) Eqs. (3.11) and (3.12) and the result 
that Eq. (3. 12) defines a positive Hermitian form have 
been obtained independently by Aref'eval8 using different 
methods. 

(2) Coester and Haagl9 have discussed a similar form 
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for the Hamiltonian in terms of the canonical relativistic 
scalar fields cp(x) and 1T(X). 

(3) There is an interesting similarity between the 
form of the Hamiltonian derived above and the 
Hamiltonian for a particle in a magnetic field: 

1f t 1 p2 
Ho = 8 dx K(x) p(x) K(x) - Ho = 2m ' 

H =t f dx [K(x) - A(x, p)]t P(~) [K(x) - A(x, p)] 

-H=- p--A . 1 0 e)2 
2m c 

In our case, for an interaction the free Hamiltonian is 
modified by K(x) - K(x) - A(x, p) while in quantum 
mechanics the free Hamiltonian is modified by 
p - P - (e/c)A. There is also a difference. In quantum 
mechanics xfree =p/m-x=(l/m) [p-(e/c)A] while in 
our case p = - V. J remains true for both the free case 
and the interaction. 

(4) In terms of the canonical fields both the currents 
[Eq. (2.2)] and the Hamiltonian [Eq. (3.1)] have the 
same form for both bosons and fermions. In terms of 
the currents (as we will see in the following paper) the 
free Hamiltonian has a different form for bosons and 
fermions. This is not as surprising as it might appear 
at first sight. In quantum mechanics the free 
Hamiltonian for bosons and fermions is formally the 
same; H = - i L: ~=l a2 lax J 

2
• However, the domains are 

different; symmetric functions for bosons and anti
symmetric functions for fermions. As a result the free 
Bose Hamiltonian and the free Fermi Hamiltonian are 
different operators with distinct spectra. 13 

(5) Hopefully there will be a systematic method for 
determining A(x, p) for a given potential. Equation (3.4) 
might be used as a guide towards this end. 

4. FUNCTIONAL DIFFERENTIAL EQUATION FOR 
L(f) 

Using the results of the previous section we will 
derive a functional differential equation for the gen
erating functional L(f). When supplemented by the ap
propriate boundary conditions this equation can be used 
to determine L(f) and hence a representation cor
responding to a given physical system. This has been 
done in great detail for the free Bose gas in Ref. 20 (see 
also Goldin and Sharp21). 

We start with the ground state condition [Eq. (3.14)], 
R(x)n = O. Forming the inner product of K(x)n with 
exp[-ip(f)]n, we find o=(n, exp[ip(f)]K(x)n). Using 
the definition of K(x) and Eq. (3. 11), we then have 

o=(n, exp[ip(f)] [Vp(x)-iVf(x)p(x)]n) 
(4.1) 

- (n, exp[ip(f)] A(x, p)n). 

Both terms can be evaluated using functional derivatives 
of L(f). Since 

T Of~x) L(f)=(n, exp[ip(f)]p(x)n), 

Eq. (4.1) can be written 
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[ . ] 1 0 ( 10) V-zVj(x) i oj(x) L(f)=A x, i oj L(f). (4.2) 

The solutions of this equation which are physically 
admissable are re·stricted by several conditions. These 
include the general properties [Eqs. (2.11)-(2.14)] of 
a generating functional, namely: 

(1) L(f)=L(-j)*. 

(2) L(O)= 1. 

(3) IL(f)I,,;1. 

(4) L(f) is a positive functional. 

Other conditions may include: 

(5) L(f) is an extremal solution in the sense that it 
cannot be written as a convex linear combination of two 
other solutions. This has the effect of requiring the 
representation of U(f) and V(cp) to be irreducible (see 
Ref. 20, Theorem 3.4). 

In the N IV limit we can also use translational in
variance or the cluster decompOSition property. (These 
will be explained further in the next section. ) 

) 1 0 I -
(6 i oj(x) L(f)1 '-0 =(a,p(x)a)=p. 

(7) L(f) = L (fa) , where ja(x) = j(x - a). 

(8) limL(f+ha)=L(f)L(h), where ha(x)=h(x-a). 
a~oo 

For the free Bose gas, Eqs. (4. 2) becomes 

[V-iVj(X)]~ o;(x) L(f)=O. 

In this case it is known20 that conditions (2)-(6) uniquely 
determine L(f). It is not known whether these con
ditions are sufficient in other cases. Furthermore, it 
is not yet known how to determine the A(x, p) cor
responding to a specific interaction. However, in the 
following paper, A(x, p) and L(f) are given explicitly 
in the N IV limit, and Eq. (4. 2) is verified for three 
additional cases: 

(1) Bosons in an external potential, 

A(x, p) = p(x)V Inp(x). 

(2) Free Fermi gas in one dimension, 

A(x, p) = 2p(x) f ..EL p(y) 
x-y 

(3) 21x2 interaction in one dimension, 

A(x, p) = 4p(x) f...!!L p(y). 
x-y 

5. L(f) IN THE N/V LIMIT 

In this section we discuss some general properties of 
the generating functional L(f) in the N IV limit. First, 
for an N-particle representation we find an expression 
for L(f) in terms of correlation functions. This form 
of L(f) is extended to the N IV limit when the correlation 
functions satisfy appropriate bounds. Next, we consider 
the consequences of translational invariance and the 
cluster decomposition property. It is shown that dif
ferent generating functionals give rise to unitarily in-
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equivalent representations of U(f). Finally, the particle 
nature of the N IV limit representation is examined. 

A. Expansion of L(f) in terms of correlation functions 

The N-particle representations of the current algebra 
[Eq. (2.3)] have been studied by Grodnik and Sharp, 11 

and Goldin. 6 We will use the correspondence between 
these representations and conventional quantum 
mechanics to obtain an expression for L(f) in terms 
of correlation functions. An N -particle representation 
is defined on the Hilbert space: 

H = ~ L2s (RH), 

~L2A (R N), 

the totally symmetric functions for bosons, 

the totally antisymmetric functions for 
fermions, 

Acting on >¥(Xl' ... ,x N) 6. H, we have 
N 

p(x)>¥(xl' ... ,xN) = L o(x - Xk)>¥(Xl ' ... ,xN) 
k=l (5. 1) 

or N 

p( f)>¥(xl , ... ,xN) = 6 !(xk) >¥(Xl' ... ,xN) 
k=l 

and 

J(x)>¥(xl , ... ,xN) 

1 N 
=-2' ~ [-V,,0(x-xk)+20(x-xk)V,,]>¥(xl ,···,Xti) 

z k=l k 

or 

J(g)>¥(xl , ... ,xN) 

1 N 
= -2. L [2g(xk)· V" + (V. g) (xk)]>¥(Xl , .. ·, xN)· 

l k=l k 

The generating functionals are given by 

L(f) = (a, exp[ip(f) ]a) 

(5.2) 

(5.3) 

= f dxl ·., f dxNexp[ij(xl )]··· exp[if(xN)]a*a(xl ,·· ., x N), 

where a(xl , . 0 • , x N) = the ground state wavefunction, and 

L(f, g)=(a, exp[ip(f)]exp[iJ(g)]a) 

= f dxl ,,· f dxna*(xl .. • x N) 

N (5.4) 
x n exp[ij(xk)]exp[ij(xk,g)] a(xl .. ·xN), 

k=l 

where j(x, g) == (1/2i)[2g(x). V + (V. g) (x)]. 

Remarks: (1) One can write 

( 
il J 1/2 

exp[ij(x, g)] 1/!(x) = 1/! 0 cp(x) det ilxm 'Pn(x); , 

where cp is the flow corresponding to the vector field g. 
The factor [det(il/ilxm)'Pn(x)] is the Jacobian of the 
transformation x- cp(x), and is necessary in order for 
exp[iJ(g)] to be unitary. (See Ref. 6.) 

(2) H is unitarily equivalent to L~(S') where the mea
sure is concentrated on {F co 5'; F == 'Z:'l o(x - xk )} and 
diJ,(F) = da*a (Xl·" X N ). Furthermore, the ground state 
is given by a(F) = 1. Boson and fermion representations 
are distinguished by the multipliers X.,(F). 

For a representation defined by L(f, g) it is convenient 
to think in terms of the n-point functions, 
(a, p(xl )· .. p(xm)J(xm• l )··. J(xn )n), instead of the mea-
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sure and multipliers on H =L~(S'). By the reconstruc
tion theorem (see Ref. 22) the n-point functions deter
mine a representation of the current algebra. All the 
n-point functions can be obtained by taking functional 
derivatives of L(f, g). Therefore, L(f, g) determines a 
representation of the current algebra. 

Remarks: (1) There is a slight complication in 
determining the n-point functions from L(f, g). The p's 
are obtained directly by taking functional derivatives: 

1 0 1 0 I 
- -- •.• - -- L(f 0) I 
i Ii!(xl ) i Ii!(xm) '/=0 

Since the J's do not commute, 

1 Ii 1 Ii I 
i lig(~) •.. i og(xm) L(O, g) I &,,0 

= _1-6(0 J(x ) ..• J(x )0) m! l' '1'1 I'm' 

where 6. = the sum over all permutations of (1,2, ... ,m). 

However, by using the commutation relations (2.3), 
(0, J(xl) ... J(xm)O) can be obtained inductively from 

1 0 1 0 I 
---'" ---L(O g)1 
i og(xl) i og(xm) , &=0 

plus the n-point functions of lower order (n < m). 

(2) The J's (in the n-point functions) can be replaced 
by p's using the operator A(x, p) defined in Sec. 3: 

J(XI)O = - ti[A(xl , p) - V'p(xl)]O, 

J(xl)J(X:!)O = - ti{[J(xl), (A(X:!, p) - V'p(X:!»] 

+ (A(X:!, p) - V'p(X:!»J(xlnO. 

Using the functional representationll J(x) 
=p(x)(I/i)V' li/lip(x)+F(p(x», we have 

Thus J(xl)J(X:!)O can be obtained from a function of p on 
O. This procedure can be extended to J(xl) ..• J(xn)O. 
Therefore, a representation of the current algebra is 
determined by A(x, p) and L(f), provided the derivatives 
of A(x, p) are well behaved. Goldin6 used an expression 
similar to A(x, p) to give rigorous sufficient conditions 
for recovering a representation of the current algebra 
from that of the exponentiated currents. 

The n-point functions of p can be related to the cor
relation functions, which are defined as follows (for the 
N -particle representation): 

Rn(xl , ... ,xn) 
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Using the symmetry of the wavefunction and Eq. (5. 1), 
we obtain 

(0, p(xl)O) = RI(XI), 

(0, p(xl)p(X:!)n) =R2 (XI, X:!) + Ii (Xl - X:!)RI(~)' 

(0, p(xI)p(X:!)p(lS)n) =RS(XI'~' Xs) 

+ L Ii(Xl - X:!)R2(~' x3) 
perm 

Thus (0, p(X1) ... p(Xn)O) is the sum of n terms, each 
term being the sum over permutations of the variables 
Xl' ... ,xn of the product of m delta functions multiplied 
by R n_m• 

Remark: The above expressions are independent of the 
number of particles in the representation, As we will 
see they are also true in the N IV limit. If p(x) can be 
written in terms of the canonical field operators as, 
p(x) = 1j!(x) t 1/J(x) (Eq. 2.2), the correlation functions are 
the n-point functions for the canonical fields: 

Rn(xl' .•. ,xn) = (0, 1/J t(XI)'" 1/J t(Xn) 1/J(xn) .. • 1/J(xl)O). 

The correlation functions have the physical inter
pretation, 

\

The probability of finding n ~ 
(1/ I)R ( ) particles at the points Xl' ... ,xn 

n. n Xl' ... , xn regardless of the pOSitions of the . 
remaining particles 

We can now obtain an expression for L( f) in terms of 
the correlation functions. Let F(x) = exp[i!(x)] - 1, and 
note that 

exp[i!(xl)] = F(xl) + 1, 

exp[i!(xl)] exp[i!(X:!)] = F(xl)F(X:!) + F(xl) + F(X:!) + 1, 

n 1 j 

exp[i!(xl)]'" exp[i!(xn)]= 6 L fil( _ ')1] n F(x. ). 
perm j=O • n J. k = 1 k 

(5.5) 

Substituting Eq. (5.5) into Eq. (5.3) for L(f) and using 
the symmetry of the wavefunction 0 and appropriate 
change of variable labels in the integrals, we obtain 

L(f)= ta ~! f dxl .. • f dxnF(Xl)'" F(xn)Rn(xl ,··· ,xn)· 

(5.6) 

[As a check notice the leading term, the one without any 
Ii functions, in the n-point function 

(0, p(xl ) ... p(xn)O) 

1 0 1 _Ii _ L(f) I 
= i Ii!(xl) ••• Ii! (xn) 1/=0 

is just Rn(xl , ••• ,xn). 1 
In order to carry out the N /V limit, we introduce the 

following notation: Let R ~ N) = The nth correlation func
tion for N particles in a box of volume V, and let 

a~ N) = f dxl ". f dx"F(xl) .. • F(Xn)R~N) (Xl' .. 0 ,Xn). v v 

The generating functional for the N -particle representa
tion can now be written as L ~!) = Z; ;=0 (1/ n! )a~N) • 
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If the N /V limit is to exist, we might expect 
R~~) -Rn 'tI nand 

~ 

LJ.,f)-L(f)= 6 
",,0 

where 

a =f= dx "'1~ dx F(x )···F(x)R (x .··x). n _eQ 1 _GO n 1 n n 1 n 

In the next theorem we give sufficient conditions for the 
N /V limit of L(f) to exist. These conditions are 
probably adequate for most physical systems. [They 
will be used in the following paper to explicitly calculate 
L(f) in the N /V limit for several examples. ] 

Theorem 4: If RC:) (Xl' ••. ,Xn) - Rn(xV ... ,xn) and 
IR~N) I .; c"nn/2 'tIn,N for some constant c, then 
L N(f) - L(f). 

Remark: Girard23 used an expression similar to Eq. 
(5. 6) in studying the thermodynamics of a free Bose 
gas in terms of the local current algebra. The proof 
given below is essentially the same as the one he used. 

Lemma: The series 5(c) = Z;;'o (I/n! )cnnn/2 converges 
for all c. 

Proof: We use the ratio test. Let 5n=the ratio of the 
(n + I)th term to the nth term. Then 

S _ [I/(n + I)!] C"'l (n + I)<n+1I /2 

n- (I/n!)cnnn/2 

=c(n+ I)<n-1I/2 /nn/2 

= c(n + 1)-1/2 (1 + I/n)n/2 

-cOel /2=O. 

Therefore, the series for S converges. 

Proof of theorem 4: Since R~Nl_ Rn and 
IR~N) I ';cnnn/2, it follows that IRnl .;cnnn/2. As a result, 

lanl .; J dx l '" J dxnIF(xl ) .. • F(xn)Rnl 

.; (c J dx I exp[if(x)] -11 )nnn/2. 

Let c = c f dx I exp[if(x)] - 11. The series for L(f) is 
bounded term by term by the series for Sec). Therefore 
L(f) converges. Furthermore, the series for L N(f) 
and L(f) converge uniformly. We now show LJf} - L(f). 

First notice that there exists an no such that, for 
N>no' IS(C)-Z;:"0(1/n!)c n n n/2 1 <e/4. Furthermore, 
there exists an No such that, for N>No' 
(I/n!) la~N) - an I < e/2no for n .; no' 

Then, for N> no and No, we have 

\ L J.,f) - L(f) \.; \ L J.,f) - ~o n~ a~N) I + I L(f) 

Since e is arbitrary, L N(f) - L(f). 

Remark: In order for L(f) to be a generating func
tional for a representation of U(f), it must satisfy Eqs. 
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(2.11)-(2.14). These equations are preserved when 
limits are taken. Since the L N(f) satisfy them, it 
follows that L(f) also satisfies them. Therefore, L(f) 
defines a generating functional. 

An alternative expression for L(f) can be obtained in 
terms of the cluster functions24 of the correlation func
tions. These are defined as 

where G = a partition of (1,2, ... ,n) into subsets 
(Gl , G2 , ••• , Gm). L(f) can be expressed in terms of Tn 
as follows: 

L(f) = exp(t (_l)n-1 1, f dX1 ... f dxn n=1 n. 
(5.7) 

XF(x1 ) .. • F(xn)T n(xl ,,, xn~ . 

Remark: Tn is the nonrelativistic analogue of the 
truncated n-point functions25 in relativistic field theory. 

B. Translational invariance and the cluster 
decomposition property 

Translational invariance and the cluster decomposi
tion property play an important role in determining 
representation of the local currents in the N /V limit. 
A representation of U(f) and V(lP) is translational in
variant if there is a set of unitary operators Q(a), 
continuous in a, such that 

(i) Q(al )Q(8.:I) = Q(a1 + 8.:1), (5.8) 

(ii) Q(a)U(f)Q(a}-l = U(fa), where fa(x) = f(x - a), 

(5.9) 

(iii) Q(a)V(lP)Q(at1 = V(lP.), where lPa(x) = lP(x - a) + a, 

(5.10) 

(iv) Q(a)n = n. (5.11) 

These conditions are equivalent to the requirement 
that the generating functional is translational invariant, 
i. e. , 

L(fa' lPa) =L(f, lP)· (5.12) 

Also, the correlation functions are translational in
variant, i. e. , 

Rn(x1 + a, ~ + a, ... , xn + a) =Rn(xl'~" .. , xn). (5.13) 

Furthermore, R1(x) = (n, p(x)n) = p, the average density. 

The cluster decomposition property is based on the 
phYSical idea that as particles get far apart their 
interaction becomes negligible. This condition can be 
expressed in terms of correlation functions by re
quiring 

(5.14) 
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Combined with translational invariance we then have 

limRn+m(xl '" xn' Yl + Xa, "', Ym + xa) 
~-® 

=Rn(~ '" xn)Rm(Yl •.• Ym)' 

By using Eq. (5.6) this implies 

(5.15) 

lim L(f + h~a) = L(f)L(h), where h~a(x) = h(x - xa). 
~-® 

(5. 16) 

This relation can be used as a boundary condition in 
determining physical solutions of the functional equation 
(4.2) for L(f). (See Appendix A for an example.) 

Remark: The cluster decomposition property can also 
be expressed in terms of the cluster functions of the 
correlation functions as follows: Let 

_(the radius of the smallest ball containin, 
r(xl , .•• ,x")- . 

the points Xl' ... ,x" 

Then T "(Xl' ... ,x") - 0 as r(xl' ... ,x") - "". 

Translational invariance and the cluster decom
pOSition property have important consequences in 
relativistic quantum field theory. We will discuss the 
corresponding results for the nonrelativistic local cur
rent algebra. This discussion is greatly facilitated by 
the application of some results of Araki. 8 The next 
theorem shows that the ground state is unique. 

Theorem: Suppose the generating functional L( f) 
= (0, U(f)O) defines a continuous unitary representation 
of UU) satisfying the cluster decomposition property 
and translational invariance. Then any state 0' in
variant under Q(a) IIp to a factor [i. e., Q(a)O' = W(a)O' , 
where W(a) is a complex number] is a multiple of O. 

Proof: (See Araki, 8 Theorem 6.1) 

Thus the ground state is the only translational in
variant state. The generators of the translation opera
tors are the momentum operators; i. e., Q(a) 
=exp(ia· P), where P= the total momentum operator. 
Suppose the state I p) is a momentum eigenstate, then 
Q(a)lp)=exp(ia·p)lp). By the above theorem Ip) is a 
multiple of O. Therefore 0 is the only momentum eigen
state. (Furthermore, PO=O.) 

The above theorem has an additional consequence. 

Corollary: Suppose the generating functional L(f) 
= (0, U(f)O) determines a continuous unitary representa
tion of U(f) satisfying the cluster decomposition prop
erty and translational invariance. Then the set of 
operators B = {U(f), Q(a)} is irreducible. (I. e., any 
bounded operator that commutes with every operator in 
the set B is a multiple of the identity. ) 

Proof: (See Araki, 8 Sec. 6.) 

In bounded regions the translation operators are 
similar to the operators V(<p). In fact, if the flow 
~a(x) = X + a, is a valid test function, then it follows 
from the multiplication law [Eq. (2.6)] that 
V( ~a)V( ~b) = V( ~a+b)' V(~a)UU)V(~a)-l = U(fa) , and 
V(~a)V(<p)V(~a)-l= V(CPa)' Thus Vm behaves like a trans
lation operator [except for V( ~)n = n]. However, we 
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have been considering only continuous representations. 
Therefore, it is necessary to impose a topology on the 
set of flows. Goldin26 has discussed this pOint. He sug
gests a topology on a restricted set of flows cP for which 
cp(x) - X as I X I - "". Thus ~a would not be in the set of 
test functions. In order to obtain the translation opera
tors from V( cp) we are led to consider a sequence of 
flows cp" converging to ~a' The next theorem gives a 
sufficient condition for V( cp") - Q(a). 

Theorem 5: Let cp" be a sequence of flows such that 
fo CPn-fa' Y fES, and cp~locpo cp,,-cp .. for all flows cp. 
If (0, V(CPn)O) -1, then V(cp") - Q(a). 

Proof: Since (0, V(cp")O) - 1, it follows V(cpn)O - O. 
Let D = Span{U(f)V(CP)O; fE Sand CPE flows}. D is a 
dense set for any representation defined from a gen
erating functional L(f, cpl. Let 1/JE D. We will show that 
V(cp")1/J- Q(a)1/J, 

IIV( cp ")1/J - Q(a)1/J112 = IIV(cp ")0W + IIQ(a)1/J112 

- (V(cp")1/J, Q(a)1/J) - (Q(a)w, V(CP")0) 

Since V(<p) and Q(a) are unitary, IIV(cp")1/J11 = lI,pll = IIQ(a)wll. 
Since 1/JE D we can write 0 = LT=l b p(f)V(cp ,)0. Then, 

(V(cp ")0, Q(a)w) = t b j(V(<p")U(f)V(<p )0, Q(a),p) 
'=1 

Since the representations we are considering are 
strongly continuous, 

V( cp~l 0 <p, 0 <p "tl U(f 0 <p ")-1 Q(a)1/J - V( <p , .. )-I 

X U(f'at i Q(a)1/J 

and, since V(<p")O- 0, we have 

" (V( cp")1/J, Q(a)1/J) - L bj (0, V(<p 'at i U(f'at i Q(a)w) 
J=I 

= (Q(a)1/J, Q(a)1/J) = 111/J112. 

Therefore IIV(cp")1/J - Q(a)wll- O. Since D is dense it 
follows V(cp") - Q(a). 

Remark: Theorem 5 has a physical interpretation. 
Since J(x) is the momentum density, we expect 
t: J(x) . a = a . P, where P = the total momentum 
operator. Thus, exp(it f J(x)· adx) = exp(it a· P) = Q(ta). 
But exp(itJ(g» = V(<p t), where <P t is the flow corres
ponding to the vector field g; i. e., (d/ dt)<p t(x) 
= g 0 <p t(x) and cp t=o(x) = x. For g(x) = a, <p t(x) = x + tao 
Thus we expect Q(a) = V( ~a)' where ~ .. (x) = X + a. How
ever, t: J(x)' a dx may not be well defined since it is an 
integral over all space. Thus we must take an appro
priate limit to make the integral well defined. 

In Appendix B it will be shown for the representation 
of U(f) and V(<p) corresponding to a free Bose gas, 
there is a sequence <p" satisfying the conditions of 
Theorem 5. Therefore the translation operators are in 
the closure of the algebra generated by the set {V( <pH. 



                                                                                                                                    

1148 Ralph Menikoff: The Hamiltonian and generating functional 1148 

Then by the previous corollary it follows the set of 
operators {UU), V(cp)} are irreducible. (This result was 
proved by different means in Ref. 20.) It is not yet 
known whether this result is true for other 
representations of physical interest. 

Next, we will show that different Hamiltonians give 
rise to unitarily inequivalent representations of the 
local current algebra. In order to do this, we need the 
following theorem. 

Theorem: Suppose the generating functional L(f) 
= (n, u(f)n) determines a continuous unitary repre
sentation of U(f) satisfying the cluster decompOSition 
property and translational invariance. If there is a set 
of unitary operators Q'(a) and a cyclic vector n' [i. e. , 
Span{U(f)n'; f E: S} is dense] satisfying Eq. (5. 8), (5. 9), 
and (5.11), then there exists a unitary operator S such 
that SU(f)S'l = U(f), SQ(a)S-l = Q' (a), and sn = n' . 

Proof: (See Araki, B Theorem 6.2). 

Corollary 1: Suppose the generating functionals L 1(f) 
= (n1 , U1(f)01) and L 2(f) = (02' U2(f)02)' each satisfying 
translational invariance, define two continuous unitary 
representations of U(f). Furthermore, suppose L 2(f) 
satisfies the cluster decomposition property. Then the 
representations are unitarily equivalent iff L 1(f)=L2(f). 

Proof: Let H1 and H2 be the Hilbert spaces and 01 
and 02 the cyclic vectors for the two representations, 
Suppose the representations are unitarily equivalent. 
Then there exists a unitary operator Sl such that 
Sl: H1- H2 and SlU1(f)Si1= U2(f). Let 0~=S101 and 
Q~(a)=SlQ1(a)Sil. It is easily shown that O~ is cyclic in 
H2 and Eqs. (5.8), (5.9), and (5. 11) are satisfied for 
0; and Q~(a). By the above theorem there exists a 
unitary operator S2 such that; S2:H2- H2' S2U2(f)S;,1 
=U2(f), and S202=0~. Let S=S;,lSl: H1-H2' Then 
SOl = n 2 and SU l(f)S-l = U2(f). Therefore 

L 1(f) = (n!, U1(f)01)1 

= (SOl' SU1(f)01)2 

= (02' U 2(f)02)2 = L 2(f)· 

Conversely, if L 1(f) =L2(f), the representations are 
clearly unitarily equivalent. 

Remark: The last two theorems have used only L(f). 
They are important for representations of U(f) and 
V(cp) in which Span{U(f)O} is dense. Furthermore, they 
can be generalized using L(f, cp) for representations in 
which Span{U(f)V(cp)O} is dense. 

Now suppose there are two representations of U(f) 
and V(cp) with Hamiltonians H1 and H2 of the form H 
=t (dxK(x) t [1/p(x)] K(x) with j{Ol(X) = K(x) - AOl(X, p) 
and j{<2)(x)=K(x)-A(2)(X,p). If the representations are 
unitarily equivalent, then, by Corollary 1, L 1(f) = L 2(f). 
Therefore we may take HI = H 2' Consider the following 
identity: 

(n, exp[ip(f)] [p( - V· g) - ip(V /0 g) ]0) 

= (0, exp[ip(f)}K(g)O). 

Since K(g)n=A (1)(g, p)0=A(2)(g, p)n, we have 
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(0, exp[ip(f)] A (l)(g, p)O) = (0, exp[ip(f)]A(2)(g, p)O); 

for all f E: S. 
Therefore, A (l)(g, p)n =A (2)(g, p)O. Since 
[A(g,p), exp[ip(f)] = 0 and Span{exp[ip(f)]O;/c::::S} is 
dense, it follows thatA(1)(g,p)=A(2)(g,p). We have 
proved the follOwing theorem. 

Theorem 6: Suppose there are two continuous unitary 
representations of U(f) and V(cp) (denoted by i = 1,2) 
with Hamiltonians 

H;=t J dxK(i)(x)t[1/p(X)]K(il(X), where KW(x) 

=K(x) - A(j\(x, p) 

and satisfying the cluster decompOSition property, 
translational invariance, and time reversal invariance. 
If A (I) (x, p) *A(2)(X, p), then the representations are 
unitarily ineqUivalent. 

Remarks: (1) Roughly speaking, Theorem 6 states 
that different Hamiltonians correspond to inequivalent 
representations. Two important questions remain un
answered at this time. First, given a system of parti
cles (boson or fermion) with an interaction potential 
V(x) , is A(x, p) uniquely determined? Second, does a 
Hamiltonian with a given A(x, p) uniquely determine the 
representation? The second question is equivalent to 
asking whether the functional equation (4.2) for L(f) 
has a unique solution. This is known to be the case for a 
free Bose gas20 [A(x, p) = 0], but uniqueness has not been 
established for other cases. 

(2) Since A(x, p) considered as a function of p may be 
an unbounded operator, its definition is representation 
dependent. For some representations it may not even 
be defined. In some representations two operators 
A(])(x,p) and A(2)(X,p) may be equal while in others they 
may be unequal. 

(3) Consider the N /V limit of interacting physical 
systems characterized by a coupling constant A and for 
which the assumptions in Theorem 6 are valid. If the 
systems are described by unitarily equivalent rep
resentations, then by Theorem 6 and Eq. (3.12) the 
Hamiltonians H~ are identical as Hermitian forms. 
Therefore, the Hamiltonian operators would be different 
self-adjoint extensions of the same Hermitian form. 
Furthermore, the ground states are the same since 
there is a unique translational invariant state. On the 
other hand, if the systems are described by unitarily 
inequivalent representations, then solving the systems 
by perturbation theory is more difficult since it is no 
longer possible to express the ground states as a con
vergent series in A. This point will be discussed in the 
next paper in connection with a speCific example. 

C. Restriction of the N/V limit representation to a finite 
volume 

We can gain further insight about L(f) in the N /V 
limit by restricting the test functions to have support 
in a bounded set II. 

If supp fell, then 
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Since 

F(~)'" F(xn) = 6 t (- )n-J iI exp[if(x.)] 
perm j=O j! (n - j)! k=l k 

and Rn is a symmetric function, we have 

L(f) = i6 :! f dxl ... f dxn expri!(xl)] ..• exp[i!(xn)] 

v v (5. 17) 

where 

(5. 18) 

P n has the physical interpretation, 

(

the probability for finding n) 
particles at points 

(l/n!)Pn(v;xl .. ·xn)= . 
Xl' ... , xn and the remaining 
particles outside v 

To prove this, we consider N particles in a box of 
volume V, in this case 

1 - p(N)(v'x ... x) 
n! n 'I n 

N! ~n (_)J (N -n)! 
= n!(N-n)! j=O j!(N-j-n)! 

x f dX".I"· f dxn+i 1. dxn+J+l'" f dxJ'2*O 
v &I V V 

= N! ~n (_)i (N-n)! 
n!(N-n)! j=O j!(N-j-n)! 

f f (N-j-n)! 
x dX".l·" v dX".J N! 

v 

1 N-n(_)jj f -- -- ... dx R X ·"x - ,~ ., dXn+1 n+j n+j( I n+j)' 
n. ,=0 J. v v 

As N - 00, we obtain the expression in Eq. (5.18). 

Remarks: (1) Formally Eq. (5.18) can be inverted. 
The R's are given in terms of the P's by the equation: 
For Xl' ... ,xn E V 

Rn(x i ... xn) = t +1 dXn+l ... f dxn+j P n+i (V;Xl ... xn+j ) 
,=0 J. v v 

(5.19) 

If the sum in Eq. (5.19) converges and is consistent 
(i. e., the same value of Rn is obtained for pOints 
Xl' ... ,xn in overlapping volumes), then the R' s can be 
determined from the local probability distributions. 
Since the R' s determine L(f), this implies that L(f) 
can be determined by its local behavior. 
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(2) If the volume v is not bounded, each term in the 
expansion for P n [Eq. (5.18)] will be infinite. 

(3) As a result of the probability interpretation for Pn' 

(i) Pn(v;xI '" xn) '" ° 
and 

(ii) E :! f dxl ··· [dX"Pn(V;Xl '" xn)= 1. 

Property (ii) also follows from L(O) = 1. 

(4) If Rn~cnnn/2Vn, then the lemma to Theorem 4 can 
be extended to show that P n exists (i. e., the series for 
P n converges). However, this is not sufficient to imply 
Pn"'O. 

From Eq. (5. 17) we see that, for supp! C v, L(f) is 
the sum of terms which have the form of N -particle 
generating functions [Eq. (5.3)] with ground state given 
by O~ Jxl .. · x N) = (l/N!)P N(V;XI '" x N). As a result the 
N /V limit representation restricted to finite volumes 
(this is a representation of the subalgebra formed by 
restricting the test functions) can be represented in the 
Hilbert space formed by the direct sum of N -particle 
spaces (Fock space). However, the ground state for 
this restriction would not have a definite number of 
particles. Thus, locally the N /V limit can be considered 
as "Fock space. " This is the "particlelike" nature of 
the N /V limit. 

For a free Bose gas P n( v ;XI ... xn) can be calculated 
exactly. It has been shown for this case thaF 

L(f) = exp (p f dx(exp[i!(x)] - 1)) 
= i: ..lfdx ... /dX,f'(X)'" F(x )pn. 

n=O n! I 1 n 

1 ~ (_)J f f -' . ... __ >; __ ... n·, Pn(v,xI xn)- ,L1., dXn+1 dxn+jP 
n. J=O J. v v 

1 ~ (- )j_. pn =, 6 -.-, - v'pn+1 = - exp(- pv). 
n. j=O J. n! 

This is a Poisson distribution with mean equal to p v. 
This is to be expected since we have taken the limit of 
a large number of noninteracting particles (N - 00) with 
the probability of finding a given particle in a given unit 
volume (prob = l/V) approaching zero such that the 
product (N· prob =N/V=P) is a constant. 

Remark: The Hilbert space, H=L~(S'), can be used 
to represent the N /V limit. The measures for the N
particle representations and Eq. (5.17) suggest the 
measure in the N /V limit is concentrated on functionals 
consisting of a countably infinite number of delta func
tions; F=L:7=1 o(x-xj ) such that if nF(v) is the number 
of delta functions with support in volume v then 
limV_ .. nF(v)/v=P. The functionals can be characterized 
by the sequence of points {Xl' ~ ... } which can be inter
preted as the positions of the particles. The measure J.l 
can be considered as a measure on these sequences. In 
this context there are similarities with recent work of 
Lenard27 in which he discussed the state in classical 
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stat~stical mechanics in terms of correlation functions. 
The present formalism becomes distinctly quantum 
mechanical in nature only when the J's are considered. 

Also, representations corresponding to different 
average densities P, and P2 will have measures Il, and 
112 with different sets of measure zero (in 5'). As a 
result, representations corresponding to different 
average densities are unitarily inequivalent. 

The same methods may be used to obtain expressions 
for L(f, g) similar to those for L(f). The results are 

L(f, g) 

~ 1 f = '" - dx L1, 1 
n=O n. f dy, ··· fdx n fdYnl5(Xl-Yl)"'I5(Xn-Yn) 

(5.20) 

x IT [exp(ij(xk))exp(ij(Xk , g))-I]R n(y, .•• Yn;X, '" Xn), 
k=l 

where j(x, g) = - ii[2g(x) . V' + (V'. g)(x) J. In the N -particle 
representations Rn( ; ) is given by 

x n*(y, ." Y n' xn+l' ... ,xN) 

xn(x, '" xN)· 

In terms of the canonical field operators, 

Rn(y, ." Y n; x, ". xn) = (n, ?/J t(y n)'" ?/J t (Y,)?/J(X, ) ... ?/J(xn)n). 

Clearly Rn(x, ... xn; x,'" xn) =Rn(x, '" xn). Also, as a 
consequence of Schwartz's inequality, 
IRn(y, ... y n; x, ... Xn) 12 ""R n(X, ... Xn)Rn(y, ". Y n)' 

An alternative expression for L( f, g) can be obtained 
in terms of the cluster functions defined as 

T n(y, ". Yn; x, ... xn) =6 (- )m-n(m - I)! 
G 

rrRG.(YkECj;XkE C;), 
;=1 J 

where G = a partition of (1, 2, ... ,n) into subsets 
(C

" 
••• ,Cm). L(f, g) can now be expressed as 

L(f, g) 

P(II'Y ",y·x,."x)=t (_)kj dxn+l".fdx
n

+k n " n' n k=O k ! v v 

XRn+k(y, ... Y n' Xn+l ." Xn+k;X, ." X n+k)· 

(5. 23) 

Thus the generating functional for a representation of 
U(f) and Veep) in the N/V limit restricted to a finite 
volume is the sum of terms similar to L(f, g) for an N
particle representation [Eq. (5.4)]. [If P n( v; Y,'" Y n; 
x, ... xn) = W n(Y 1 ... Y n) W n(X, ... xn), then the restriction is 
the direct sum of N-particle representations. ] 

6. SUMMARY 

We have shown that the Hamiltonian, considered as a 
densely defined Hermitian form, can be written 

I J -)t 1 - ) H=s dxK(x p(x) K(x, 

where 

K(x) = [V' p(x) + 2iJ(x)] - A(x, p). 

The generating functional in the N /V limit can be 
expressed as 

L(f) = ~ n~ J dx, ... f dx"F(x,)'" F(xn)Rn(x, ... xn), 

where F(x) = exp[ij(x)] - 1 and Rn= the nth correlation 
function. L(f) satisfies the functional differential 
equation 

. 1 15 f. 1 15) 
[V-tV'!(x)] i 15!(x)L(f)=A~x, i I5j L(f). 

Furthermore, under the assumption of translational 
invariance and the cluster decomposition property, in
equivalent representations are needed for different 
Hamiltonians. 

There remains two problems in determining rep
resentations of phYSical interest: 

(1) Given a potential Vex), determine A(x, p). 

(2) Given A(x, p) solve the functional equation (subject 
to the appropriate boundary conditions) for L(f). 

'" (- )n-l f f f f = exp ?;f ~ dx, dy,,,, dXn dYn 15 (x, - y ,)... Undoubtably these tasks can be accomplished in gen-
l5(xn - Y n) eral only by using approximation methods. Once a 

representation for a given system has been determined, 
its dynamics can be studied. By extending this approach 

x i'r [exp(i!(xk)) exp(ij(xk, g)) - 1] T n(Y, ". Yn ;X, ... xn)· to study the thermodynamics of a system is also of 
k=I 

interest. 
(5.21) 

Finally, if supp! c v and supp g c v ACKNOWLEDGMENTS 
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APPENDIX A 

In this section we will show how the cluster decom-
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-2n -n a / 

/ 

/ 

n 2n x FIG. 1. The flow <P,. (x) vs 
x, in one dimension. 

position property can be used as a boundary condition 
for the functional differential equation (4. 2) to uniquely 
determine the generating functional for a free Bose gas 
in the N IV limit. (In Ref. 20 other boundary conditions 
were used for this purpose.) We will assume we already 
know that the generating functional for a free Bose gas 
satisfies the equation 

(AI) 

The first method for solving this equation is based on 
the use of integrating factors. Equation (AI) can be 
rewritten as 

v (exP[-i!(X)] r o~x) L(f») =0. (A2) 

Integrating between point x and co(f; dr·), we obtain 

[ . ] 1 0 I 
exp - i!(x) i o!(x) LU) I X='" 

(A3) 

- exp[ - i!(x)] r O;(X)LU) = o. 

By using the cluster decompOSition property, 

f of~x) L(f) = (n, p(x) exp(i!(x)]n) 

- (n, p(x)n) (n, exp[iPU)]n) as Ix 1- co, 

translational invariance, (n,p(x)n)=:p = the average 
density, and the fact !(x) - 0 as Ix 1- co, Eq. (A3) 
becomes 

p LU) - exp( - i!(x)) T O!~X) LU) =: O. (A4) 

This can be written as 

r O!~x) {exp[-p J (exp[i!(x)]-l)dx]LU)}=O. (A5) 

Therefore, exp( - p J (eif(x) - l)dx]LU) =: const. (A6) 

The constant can be determined from the requirement 
L(O) = 1. The result is 

LU) = exp(p J (ei/(x) - l)dx]. (A 7) 

An alternative method for solving Eq. (AI) uses the 
cluster decomposition property for the correlation func
tions. We have shown in the N IV limit that LU) has the 
form [Eq. (5.6)] 

J. Math. Phys., Vol. 15, No.7, July 1974 

L(f)=: to nl! f dx1,·, /dx"(eXP[i!(X1)]-I) ... (exp[i!(x")]-l) 

XR"(xl ... X"). (AS) 

Substituting Eq. (A8) into Eq. (AI), we obtain 

f. exp[i!(x1)] /dxa ... /dx"(exp[i!(~)J-l)'" (exp[i!(x")] 
n=O (n-I)! 

- 1) 

(A9) 

Since Eq. (A9) is true for all!, each term separately 
must be zero, 

(AlO) 

Furthermore, Rn is a symmetric function. Therefore, 
R" = const. The cluster decomposition property can be 
used to relate the different constants as follows: 

Rl (x) = (n, p(x)n) =: p, 

lim R"(x1 '" X""l' x" + a) = Rj(X") Rn_1(Xl ... xn_1) 
a- .. 

= p R
n
_

1
(X

l 
... x

n
_

1
)· 

By induction we have Rn=p". Therefore, 

LU) = £""!"f !dx1··./dXn(exp[i!(X1)] -1)· .. (exp[ij(x")] 
"=0 n. 

= exp[p I dx(ei/(X) - 1)], 

APPENDIX B 

_ l)p" 

In Ref. 20 it was shown the generating functional for 
the representation of UU) and V(<p) corresponding to the 
free Bose gas is given by 

LU, <p) = (n, U(f) V(<p)n) 

= exp {p J dx [exP[i!(X)] (det a~~:)r)'/2 -~}. 
In this section we will show there is a sequence of 

test functions <p" such that V(<p,,)- Q(a), the translation 
operator. First, it is necessary to define which flows 
are to be used as test tunctions. Goldin26 has suggested 
a topology on the flows in analogy to the topology on 
Schwartz's space. His topology is defined by a countable 
number of metrics, 

«<P,1/!»n= max sup 1(1+ IxI 2 )"[(,O(m)(x)-w(m)(x)]I. 
O:Elml!!Sin x 

Since we want the test functions to include the identity 
flow <Po(x) = x and to have an inverse, we will take the 
test functions to be the set of flows <p such that 
«<p, <Po»" < 00 and «(,0-1, <Po»n < co for all n. 

By Theorem 5, if <pn(x)-x+a and (n, V(<p")n)-l, 
then V«,On)- Q(a)o We will first consider the one-di
mensional caseo Let 

~
x, 

x+a(2n-x)/n, 
(,On(x)= x+a, 

x + a(2n + x)/n, 
x, 

(See Fig, 1.) 

2n<x, 
n<x< 2n, 
Ixl <n, 
-2n<x<-n, 
x< -2n. 
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'P, would be a test function except that its derivative 
is discontinuous at four pOints. By changing 'Pn in a 
small region about each discontinuity it can be made 
into a smooth function (and hence a test function) without 
changing the subsequent arguments. 

Clearly 'P ,(x) - x + a as n - 00. 

In order to verify (n, V('P,)n)- 1, we must show 

f~~ dX[(~~n)1/2 -IJ -0 asn-oo. 

Let 

In= f~ [(~~,y/2 -IJdX 

= 1:" [~- ;y/2 -1J dx+ f2"[ (1 + ;//2 -IJdX. 

For n large (1 ± a/n)l /2 = 1 ± t a/n + O(I/n2), 

In= 1:' [-t;+O(n~)JdX+ f2'[t;+O(:2~JdX 
=- .!.a+no(~) +.!.a+no(~\ 

2 n2 2 n2 J 
=o(~) - 0 as n- oo • 

Therefore V('P,) - Q(a) by Theorem 5. 

In two dimensions consider a translation in the x 
direction by a distance a. Let 

'Pn(x, Y)y=y, 

'Pn(x, Y)x = x + a ~(x) f3 n(y), 

where 

1

(2n- x)/n, 

1 
a,(x) = ' 

(2n + x)/n, 

0, 

and 

[(n + ~) - y J/~, 

1, 

[(n+~)+y)j~, 

0, 

n<x< 2n, 

-n<x<n, 

- 2n<x< -n, 

2n< lxi, 

n<y <n+~, 

-n<y<n, 

- (n + ~) < y < - n, 

n+~< Iyl, 

~ = an arbitrary positive constant. 

To prove (n, V( 'P n)n) - 1, it is necessary to show 

f dx f dy [(det a'P~~; Y)r) 1/2 - 1] - O. 

J. Math. Phys., Vol. 15, No.7, July 1974 

This can be verified by a calculation similar to the· 
one-dimensional case. In fact a similar argument works 
for any number of space dimensions. 

Therefore, for the free Bose gas representation there 
is a sequence of test functions CPn such that 
Q(a) = lim V(CPn)' 

*Part of the work reported here is included in a thesis to be 
submitted to the University of Pennsylvania in partial Jul
fillment of the requirements for the degree of Doctor of 
Philosophy. 

'work supported in part by U. S. Atomic Energy Commission 
under Contract No. AT(30-1)-3071. 
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Addendum: The unitarity equation for scattering in the absence 
of spherical symmetry [J. Math. Phys. 15, 745 (1974)] 

Michael Tortorella 

Department of Mathematics. University of Wisconsin-Milwaukee. Milwaukee. Wisconsin 53201 
(Received 20 February 1974) 

We have recently discovered an improved version of 
theorem 3.3 of our paper. We exploit the fact that, in 
general, m(g) = min{Q(H)(nl1 ii2) : ii l1 ii2 E S} is not zero, 
but is positive. A similar result appears in Ref. 1, 
Theorem lA, but this theorem improves on that one as 
well because we establish a better sufficient condition 
for the uniqueness of the solution of cp =!h (cp) in the 
whole function space (instead of only in the set T of 
Ref. 1). 

We will henceforth write m(G) =m and M(G) =M 
wherever there is no posSibility of confusion. 

Lemma 1: Suppose M(G) <1 and cp is a square
integrable solution of cp=!h(cp). Then 

sin[cp(nl1 n2)]? m[(l _M2)/(1 - 2mM +m2)]1/2 

for almost every [d2S1] nl and n2 in S. 

Proof: Let x=ess inf(sincp). Then from Lemma 3.1, 

0,,; sin-Ix"; cp(nl ,n2)"; sin-1M <rr/2 a.e. 

Since cp=!h(cp), 

sin[cp(nl , n2)]? Q(H)(nl1 ii2) [(1 _M2)1/2 (1 _ X2)1/2 

+Mx] a.e. 

? m[(1_M2)1/2(1_x 2)1/2 +Mx]. 

Therefore, x=ess inf(sincp)? m(1_M2)1/2(1_x 2)1/2 

+Mx), and the obvious computation then shows that 
x? m[(1-M2)/(1 -2mM +m2)jI/2. 

Hence, if M < 1, it is enough to look for solutions of 
cp =/1'!(CP) in the set 

D={cp EX: sin-lm[(1-M2)/(1 -2mM +m2)]1/2 

,,; cp(iil1 ii2),,; sin-1M a. e. [d2S1 n. 
Theorem 2: Let G: SXS- R+ be a positive continuous 

function, and let 0,,; m( G) ,,; Q(H)(nl , n2)"; M( G) < 1 for 
every iiI' n2 in S. Suppose also that M2(G) <1, where 

M 2(G) = (1/2rr)M(M - m)2[1 _ 2mM + m2 _ M2 + M4]-1 

X sup{fs G(nl1 n) dS1: nl E S}. 

Then there is a unique square-integrable solution of the 
equation cp =!h(cp). The solution is the limit of a se-
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quence of successive approximations which converges 
in the norm of L 2(sxS, d 2S1). 

Proof: The proof is like that of Theorem 3.3. By 
Lemma 1, it is enough to show that!h has a unique 
fixed point in D. We establish this uSing the Banach 
contraction mapping principle. To show!h : D - D, it is 
enough to show that if cp ED, then 

sinl1';(cp)? m[(1-M2)/(1-2mM +m2)]1/2 a.e. 

This follows because m[(l _M2)/(1 -2mM +m2)Jl/2 is 
a solution of the equation x=[(1_M2)1/2(1_x2)1/2 

+Mx]m. We next show that 
11!h(CPl) - !h(CP2)11,,; M2(G)l/21Icpl - CP211. 

To do this, use the method of Martin as in Ref. 5, pp. 
137-39, except note now that the minimum of sin cp 
which makes the right-hand side of (25) of Ref. 5 a 
maximum is Q(nl1 n2) [(1-M2)/(1-2mM +m2)]1/2. In 
the language of Theorem 3.3, this gives 111i/h(cp ;x)II 
,,; M 2(G)I/21Ixll for every XE M and cp ED. We now apply 
the mean value theorem (Ref. 8, Proposition 2.3) to get 
the above estimate. The end of the proof is just as in 
Theorem 3. 3. 

Corollary 3: If G=c <1, then ImF=c2, and F= 
= (c - C

2
)1 / 2 + ic is the (essentially) unique solution of 

(2.1). That is, if the differential cross section is con
stant and less than one, there is only one square
integrable scattering amplitude which satisfies unitarity 
and yields this cross section. 

Proof: M - m = O. Note that c,,; 1 is necessary because 
necessarily I ImF I ,,; I F I = G. 

Remark: M 2(G),,; M l (G), and equality holds if and only 
if m(G)=O. Thus this theorem improves Theorem 3.3. 
Also, this result is sharper than that of Theorem 1A of 
Ref. 1. Not only do we obtain a sufficient condition for 
uniqueness in the whole space, but also this condition 
is weaker than that in Ref. 1. For example, in the 
spherically symmetric case, if M(G) = 0.70, to use 
Theorem 1A of Ref. 1, we must have m(G) ;;;: 0.22 (see 
illustration, Ref. 11, p. 157). However, Theorem 2 
above works with m(G) = 0, because if m = 0, then 
M 2(G)=Ml (G), and by the remark (1) follOwing Theorem 
3.3, M(G) <0.79 implies M l (G) <1. 
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